Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 33,024 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
(*  Title:       OInvariants.thy
    License:     BSD 2-Clause. See LICENSE.
    Author:      Timothy Bourke
*)

section "Open reachability and invariance"

theory OInvariants
imports Invariants
begin

subsection "Open reachability"

text \<open>
  By convention, the states of an open automaton are pairs. The first component is considered
  to be the global state and the second is the local state.

  A state is `open reachable' under @{term S} and @{term U} if it is the initial state, or it
  is the destination of a transition---where the global components satisfy @{term S}---from an
  open reachable state, or it is the destination of an interleaved environment step where the
  global components satisfy @{term U}.
\<close>

inductive_set oreachable
  :: "('g \<times> 'l, 'a) automaton
      \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool)
      \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool)
      \<Rightarrow> ('g \<times> 'l) set"
  for A  :: "('g \<times> 'l, 'a) automaton"
  and S  :: "'g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool"
  and U  :: "'g \<Rightarrow> 'g \<Rightarrow> bool"
where
    oreachable_init: "s \<in> init A \<Longrightarrow> s \<in> oreachable A S U"
  | oreachable_local: "\<lbrakk> s \<in> oreachable A S U; (s, a, s') \<in> trans A; S (fst s) (fst s') a \<rbrakk>
                        \<Longrightarrow> s' \<in> oreachable A S U"
  | oreachable_other: "\<lbrakk> s \<in> oreachable A S U; U (fst s) \<sigma>' \<rbrakk>
                        \<Longrightarrow> (\<sigma>', snd s) \<in> oreachable A S U"

lemma oreachable_local' [elim]:
  assumes "(\<sigma>, p) \<in> oreachable A S U"
      and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
      and "S \<sigma> \<sigma>' a"
    shows "(\<sigma>', p') \<in> oreachable A S U"
  using assms by (metis fst_conv oreachable.oreachable_local)

lemma oreachable_other' [elim]:
  assumes "(\<sigma>, p) \<in> oreachable A S U"
      and "U \<sigma> \<sigma>'"
    shows "(\<sigma>', p) \<in> oreachable A S U"
  proof -
    from \<open>U \<sigma> \<sigma>'\<close> have "U (fst (\<sigma>, p)) \<sigma>'" by simp
    with \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>', snd (\<sigma>, p)) \<in> oreachable A S U"
      by (rule oreachable_other)
    thus "(\<sigma>', p) \<in> oreachable A S U" by simp
  qed

lemma oreachable_pair_induct [consumes, case_names init other local]:
  assumes "(\<sigma>, p) \<in> oreachable A S U"
      and "\<And>\<sigma> p. (\<sigma>, p) \<in> init A \<Longrightarrow> P \<sigma> p"
      and "(\<And>\<sigma> p \<sigma>'. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P \<sigma> p; U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P \<sigma>' p)"
      and "(\<And>\<sigma> p \<sigma>' p' a. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P \<sigma> p;
                            ((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A; S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P \<sigma>' p')"
    shows "P \<sigma> p"
  using assms (1) proof (induction "(\<sigma>, p)" arbitrary: \<sigma> p)
    fix \<sigma> p
    assume "(\<sigma>, p) \<in> init A"
    with assms(2) show "P \<sigma> p" .
  next
    fix s \<sigma>'
    assume "s \<in> oreachable A S U"
       and "U (fst s) \<sigma>'"
       and IH: "\<And>\<sigma> p. s = (\<sigma>, p) \<Longrightarrow> P \<sigma> p"
    from this(1) obtain \<sigma> p where "s = (\<sigma>, p)"
                              and "(\<sigma>, p) \<in> oreachable A S U"
      by (metis surjective_pairing)
    note this(2)
    moreover from IH and \<open>s = (\<sigma>, p)\<close> have "P \<sigma> p" .
    moreover from \<open>U (fst s) \<sigma>'\<close> and \<open>s = (\<sigma>, p)\<close> have "U \<sigma> \<sigma>'" by simp
    ultimately have "P \<sigma>' p" by (rule assms(3))
    with \<open>s = (\<sigma>, p)\<close> show "P \<sigma>' (snd s)" by simp
  next
    fix s a \<sigma>' p'
    assume "s \<in> oreachable A S U"
       and tr: "(s, a, (\<sigma>', p')) \<in> trans A"
       and "S (fst s) (fst (\<sigma>', p')) a"
       and IH: "\<And>\<sigma> p. s = (\<sigma>, p) \<Longrightarrow> P \<sigma> p"
    from this(1) obtain \<sigma> p where "s = (\<sigma>, p)"
                              and "(\<sigma>, p) \<in> oreachable A S U"
      by (metis surjective_pairing)
    note this(2)
    moreover from IH \<open>s = (\<sigma>, p)\<close> have "P \<sigma> p" .
    moreover from tr and \<open>s = (\<sigma>, p)\<close> have "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" by simp
    moreover from \<open>S (fst s) (fst (\<sigma>', p')) a\<close> and \<open>s = (\<sigma>, p)\<close> have "S \<sigma> \<sigma>' a" by simp
    ultimately show "P \<sigma>' p'" by (rule assms(4))
  qed

lemma oreachable_weakenE [elim]:
  assumes "s \<in> oreachable A PS PU"
      and PSQS: "\<And>s s' a. PS s s' a \<Longrightarrow> QS s s' a"
      and PUQU: "\<And>s s'.   PU s s'   \<Longrightarrow> QU s s'"
    shows "s \<in> oreachable A QS QU"
  using assms(1)
  proof (induction)
    fix s assume "s \<in> init A"
    thus "s \<in> oreachable A QS QU" ..
  next
    fix s a s'
    assume "s \<in> oreachable A QS QU"
       and "(s, a, s') \<in> trans A"
       and "PS (fst s) (fst s') a"
    from \<open>PS (fst s) (fst s') a\<close> have "QS (fst s) (fst s') a" by (rule PSQS)
    with \<open>s \<in> oreachable A QS QU\<close> and \<open>(s, a, s') \<in> trans A\<close> show "s' \<in> oreachable A QS QU" ..
  next
    fix s g'
    assume "s \<in> oreachable A QS QU"
       and "PU (fst s) g'"
    from \<open>PU (fst s) g'\<close> have "QU (fst s) g'" by (rule PUQU)
    with \<open>s \<in> oreachable A QS QU\<close> show "(g', snd s) \<in> oreachable A QS QU" ..
  qed

definition
  act :: "('a \<Rightarrow> bool) \<Rightarrow> 's \<Rightarrow> 's \<Rightarrow> 'a \<Rightarrow> bool"
where
  "act I \<equiv> (\<lambda>_ _. I)"

lemma act_simp [iff]: "act I s s' a = I a"
  unfolding act_def ..

lemma reachable_in_oreachable [elim]:
    fixes s
  assumes "s \<in> reachable A I"
    shows "s \<in> oreachable A (act I) U"
  unfolding act_def using assms proof induction
    fix s
    assume "s \<in> init A"
    thus "s \<in> oreachable A (\<lambda>_ _. I) U" ..
  next
    fix s a s'
    assume "s \<in> oreachable A (\<lambda>_ _. I) U"
       and "(s, a, s') \<in> trans A"
       and "I a"
    thus "s' \<in> oreachable A (\<lambda>_ _. I) U"
      by (rule oreachable_local)
  qed

subsection "Open Invariance"

definition oinvariant
  :: "('g \<times> 'l, 'a) automaton
      \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool)
      \<Rightarrow> (('g \<times> 'l) \<Rightarrow> bool) \<Rightarrow> bool"
  ("_ \<Turnstile> (1'((1_),/ (1_) \<rightarrow>')/ _)" [100, 0, 0, 9] 8)
where
  "(A \<Turnstile> (S, U \<rightarrow>) P) = (\<forall>s\<in>oreachable A S U. P s)"

lemma oinvariantI [intro]:
    fixes T TI S U P
  assumes init: "\<And>s. s \<in> init A \<Longrightarrow> P s"
      and other: "\<And>g g' l.
                  \<lbrakk> (g, l) \<in> oreachable A S U; P (g, l); U g g' \<rbrakk> \<Longrightarrow> P (g', l)"
      and local: "\<And>s a s'.
                  \<lbrakk> s \<in> oreachable A S U; P s; (s, a, s') \<in> trans A; S (fst s) (fst s') a \<rbrakk> \<Longrightarrow> P s'"
    shows "A \<Turnstile> (S, U \<rightarrow>) P"
  unfolding oinvariant_def
  proof
       fix s
    assume "s \<in> oreachable A S U"
      thus "P s"
    proof induction
      fix s assume "s \<in> init A"
      thus "P s" by (rule init)
    next
      fix s a s'
      assume "s \<in> oreachable A S U"
         and "P s"
         and "(s, a, s') \<in> trans A"
         and "S (fst s) (fst s') a"
        thus "P s'" by (rule local)
     next
       fix s g'
       assume "s \<in> oreachable A S U"
          and "P s"
          and "U (fst s) g'"
         thus "P (g', snd s)"
           by - (rule other [where g="fst s"], simp_all)
    qed
  qed

lemma oinvariant_oreachableI:
  assumes "\<And>\<sigma> s. (\<sigma>, s)\<in>oreachable A S U \<Longrightarrow> P (\<sigma>, s)"
  shows "A \<Turnstile> (S, U \<rightarrow>) P"
  using assms unfolding oinvariant_def by auto

lemma oinvariant_pairI [intro]:
  assumes init: "\<And>\<sigma> p. (\<sigma>, p) \<in> init A \<Longrightarrow> P (\<sigma>, p)"
      and local: "\<And>\<sigma> p \<sigma>' p' a.
                   \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P (\<sigma>, p); ((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A;
                     S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P (\<sigma>', p')"
      and other: "\<And>\<sigma> \<sigma>' p.
                  \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P (\<sigma>, p); U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', p)"
    shows "A \<Turnstile> (S, U \<rightarrow>) P"
  by (rule oinvariantI)
     (clarsimp | erule init | erule(3) local | erule(2) other)+

lemma oinvariantD [dest]:
  assumes "A \<Turnstile> (S, U \<rightarrow>) P"
      and "s \<in> oreachable A S U"
    shows "P s"
  using assms unfolding oinvariant_def
  by clarsimp

lemma oinvariant_initD [dest, elim]:
  assumes invP: "A \<Turnstile> (S, U \<rightarrow>) P"
      and init: "s \<in> init A"
    shows "P s"
  proof -
    from init have "s \<in> oreachable A S U" ..
    with invP show ?thesis ..
  qed

lemma oinvariant_weakenE [elim!]:
  assumes invP: "A \<Turnstile> (PS, PU \<rightarrow>) P"
      and PQ:   "\<And>s. P s \<Longrightarrow> Q s"
      and QSPS: "\<And>s s' a. QS s s' a \<Longrightarrow> PS s s' a"
      and QUPU: "\<And>s s'.   QU s s'   \<Longrightarrow> PU s s'"
    shows       "A \<Turnstile> (QS, QU \<rightarrow>) Q"
  proof
    fix s
    assume "s \<in> init A"
    with invP have "P s" ..
    thus "Q s" by (rule PQ)
  next
    fix \<sigma> p \<sigma>' p' a
    assume "(\<sigma>, p) \<in> oreachable A QS QU"
       and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
       and "QS \<sigma> \<sigma>' a"
    from this(3) have "PS \<sigma> \<sigma>' a" by (rule QSPS)
    from \<open>(\<sigma>, p) \<in> oreachable A QS QU\<close> and QSPS QUPU have "(\<sigma>, p) \<in> oreachable A PS PU" ..
    hence "(\<sigma>', p') \<in> oreachable A PS PU" using \<open>((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A\<close> and \<open>PS \<sigma> \<sigma>' a\<close> ..
    with invP have "P (\<sigma>', p')" ..
    thus "Q (\<sigma>', p')" by (rule PQ)
  next
    fix \<sigma> \<sigma>' p
    assume "(\<sigma>, p) \<in> oreachable A QS QU"
       and "Q (\<sigma>, p)"
       and "QU \<sigma> \<sigma>'"
    from \<open>QU \<sigma> \<sigma>'\<close> have "PU \<sigma> \<sigma>'" by (rule QUPU)
    from \<open>(\<sigma>, p) \<in> oreachable A QS QU\<close> and QSPS QUPU have "(\<sigma>, p) \<in> oreachable A PS PU" ..
    hence "(\<sigma>', p) \<in> oreachable A PS PU" using \<open>PU \<sigma> \<sigma>'\<close> ..
    with invP have "P (\<sigma>', p)" ..
    thus "Q (\<sigma>', p)" by (rule PQ)
  qed

lemma oinvariant_weakenD [dest]:
  assumes "A \<Turnstile> (S', U' \<rightarrow>) P"
      and "(\<sigma>, p) \<in> oreachable A S U"
      and weakenS: "\<And>s s' a. S s s' a \<Longrightarrow> S' s s' a"
      and weakenU: "\<And>s s'. U s s' \<Longrightarrow> U' s s'"
    shows "P (\<sigma>, p)"
  proof -
    from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'"
      by (rule oreachable_weakenE)
         (erule weakenS, erule weakenU)
    with \<open>A \<Turnstile> (S', U' \<rightarrow>) P\<close> show "P (\<sigma>, p)" ..
  qed

lemma close_open_invariant:
  assumes oinv: "A \<Turnstile> (act I, U \<rightarrow>) P"
    shows "A \<TTurnstile> (I \<rightarrow>) P"
  proof
    fix s
    assume "s \<in> init A"
    with oinv show "P s" ..
  next
    fix \<xi> p \<xi>' p' a
    assume sr: "(\<xi>, p) \<in> reachable A I"
       and step: "((\<xi>, p), a, (\<xi>', p')) \<in> trans A"
       and "I a"
    hence "(\<xi>', p') \<in> reachable A I" ..
    hence "(\<xi>', p') \<in> oreachable A (act I) U" ..
    with oinv show "P (\<xi>', p')" ..
  qed

definition local_steps :: "((('i \<Rightarrow> 's1) \<times> 'l1) \<times> 'a \<times> ('i \<Rightarrow> 's2) \<times> 'l2) set \<Rightarrow> 'i set \<Rightarrow> bool"
where "local_steps T J \<equiv>
   (\<forall>\<sigma> \<zeta> s a \<sigma>' s'. ((\<sigma>, s), a, (\<sigma>', s')) \<in> T \<and> (\<forall>j\<in>J. \<zeta> j = \<sigma> j)
   \<longrightarrow> (\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T))"

lemma local_stepsI [intro!]:
  assumes "\<And>\<sigma> \<zeta> s a \<sigma>' \<zeta>' s'. \<lbrakk> ((\<sigma>, s), a, (\<sigma>', s')) \<in> T; \<forall>j\<in>J. \<zeta> j = \<sigma> j \<rbrakk>
                               \<Longrightarrow> (\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T)"
    shows "local_steps T J"
  unfolding local_steps_def using assms by clarsimp

lemma local_stepsE [elim, dest]:
  assumes "local_steps T J"
      and "((\<sigma>, s), a, (\<sigma>', s')) \<in> T"
      and "\<forall>j\<in>J. \<zeta> j = \<sigma> j"
    shows "\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> T"
  using assms unfolding local_steps_def by blast

definition other_steps :: "(('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> bool) \<Rightarrow> 'i set \<Rightarrow> bool"
where "other_steps U J \<equiv> \<forall>\<sigma> \<sigma>'. U \<sigma> \<sigma>' \<longrightarrow> (\<forall>j\<in>J. \<sigma>' j = \<sigma> j)"

lemma other_stepsI [intro!]:
  assumes "\<And>\<sigma> \<sigma>' j. \<lbrakk> U \<sigma> \<sigma>'; j \<in> J \<rbrakk> \<Longrightarrow> \<sigma>' j = \<sigma> j"
    shows "other_steps U J"
  using assms unfolding other_steps_def by simp

lemma other_stepsE [elim]:
  assumes "other_steps U J"
      and "U \<sigma> \<sigma>'"
    shows "\<forall>j\<in>J. \<sigma>' j = \<sigma> j"
  using assms unfolding other_steps_def by simp

definition subreachable
where "subreachable A U J \<equiv> \<forall>I. \<forall>s \<in> oreachable A (\<lambda>s s'. I) U.
                                  (\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I)"

lemma subreachableI [intro]:
  assumes "local_steps (trans A) J"
      and "other_steps U J"
    shows "subreachable A U J"
  unfolding subreachable_def
  proof (rule, rule)
    fix I s
    assume "s \<in> oreachable A (\<lambda>s s'. I) U"
    thus "(\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I)"
    proof induction
      fix s
      assume "s \<in> init A"
      hence "(fst s, snd s) \<in> reachable A I"
        by simp (rule reachable_init)
      moreover have "\<forall>j\<in>J. (fst s) j = (fst s) j"
        by simp
      ultimately show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I"
        by auto
    next
      fix s a s'
      assume "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I"
         and "(s, a, s') \<in> trans A"
         and "I a"
      then obtain \<zeta> where "\<forall>j\<in>J. \<zeta> j = (fst s) j"
                      and "(\<zeta>, snd s) \<in> reachable A I" by auto

      from \<open>(s, a, s') \<in> trans A\<close> have "((fst s, snd s), a, (fst s', snd s')) \<in> trans A"
        by simp
      with \<open>local_steps (trans A) J\<close> obtain \<zeta>' where "\<forall>j\<in>J. \<zeta>' j = (fst s') j"
                                                 and "((\<zeta>, snd s), a, (\<zeta>', snd s')) \<in> trans A"
        using \<open>\<forall>j\<in>J. \<zeta> j = (fst s) j\<close> by - (drule(2) local_stepsE, clarsimp)
      from \<open>(\<zeta>, snd s) \<in> reachable A I\<close>
       and \<open>((\<zeta>, snd s), a, (\<zeta>', snd s')) \<in> trans A\<close>
       and \<open>I a\<close>
       have "(\<zeta>', snd s') \<in> reachable A I" ..

      with \<open>\<forall>j\<in>J. \<zeta>' j = (fst s') j\<close>
        show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s') j) \<and> (\<sigma>, snd s') \<in> reachable A I" by auto
    next
      fix s \<sigma>'
      assume "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I"
         and "U (fst s) \<sigma>'"
      then obtain \<sigma> where "\<forall>j\<in>J. \<sigma> j = (fst s) j"
                      and "(\<sigma>, snd s) \<in> reachable A I" by auto
      from \<open>other_steps U J\<close> and \<open>U (fst s) \<sigma>'\<close> have "\<forall>j\<in>J. \<sigma>' j = (fst s) j"
        by - (erule(1) other_stepsE)
      with \<open>\<forall>j\<in>J. \<sigma> j = (fst s) j\<close> have "\<forall>j\<in>J. \<sigma> j = \<sigma>' j"
        by clarsimp
      with \<open>(\<sigma>, snd s) \<in> reachable A I\<close>
       show "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = fst (\<sigma>', snd s) j) \<and> (\<sigma>, snd (\<sigma>', snd s)) \<in> reachable A I"
         by auto
    qed
  qed

lemma subreachableE [elim]:
  assumes "subreachable A U J"
      and "s \<in> oreachable A (\<lambda>s s'. I) U"
    shows "\<exists>\<sigma>. (\<forall>j\<in>J. \<sigma> j = (fst s) j) \<and> (\<sigma>, snd s) \<in> reachable A I"
  using assms unfolding subreachable_def by simp

lemma subreachableE_pair [elim]:
  assumes "subreachable A U J"
      and "(\<sigma>, s) \<in> oreachable A (\<lambda>s s'. I) U"
    shows "\<exists>\<zeta>. (\<forall>j\<in>J. \<zeta> j = \<sigma> j) \<and> (\<zeta>, s) \<in> reachable A I"
  using assms unfolding subreachable_def by (metis fst_conv snd_conv)

lemma subreachable_otherE [elim]:
  assumes "subreachable A U J"
      and "(\<sigma>, l) \<in> oreachable A (\<lambda>s s'. I) U"
      and "U \<sigma> \<sigma>'"
    shows "\<exists>\<zeta>'. (\<forall>j\<in>J. \<zeta>' j = \<sigma>' j) \<and> (\<zeta>', l) \<in> reachable A I"
  proof -
    from \<open>(\<sigma>, l) \<in> oreachable A (\<lambda>s s'. I) U\<close> and \<open>U \<sigma> \<sigma>'\<close>
      have "(\<sigma>', l) \<in> oreachable A (\<lambda>s s'. I) U"
      by - (rule oreachable_other')
    with \<open>subreachable A U J\<close> show ?thesis
      by auto
  qed

lemma open_closed_invariant:
    fixes J
  assumes "A \<TTurnstile> (I \<rightarrow>) P"
      and "subreachable A U J"
      and localp: "\<And>\<sigma> \<sigma>' s. \<lbrakk> \<forall>j\<in>J. \<sigma>' j = \<sigma> j; P (\<sigma>', s) \<rbrakk> \<Longrightarrow> P (\<sigma>, s)"
    shows "A \<Turnstile> (act I, U \<rightarrow>) P"
  proof (rule, simp_all only: act_def)
    fix s
    assume "s \<in> init A"
    with \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> show "P s" ..
  next
    fix s a s'
    assume "s \<in> oreachable A (\<lambda>_ _. I) U"
       and "P s"
       and "(s, a, s') \<in> trans A"
       and "I a"
    hence "s' \<in> oreachable A (\<lambda>_ _. I) U"
      by (metis oreachable_local)
    with \<open>subreachable A U J\<close> obtain \<sigma>'
      where "\<forall>j\<in>J. \<sigma>' j = (fst s') j"
        and "(\<sigma>', snd s') \<in> reachable A I"
        by (metis subreachableE)
    from \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> and \<open>(\<sigma>', snd s') \<in> reachable A I\<close> have "P (\<sigma>', snd s')" ..
    with \<open>\<forall>j\<in>J. \<sigma>' j = (fst s') j\<close> show "P s'"
      by (metis localp prod.collapse)
  next
    fix g g' l
    assume or: "(g, l) \<in> oreachable A (\<lambda>s s'. I) U"
       and "U g g'"
       and "P (g, l)"
    from \<open>subreachable A U J\<close> and or and \<open>U g g'\<close>
      obtain gg' where "\<forall>j\<in>J. gg' j = g' j"
                   and "(gg', l) \<in> reachable A I"
        by (auto dest!: subreachable_otherE)
    from \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> and \<open>(gg', l) \<in> reachable A I\<close>
      have "P (gg', l)" ..
    with \<open>\<forall>j\<in>J. gg' j = g' j\<close> show "P (g', l)"
      by (rule localp)
  qed

lemma oinvariant_anyact:
  assumes "A \<Turnstile> (act TT, U \<rightarrow>) P"
    shows "A \<Turnstile> (S, U \<rightarrow>) P"                             
  using assms by rule auto

definition
  ostep_invariant
  :: "('g \<times> 'l, 'a) automaton
      \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('g \<Rightarrow> 'g \<Rightarrow> bool)
      \<Rightarrow> (('g \<times> 'l, 'a) transition \<Rightarrow> bool) \<Rightarrow> bool"
  ("_ \<Turnstile>\<^sub>A (1'((1_),/ (1_) \<rightarrow>')/ _)" [100, 0, 0, 9] 8)
where
  "(A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P) =
     (\<forall>s\<in>oreachable A S U. (\<forall>a s'. (s, a, s') \<in> trans A \<and> S (fst s) (fst s') a \<longrightarrow> P (s, a, s')))"

lemma ostep_invariant_def':
  "(A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P) = (\<forall>s\<in>oreachable A S U.
                           (\<forall>a s'. (s, a, s') \<in> trans A \<and> S (fst s) (fst s') a \<longrightarrow> P (s, a, s')))"
  unfolding ostep_invariant_def by auto

lemma ostep_invariantI [intro]:
  assumes *: "\<And>\<sigma> s a \<sigma>' s'. \<lbrakk> (\<sigma>, s)\<in>oreachable A S U; ((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A; S \<sigma> \<sigma>' a \<rbrakk>
                             \<Longrightarrow> P ((\<sigma>, s), a, (\<sigma>', s'))"
    shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P"
  unfolding ostep_invariant_def
  using assms by auto

lemma ostep_invariantD [dest]:
  assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P"
      and "(\<sigma>, s)\<in>oreachable A S U"
      and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
      and "S \<sigma> \<sigma>' a"
    shows "P ((\<sigma>, s), a, (\<sigma>', s'))"
  using assms unfolding ostep_invariant_def' by clarsimp

lemma ostep_invariantE [elim]:
  assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) P"
      and "(\<sigma>, s)\<in>oreachable A S U"
      and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
      and "S \<sigma> \<sigma>' a"
      and "P ((\<sigma>, s), a, (\<sigma>', s')) \<Longrightarrow> Q"
    shows "Q"
  using assms by auto

lemma ostep_invariant_weakenE [elim!]:
  assumes invP: "A \<Turnstile>\<^sub>A (PS, PU \<rightarrow>) P"
      and PQ:   "\<And>t. P t \<Longrightarrow> Q t"
      and QSPS: "\<And>\<sigma> \<sigma>' a. QS \<sigma> \<sigma>' a \<Longrightarrow> PS \<sigma> \<sigma>' a"
      and QUPU: "\<And>\<sigma> \<sigma>'.   QU \<sigma> \<sigma>'   \<Longrightarrow> PU \<sigma> \<sigma>'"
    shows       "A \<Turnstile>\<^sub>A (QS, QU \<rightarrow>) Q"
  proof
    fix \<sigma> s \<sigma>' s' a
    assume "(\<sigma>, s) \<in> oreachable A QS QU"
       and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
       and "QS \<sigma> \<sigma>' a"
    from \<open>QS \<sigma> \<sigma>' a\<close> have "PS \<sigma> \<sigma>' a" by (rule QSPS)
    from \<open>(\<sigma>, s) \<in> oreachable A QS QU\<close> have "(\<sigma>, s) \<in> oreachable A PS PU" using QSPS QUPU ..
    with invP have "P ((\<sigma>, s), a, (\<sigma>', s'))" using \<open>((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A\<close> \<open>PS \<sigma> \<sigma>' a\<close> ..
    thus "Q ((\<sigma>, s), a, (\<sigma>', s'))" by (rule PQ)
  qed

lemma ostep_invariant_weaken_with_invariantE [elim]:
  assumes pinv: "A \<Turnstile> (S, U \<rightarrow>) P"
      and qinv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) Q"
      and wr: "\<And>\<sigma> s a \<sigma>' s'. \<lbrakk> P (\<sigma>, s); P (\<sigma>', s'); Q ((\<sigma>, s), a, (\<sigma>', s')); S \<sigma> \<sigma>' a \<rbrakk>
                              \<Longrightarrow> R ((\<sigma>, s), a, (\<sigma>', s'))"
    shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) R"
  proof
    fix \<sigma> s a \<sigma>' s'
    assume sr: "(\<sigma>, s) \<in> oreachable A S U"
       and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
       and "S \<sigma> \<sigma>' a"
    hence "(\<sigma>', s') \<in> oreachable A S U" ..
    with pinv have "P (\<sigma>', s')" ..
    from pinv and sr have "P (\<sigma>, s)" ..
    from qinv sr tr \<open>S \<sigma> \<sigma>' a\<close> have "Q ((\<sigma>, s), a, (\<sigma>', s'))" ..
    with \<open>P (\<sigma>, s)\<close> and \<open>P (\<sigma>', s')\<close> show "R ((\<sigma>, s), a, (\<sigma>', s'))" using \<open>S \<sigma> \<sigma>' a\<close> by (rule wr)
  qed

lemma ostep_to_invariantI:
  assumes sinv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) Q"
      and init: "\<And>\<sigma> s. (\<sigma>, s) \<in> init A \<Longrightarrow> P (\<sigma>, s)"
      and local: "\<And>\<sigma> s \<sigma>' s' a.
                    \<lbrakk> (\<sigma>, s) \<in> oreachable A S U;
                      P (\<sigma>, s);
                      Q ((\<sigma>, s), a, (\<sigma>', s'));
                      S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P (\<sigma>', s')"
      and other: "\<And>\<sigma> \<sigma>' s. \<lbrakk> (\<sigma>, s) \<in> oreachable A S U; U \<sigma> \<sigma>'; P (\<sigma>, s) \<rbrakk> \<Longrightarrow> P (\<sigma>', s)"
    shows "A \<Turnstile> (S, U \<rightarrow>) P"
  proof
    fix \<sigma> s assume "(\<sigma>, s) \<in> init A" thus "P (\<sigma>, s)" by (rule init)
  next
    fix \<sigma> s \<sigma>' s' a
    assume "(\<sigma>, s) \<in> oreachable A S U"
       and "P (\<sigma>, s)"
       and "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
       and "S \<sigma> \<sigma>' a"
      show "P (\<sigma>', s')"
    proof -
      from sinv and \<open>(\<sigma>, s)\<in>oreachable A S U\<close> and \<open>((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A\<close> and \<open>S \<sigma> \<sigma>' a\<close>
        have "Q ((\<sigma>, s), a, (\<sigma>', s'))" ..
      with \<open>(\<sigma>, s)\<in>oreachable A S U\<close> and \<open>P (\<sigma>, s)\<close> show "P (\<sigma>', s')"
        using \<open>S \<sigma> \<sigma>' a\<close> by (rule local)
    qed
  next
    fix \<sigma> \<sigma>' l
    assume "(\<sigma>, l) \<in> oreachable A S U"
       and "U \<sigma> \<sigma>'"
       and "P (\<sigma>, l)"
      thus "P (\<sigma>', l)" by (rule other)
  qed

lemma open_closed_step_invariant:
  assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
      and "local_steps (trans A) J"
      and "other_steps U J"
      and localp: "\<And>\<sigma> \<zeta> a \<sigma>' \<zeta>' s s'.
                   \<lbrakk> \<forall>j\<in>J. \<sigma> j = \<zeta> j; \<forall>j\<in>J. \<sigma>' j = \<zeta>' j; P ((\<sigma>, s), a, (\<sigma>', s')) \<rbrakk>
                   \<Longrightarrow> P ((\<zeta>, s), a, (\<zeta>', s'))"
    shows "A \<Turnstile>\<^sub>A (act I, U \<rightarrow>) P"
  proof
    fix \<sigma> s a \<sigma>' s'
    assume or: "(\<sigma>, s) \<in> oreachable A (act I) U"
       and tr: "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
       and "act I \<sigma> \<sigma>' a"
    from \<open>act I \<sigma> \<sigma>' a\<close> have "I a" ..
    from \<open>local_steps (trans A) J\<close> and \<open>other_steps U J\<close> have "subreachable A U J" ..
    then obtain \<zeta> where "\<forall>j\<in>J. \<zeta> j = \<sigma> j"
                    and "(\<zeta>, s) \<in> reachable A I"
      using or unfolding act_def
        by (auto dest!: subreachableE_pair)

     from \<open>local_steps (trans A) J\<close> and tr and \<open>\<forall>j\<in>J. \<zeta> j = \<sigma> j\<close>
       obtain \<zeta>' where "\<forall>j\<in>J. \<zeta>' j = \<sigma>' j"
                   and "((\<zeta>, s), a, (\<zeta>', s')) \<in> trans A"
       by auto

    from \<open>A \<TTurnstile>\<^sub>A (I \<rightarrow>) P\<close> and \<open>(\<zeta>, s) \<in> reachable A I\<close>
                          and \<open>((\<zeta>, s), a, (\<zeta>', s')) \<in> trans A\<close>
                          and \<open>I a\<close>
      have "P ((\<zeta>, s), a, (\<zeta>', s'))" ..
    with \<open>\<forall>j\<in>J. \<zeta> j = \<sigma> j\<close> and \<open>\<forall>j\<in>J. \<zeta>' j = \<sigma>' j\<close> show "P ((\<sigma>, s), a, (\<sigma>', s'))"
      by (rule localp)
  qed

lemma oinvariant_step_anyact:
  assumes "p \<Turnstile>\<^sub>A (act TT, U \<rightarrow>) P"
    shows "p \<Turnstile>\<^sub>A (S, U \<rightarrow>) P"
  using assms by rule auto

subsection "Standard assumption predicates "

text \<open>otherwith\<close>

definition otherwith :: "('s \<Rightarrow> 's \<Rightarrow> bool)
                          \<Rightarrow> 'i set
                          \<Rightarrow> (('i \<Rightarrow> 's) \<Rightarrow> 'a \<Rightarrow> bool)
                          \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> 'a \<Rightarrow> bool"
where "otherwith Q I P \<sigma> \<sigma>' a \<equiv> (\<forall>i. i\<notin>I \<longrightarrow> Q (\<sigma> i) (\<sigma>' i)) \<and> P \<sigma> a"

lemma otherwithI [intro]:
  assumes other: "\<And>j. j\<notin>I \<Longrightarrow> Q (\<sigma> j) (\<sigma>' j)"
      and sync:  "P \<sigma> a"
    shows "otherwith Q I P \<sigma> \<sigma>' a"
  unfolding otherwith_def using assms by simp

lemma otherwithE [elim]:
  assumes "otherwith Q I P \<sigma> \<sigma>' a"
      and "\<lbrakk> P \<sigma> a; \<forall>j. j\<notin>I \<longrightarrow> Q (\<sigma> j) (\<sigma>' j) \<rbrakk> \<Longrightarrow> R \<sigma> \<sigma>' a"
    shows "R \<sigma> \<sigma>' a"
  using assms unfolding otherwith_def by simp

lemma otherwith_actionD [dest]:
  assumes "otherwith Q I P \<sigma> \<sigma>' a"
    shows "P \<sigma> a"
  using assms by auto

lemma otherwith_syncD [dest]:
  assumes "otherwith Q I P \<sigma> \<sigma>' a"
    shows "\<forall>j. j\<notin>I \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)"
  using assms by auto

lemma otherwithEI [elim]:
  assumes "otherwith P I PO \<sigma> \<sigma>' a"
      and "\<And>\<sigma> a. PO \<sigma> a \<Longrightarrow> QO \<sigma> a"
    shows "otherwith P I QO \<sigma> \<sigma>' a"
  using assms(1) unfolding otherwith_def
  by (clarsimp elim!: assms(2))

lemma all_but:
  assumes "\<And>\<xi>. S \<xi> \<xi>"
      and "\<sigma>' i = \<sigma> i"
      and "\<forall>j. j \<noteq> i \<longrightarrow> S (\<sigma> j) (\<sigma>' j)"
    shows "\<forall>j. S (\<sigma> j) (\<sigma>' j)"
  using assms by metis

lemma all_but_eq [dest]:
  assumes "\<sigma>' i = \<sigma> i"
      and "\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j = \<sigma>' j"
    shows "\<sigma> = \<sigma>'"
  using assms by - (rule ext, metis)

text \<open>other\<close>

definition other :: "('s \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 'i set \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> ('i \<Rightarrow> 's) \<Rightarrow> bool"
where "other P I \<sigma> \<sigma>' \<equiv> \<forall>i. if i\<in>I then \<sigma>' i = \<sigma> i else P (\<sigma> i) (\<sigma>' i)"

lemma otherI [intro]:
  assumes local: "\<And>i. i\<in>I \<Longrightarrow> \<sigma>' i = \<sigma> i"
      and other: "\<And>j. j\<notin>I \<Longrightarrow> P (\<sigma> j) (\<sigma>' j)"
    shows "other P I \<sigma> \<sigma>'"
  using assms unfolding other_def by clarsimp

lemma otherE [elim]:
  assumes "other P I \<sigma> \<sigma>'"
      and "\<lbrakk> \<forall>i\<in>I. \<sigma>' i = \<sigma> i; \<forall>j. j\<notin>I \<longrightarrow> P (\<sigma> j) (\<sigma>' j) \<rbrakk> \<Longrightarrow> R \<sigma> \<sigma>'"
    shows "R \<sigma> \<sigma>'"
  using assms unfolding other_def by simp

lemma other_localD [dest]:
  "other P {i} \<sigma> \<sigma>' \<Longrightarrow> \<sigma>' i = \<sigma> i"
  by auto

lemma other_otherD [dest]:
  "other P {i} \<sigma> \<sigma>' \<Longrightarrow> \<forall>j. j\<noteq>i \<longrightarrow> P (\<sigma> j) (\<sigma>' j)"
  by auto

lemma other_bothE [elim]:
  assumes "other P {i} \<sigma> \<sigma>'"
  obtains "\<sigma>' i = \<sigma> i" and "\<forall>j. j\<noteq>i \<longrightarrow> P (\<sigma> j) (\<sigma>' j)"
  using assms by auto

lemma weaken_local [elim]:
  assumes "other P I \<sigma> \<sigma>'"
      and PQ: "\<And>\<xi> \<xi>'. P \<xi> \<xi>' \<Longrightarrow> Q \<xi> \<xi>'"
    shows "other Q I \<sigma> \<sigma>'"
  using assms unfolding other_def by auto

definition global :: "((nat \<Rightarrow> 's) \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> 's) \<times> 'local \<Rightarrow> bool"
where "global P \<equiv> (\<lambda>(\<sigma>, _). P \<sigma>)"

lemma globalsimp [simp]: "global P s = P (fst s)"
  unfolding global_def by (simp split: prod.split)

definition globala :: "((nat \<Rightarrow> 's, 'action) transition \<Rightarrow> bool)
                       \<Rightarrow> ((nat \<Rightarrow> 's) \<times> 'local, 'action) transition \<Rightarrow> bool"
where "globala P \<equiv> (\<lambda>((\<sigma>, _), a, (\<sigma>', _)). P (\<sigma>, a, \<sigma>'))"

lemma globalasimp [simp]: "globala P s = P (fst (fst s), fst (snd s), fst (snd (snd s)))"
  unfolding globala_def by (simp split: prod.split)

end