Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,749 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
(*  Title:       OAWN_Convert.thy
    License:     BSD 2-Clause. See LICENSE.
    Author:      Timothy Bourke
*)

section "Transfer standard invariants into open invariants"

theory OAWN_Convert
imports AWN_SOS_Labels AWN_Invariants
        OAWN_SOS OAWN_Invariants
begin

definition initiali :: "'i \<Rightarrow> (('i \<Rightarrow> 'g) \<times> 'l) set \<Rightarrow> ('g \<times> 'l) set \<Rightarrow> bool"
where "initiali i OI CI \<equiv> ({(\<sigma> i, p)|\<sigma> p. (\<sigma>, p) \<in> OI} = CI)"

lemma initialiI [intro]:
  assumes OICI: "\<And>\<sigma> p. (\<sigma>, p) \<in> OI \<Longrightarrow> (\<sigma> i, p) \<in> CI"
      and CIOI: "\<And>\<xi> p. (\<xi>, p) \<in> CI \<Longrightarrow> \<exists>\<sigma>. \<xi> = \<sigma> i \<and> (\<sigma>, p) \<in> OI"
    shows "initiali i OI CI"
  unfolding initiali_def
  by (intro set_eqI iffI) (auto elim!: OICI CIOI)

lemma open_from_initialiD [dest]:
  assumes "initiali i OI CI"
      and "(\<sigma>, p) \<in> OI"
    shows "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> CI"
  using assms unfolding initiali_def by auto

lemma closed_from_initialiD [dest]:
  assumes "initiali i OI CI"
      and "(\<xi>, p) \<in> CI"
    shows "\<exists>\<sigma>. \<sigma> i = \<xi> \<and> (\<sigma>, p) \<in> OI"
  using assms unfolding initiali_def by auto

definition
  seql :: "'i \<Rightarrow> (('s \<times> 'l) \<Rightarrow> bool) \<Rightarrow> (('i \<Rightarrow> 's) \<times> 'l) \<Rightarrow> bool"
where
  "seql i P \<equiv> (\<lambda>(\<sigma>, p). P (\<sigma> i, p))"

lemma seqlI [intro]:
  "P (fst s i, snd s) \<Longrightarrow> seql i P s"
  by (clarsimp simp: seql_def)

lemma same_seql [elim]:
  assumes "\<forall>j\<in>{i}. \<sigma>' j = \<sigma> j"
      and "seql i P (\<sigma>', s)"
    shows "seql i P (\<sigma>, s)"
  using assms unfolding seql_def by (clarsimp)

lemma seqlsimp:
  "seql i P (\<sigma>, p) = P (\<sigma> i, p)"
  unfolding seql_def by simp

lemma other_steps_resp_local [intro!, simp]: "other_steps (other A I) I"
  by (clarsimp elim!: otherE)

lemma seql_onl_swap:
  "seql i (onl \<Gamma> P) = onl \<Gamma> (seql i P)"
  unfolding seql_def onl_def by simp

lemma oseqp_sos_resp_local_steps [intro!, simp]:
  fixes \<Gamma> :: "'p \<Rightarrow> ('s, 'm, 'p, 'l) seqp"
  shows "local_steps (oseqp_sos \<Gamma> i) {i}"
  proof
    fix \<sigma> \<sigma>' \<zeta> \<zeta>' :: "nat \<Rightarrow> 's" and s a s'
    assume tr: "((\<sigma>, s), a, \<sigma>', s') \<in> oseqp_sos \<Gamma> i"
       and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
    thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> oseqp_sos \<Gamma> i"
    proof induction
      fix \<sigma> \<sigma>' l ms p
      assume "\<sigma>' i = \<sigma> i"
         and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
      hence "((\<zeta>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
        by (metis obroadcastT singleton_iff)
      with \<open>\<forall>j\<in>{i}. \<zeta> j = \<sigma> j\<close> show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and>
            ((\<zeta>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i"
        by blast
    next
      fix \<sigma> \<sigma>' :: "nat \<Rightarrow> 's" and fmsg :: "'m \<Rightarrow> 's \<Rightarrow> 's" and msg l p
      assume *:  "\<sigma>' i = fmsg msg (\<sigma> i)"
         and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
      hence "\<forall>j\<in>{i}. (\<zeta>(i := fmsg msg (\<zeta> i))) j = \<sigma>' j" by clarsimp
      moreover from * **
        have "((\<zeta>, {l}receive(fmsg).p), receive msg, (\<zeta>(i := fmsg msg (\<zeta> i)), p)) \<in> oseqp_sos \<Gamma> i"
        by (metis fun_upd_same oreceiveT)
      ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and>
                            ((\<zeta>, {l}receive(fmsg).p), receive msg, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i"
        by blast
    next
      fix \<sigma>' \<sigma> l p and fas :: "'s \<Rightarrow> 's"
      assume *:  "\<sigma>' i = fas (\<sigma> i)"
         and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
      hence "\<forall>j\<in>{i}. (\<zeta>(i := fas (\<zeta> i))) j = \<sigma>' j" by clarsimp
      moreover from * ** have "((\<zeta>, {l}\<lbrakk>fas\<rbrakk> p), \<tau>, (\<zeta>(i := fas (\<zeta> i)), p)) \<in> oseqp_sos \<Gamma> i"
        by (metis fun_upd_same oassignT)
      ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, {l}\<lbrakk>fas\<rbrakk> p), \<tau>, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i"
        by blast
    next
      fix g :: "'s \<Rightarrow> 's set" and \<sigma> \<sigma>' l p
      assume *:  "\<sigma>' i \<in> g (\<sigma> i)"
         and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
      hence "\<forall>j\<in>{i}. (SOME \<zeta>'. \<zeta>' i = \<sigma>' i) j = \<sigma>' j" by simp (metis (lifting, full_types) some_eq_ex)
      moreover with * ** have "((\<zeta>, {l}\<langle>g\<rangle> p), \<tau>, (SOME \<zeta>'. \<zeta>' i = \<sigma>' i, p)) \<in> oseqp_sos \<Gamma> i"
        by simp (metis oguardT step_seq_tau)
      ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, {l}\<langle>g\<rangle> p), \<tau>, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i"
        by blast
    next
      fix \<sigma> pn a \<sigma>' p'
      assume "((\<sigma>, \<Gamma> pn), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
         and IH: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, \<Gamma> pn), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
         and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
      then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j"
                       and "((\<zeta>, \<Gamma> pn), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
        by blast
      thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, call(pn)), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
        by blast
    next
      fix \<sigma> p a \<sigma>' p' q
      assume "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
         and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
         and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
      then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j"
                       and "((\<zeta>, p), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
        by blast
      thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p \<oplus> q), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
        by blast
    next
      fix \<sigma> p a \<sigma>' q q'
      assume "((\<sigma>, q), a, (\<sigma>', q')) \<in> oseqp_sos \<Gamma> i"
         and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i"
         and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
      then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j"
                       and "((\<zeta>, q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i"
        by blast
      thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p \<oplus> q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i"
        by blast
    qed (simp_all, (metis ogroupcastT ounicastT onotunicastT osendT odeliverT)+)
  qed

lemma oseqp_sos_subreachable [intro!, simp]:
  assumes "trans OA = oseqp_sos \<Gamma> i"
    shows "subreachable OA (other ANY {i}) {i}"
  by rule (clarsimp simp add: assms(1))+

lemma oseq_step_is_seq_step:
    fixes \<sigma> :: "ip \<Rightarrow> 's"
  assumes "((\<sigma>, p), a :: 'm seq_action, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
      and "\<sigma> i = \<xi>"
    shows "\<exists>\<xi>'. \<sigma>' i = \<xi>' \<and> ((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>"
  using assms proof induction
    fix \<sigma> \<sigma>' l ms p
    assume "\<sigma>' i = \<sigma> i"
       and "\<sigma> i = \<xi>"
    hence "\<sigma>' i = \<xi>" by simp
    have "((\<xi>, {l}broadcast(ms).p), broadcast (ms \<xi>), (\<xi>, p)) \<in> seqp_sos \<Gamma>"
      by auto
    with \<open>\<sigma> i = \<xi>\<close> and \<open>\<sigma>' i = \<xi>\<close> show "\<exists>\<xi>'. \<sigma>' i = \<xi>'
             \<and> ((\<xi>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<xi>', p)) \<in> seqp_sos \<Gamma>"
       by clarsimp
  next
    fix fmsg :: "'m \<Rightarrow> 's \<Rightarrow> 's" and msg :: 'm and \<sigma>' \<sigma> l p
    assume "\<sigma>' i = fmsg msg (\<sigma> i)"
       and "\<sigma> i = \<xi>"
    have "((\<xi>, {l}receive(fmsg).p), receive msg, (fmsg msg \<xi>, p)) \<in> seqp_sos \<Gamma>"
      by auto
    with \<open>\<sigma>' i = fmsg msg (\<sigma> i)\<close> and \<open>\<sigma> i = \<xi>\<close>
      show "\<exists>\<xi>'. \<sigma>' i = \<xi>' \<and> ((\<xi>, {l}receive(fmsg).p), receive msg, (\<xi>', p)) \<in> seqp_sos \<Gamma>"
         by clarsimp
  qed (simp_all, (metis assignT choiceT1 choiceT2 groupcastT guardT
                        callT unicastT notunicastT sendT deliverT step_seq_tau)+)

lemma reachable_oseq_seqp_sos:
  assumes "(\<sigma>, p) \<in> reachable OA I"
      and "initiali i (init OA) (init A)"
      and spo: "trans OA = oseqp_sos \<Gamma> i"
      and sp: "trans A = seqp_sos \<Gamma>"
      shows "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I"
  using assms(1) proof (induction rule: reachable_pair_induct)
    fix \<sigma> p
    assume "(\<sigma>, p) \<in> init OA"
    with \<open>initiali i (init OA) (init A)\<close> obtain \<xi> where "\<sigma> i = \<xi>"
                                                    and "(\<xi>, p) \<in> init A"
      by auto
    from \<open>(\<xi>, p) \<in> init A\<close> have "(\<xi>, p) \<in> reachable A I" ..
    with \<open>\<sigma> i = \<xi>\<close> show "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I"
      by auto
  next
    fix \<sigma> p \<sigma>' p' a
    assume "(\<sigma>, p) \<in> reachable OA I"
       and IH: "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I"
       and otr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans OA"
       and "I a"
    from IH obtain \<xi> where "\<sigma> i = \<xi>"
                       and cr: "(\<xi>, p) \<in> reachable A I"
      by clarsimp
    from otr and spo have "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by simp
    with \<open>\<sigma> i = \<xi>\<close> obtain \<xi>' where "\<sigma>' i = \<xi>'"
                               and "((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>"
        by (auto dest!: oseq_step_is_seq_step)
    from this(2) and sp have ctr: "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" by simp
    from \<open>(\<xi>, p) \<in> reachable A I\<close> and ctr and \<open>I a\<close>
      have "(\<xi>', p') \<in> reachable A I" ..
    with \<open>\<sigma>' i = \<xi>'\<close> show "\<exists>\<xi>. \<sigma>' i = \<xi> \<and> (\<xi>, p') \<in> reachable A I"
      by blast
  qed

lemma reachable_oseq_seqp_sos':
  assumes "s \<in> reachable OA I"
      and "initiali i (init OA) (init A)"
      and "trans OA = oseqp_sos \<Gamma> i"
      and "trans A = seqp_sos \<Gamma>"
    shows "\<exists>\<xi>. (fst s) i = \<xi> \<and> (\<xi>, snd s) \<in> reachable A I"
  using assms
  by - (cases s, auto dest: reachable_oseq_seqp_sos)

text \<open>
  Any invariant shown in the (simpler) closed semantics can be transferred to an invariant in
  the open semantics.
\<close>

theorem open_seq_invariant [intro]:
  assumes "A \<TTurnstile> (I \<rightarrow>) P"
      and "initiali i (init OA) (init A)"
      and spo: "trans OA = oseqp_sos \<Gamma> i"
      and sp: "trans A = seqp_sos \<Gamma>"
    shows "OA \<Turnstile> (act I, other ANY {i} \<rightarrow>) (seql i P)"
  proof -
    have "OA \<TTurnstile> (I \<rightarrow>) (seql i P)"
      proof (rule invariant_arbitraryI)
        fix s                                      
        assume "s \<in> reachable OA I"
        with \<open>initiali i (init OA) (init A)\<close> obtain \<xi> where "(fst s) i = \<xi>"
                                                        and "(\<xi>, snd s) \<in> reachable A I"
          by (auto dest: reachable_oseq_seqp_sos' [OF _ _ spo sp])
        with \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> have "P (\<xi>, snd s)" by auto
        with \<open>(fst s) i = \<xi>\<close> show "seql i P s" by auto
      qed
    moreover from spo have "subreachable OA (other ANY {i}) {i}" ..
    ultimately show ?thesis
    proof (rule open_closed_invariant)
      fix \<sigma> \<sigma>' s
      assume "\<forall>j\<in>{i}. \<sigma>' j = \<sigma> j"
         and "seql i P (\<sigma>', s)"
      thus "seql i P (\<sigma>, s)" ..
    qed
  qed

definition
  seqll :: "'i \<Rightarrow> ((('s \<times> 'l) \<times> 'a \<times> ('s \<times> 'l)) \<Rightarrow> bool)
               \<Rightarrow> ((('i \<Rightarrow> 's) \<times> 'l) \<times> 'a \<times> (('i \<Rightarrow> 's) \<times> 'l)) \<Rightarrow> bool"
where
  "seqll i P \<equiv> (\<lambda>((\<sigma>, p), a, (\<sigma>', p')). P ((\<sigma> i, p), a, (\<sigma>' i, p')))"

lemma same_seqll [elim]:
  assumes "\<forall>j\<in>{i}. \<sigma>\<^sub>1' j = \<sigma>\<^sub>1 j"
      and "\<forall>j\<in>{i}. \<sigma>\<^sub>2' j = \<sigma>\<^sub>2 j"
      and "seqll i P ((\<sigma>\<^sub>1', s), a, (\<sigma>\<^sub>2', s'))"
    shows "seqll i P ((\<sigma>\<^sub>1,  s), a, (\<sigma>\<^sub>2,  s'))"
  using assms unfolding seqll_def by (clarsimp)

lemma seqllI [intro!]:
  assumes "P ((\<sigma> i, p), a, (\<sigma>' i, p'))"
    shows "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))"
  using assms unfolding seqll_def by simp

lemma seqllD [dest]:
  assumes "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))"
    shows "P ((\<sigma> i, p), a, (\<sigma>' i, p'))"
  using assms unfolding seqll_def by simp

lemma seqllsimp:
  "seqll i P ((\<sigma>, p), a, (\<sigma>', p')) = P ((\<sigma> i, p), a, (\<sigma>' i, p'))"
  unfolding seqll_def by simp

lemma seqll_onll_swap:
  "seqll i (onll \<Gamma> P) = onll \<Gamma> (seqll i P)"
  unfolding seqll_def onll_def by simp

theorem open_seq_step_invariant [intro]:
  assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
      and "initiali i (init OA) (init A)"
      and spo: "trans OA = oseqp_sos \<Gamma> i"
      and sp: "trans A = seqp_sos \<Gamma>"
    shows "OA \<Turnstile>\<^sub>A (act I, other ANY {i} \<rightarrow>) (seqll i P)"
  proof -
    have "OA \<TTurnstile>\<^sub>A (I \<rightarrow>) (seqll i P)"
    proof (rule step_invariant_arbitraryI)
      fix \<sigma> p a \<sigma>' p'
      assume or: "(\<sigma>, p) \<in> reachable OA I"
         and otr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans OA"
         and "I a"
      from or \<open>initiali i (init OA) (init A)\<close> spo sp obtain \<xi> where "\<sigma> i = \<xi>"
                                                             and cr: "(\<xi>, p) \<in> reachable A I"
        by - (drule(3) reachable_oseq_seqp_sos', auto)
      from otr and spo have "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by simp
      with \<open>\<sigma> i = \<xi>\<close> obtain \<xi>' where "\<sigma>' i = \<xi>'"
                                 and ctr: "((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>"
        by (auto dest!: oseq_step_is_seq_step)
      with sp have "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" by simp
      with \<open>A \<TTurnstile>\<^sub>A (I \<rightarrow>) P\<close> cr have "P ((\<xi>, p), a, (\<xi>', p'))" using \<open>I a\<close> ..
      with \<open>\<sigma> i = \<xi>\<close> and \<open>\<sigma>' i = \<xi>'\<close> have "P ((\<sigma> i, p), a, (\<sigma>' i, p'))" by simp
      thus "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))" ..
    qed
    moreover from spo have "local_steps (trans OA) {i}" by simp
    moreover have "other_steps (other ANY {i}) {i}" ..
    ultimately show ?thesis
    proof (rule open_closed_step_invariant)
      fix \<sigma> \<zeta> a \<sigma>' \<zeta>' s s'
      assume "\<forall>j\<in>{i}. \<sigma> j = \<zeta> j"
         and "\<forall>j\<in>{i}. \<sigma>' j = \<zeta>' j"
         and "seqll i P ((\<sigma>, s), a, (\<sigma>', s'))"
        thus "seqll i P ((\<zeta>, s), a, (\<zeta>', s'))" ..
    qed
  qed

end