Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 30,178 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
(*  Title:       Pnet.thy
    License:     BSD 2-Clause. See LICENSE.
    Author:      Timothy Bourke
*)

section "Lemmas for partial networks"

theory Pnet
imports AWN_SOS Invariants
begin

text \<open>
  These lemmas mostly concern the preservation of node structure by @{term pnet_sos} transitions.
\<close>

lemma pnet_maintains_dom:
  assumes "(s, a, s') \<in> trans (pnet np p)"
    shows "net_ips s = net_ips s'"
  using assms proof (induction p arbitrary: s a s')
    fix i R \<sigma> s a s'
    assume "(s, a, s') \<in> trans (pnet np \<langle>i; R\<rangle>)"
    hence "(s, a, s') \<in> node_sos (trans (np i))" ..
    thus "net_ips s = net_ips s'"
      by (rule node_sos.cases) simp_all
  next
    fix p1 p2 s a s'
    assume "\<And>s a s'. (s, a, s') \<in> trans (pnet np p1) \<Longrightarrow> net_ips s = net_ips s'"
       and "\<And>s a s'. (s, a, s') \<in> trans (pnet np p2) \<Longrightarrow> net_ips s = net_ips s'"
       and "(s, a, s') \<in> trans (pnet np (p1 \<parallel> p2))"
    thus "net_ips s = net_ips s'"
      by simp (erule pnet_sos.cases, simp_all)
  qed

lemma pnet_net_ips_net_tree_ips [elim]:
  assumes "s \<in> reachable (pnet np p) I"
    shows "net_ips s = net_tree_ips p"
  using assms proof induction
    fix s
    assume "s \<in> init (pnet np p)"
    thus "net_ips s = net_tree_ips p"
    proof (induction p arbitrary: s)
      fix i R s
      assume "s \<in> init (pnet np \<langle>i; R\<rangle>)"
      then obtain ns where "s = NodeS i ns R" ..
      thus "net_ips s = net_tree_ips \<langle>i; R\<rangle>"
        by simp
    next
      fix p1 p2 s
      assume IH1: "\<And>s. s \<in> init (pnet np p1) \<Longrightarrow> net_ips s = net_tree_ips p1"
         and IH2: "\<And>s. s \<in> init (pnet np p2) \<Longrightarrow> net_ips s = net_tree_ips p2"
         and "s \<in> init (pnet np (p1 \<parallel> p2))"
      from this(3) obtain s1 s2 where "s1 \<in> init (pnet np p1)"
                                  and "s2 \<in> init (pnet np p2)"
                                  and "s = SubnetS s1 s2" by auto
      from this(1-2) have "net_ips s1 = net_tree_ips p1"
                      and "net_ips s2 = net_tree_ips p2"
        using IH1 IH2 by auto
      with \<open>s = SubnetS s1 s2\<close> show "net_ips s = net_tree_ips (p1 \<parallel> p2)" by auto
    qed
  next
    fix s a s'
    assume "(s, a, s') \<in> trans (pnet np p)"
       and "net_ips s = net_tree_ips p"
    from this(1) have "net_ips s = net_ips s'"
      by (rule pnet_maintains_dom)
    with \<open>net_ips s = net_tree_ips p\<close> show "net_ips s' = net_tree_ips p"
      by simp
  qed

lemma pnet_init_net_ips_net_tree_ips:
  assumes "s \<in> init (pnet np p)"
    shows "net_ips s = net_tree_ips p"
  using assms(1) by (rule reachable_init [THEN pnet_net_ips_net_tree_ips])

lemma pnet_init_in_net_ips_in_net_tree_ips [elim]:
  assumes "s \<in> init (pnet np p)"
      and "i \<in> net_ips s"
    shows "i \<in> net_tree_ips p"
  using assms by (clarsimp dest!: pnet_init_net_ips_net_tree_ips)

lemma pnet_init_in_net_tree_ips_in_net_ips [elim]:
  assumes "s \<in> init (pnet np p)"
      and "i \<in> net_tree_ips p"
    shows "i \<in> net_ips s"
  using assms by (clarsimp dest!: pnet_init_net_ips_net_tree_ips)

lemma pnet_init_not_in_net_tree_ips_not_in_net_ips [elim]:
  assumes "s \<in> init (pnet np p)"
      and "i \<notin> net_tree_ips p"
    shows "i \<notin> net_ips s"
  proof
    assume "i \<in> net_ips s"
    with assms(1) have "i \<in> net_tree_ips p" ..
    with assms(2) show False ..
  qed

lemma net_node_reachable_is_node:
  assumes "st \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) I"
    shows "\<exists>ns R. st = NodeS ii ns R"
  using assms proof induct
    fix s
    assume "s \<in> init (pnet np \<langle>ii; R\<^sub>i\<rangle>)"
    thus "\<exists>ns R. s = NodeS ii ns R"
      by (rule pnet_node_init') simp
  next
    fix s a s'
    assume "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) I"
       and "\<exists>ns R. s = NodeS ii ns R"
       and "(s, a, s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)"
       and "I a"
    thus "\<exists>ns R. s' = NodeS ii ns R"
      by (auto simp add: trans_node_comp dest!: node_sos_dest)
  qed

lemma partial_net_preserves_subnets:
  assumes "(SubnetS s t, a, st') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))"
    shows "\<exists>s' t'. st' = SubnetS s' t'"
  using assms by cases simp_all

lemma net_par_reachable_is_subnet:
  assumes "st \<in> reachable (pnet np (p1 \<parallel> p2)) I"
    shows "\<exists>s t. st = SubnetS s t"
  using assms by induct (auto dest!: partial_net_preserves_subnets)

lemma reachable_par_subnet_induct [consumes, case_names init step]:
  assumes "SubnetS s t \<in> reachable (pnet np (p1 \<parallel> p2)) I"
      and init: "\<And>s t. SubnetS s t \<in> init (pnet np (p1 \<parallel> p2)) \<Longrightarrow> P s t"
      and step: "\<And>s t s' t' a. \<lbrakk>
                    SubnetS s t \<in> reachable (pnet np (p1 \<parallel> p2)) I;
                    P s t; (SubnetS s t, a, SubnetS s' t') \<in> (trans (pnet np (p1 \<parallel> p2))); I a \<rbrakk>
                    \<Longrightarrow> P s' t'"
    shows "P s t"
  using assms(1) proof (induction "SubnetS s t" arbitrary: s t)
    fix s t
    assume "SubnetS s t \<in> init (pnet np (p1 \<parallel> p2))"
    with init show "P s t" .
  next
    fix st a s' t'
    assume "st \<in> reachable (pnet np (p1 \<parallel> p2)) I"
       and tr: "(st, a, SubnetS s' t') \<in> trans (pnet np (p1 \<parallel> p2))"
       and "I a"
       and IH: "\<And>s t. st = SubnetS s t \<Longrightarrow> P s t"
    from this(1) obtain s t where "st = SubnetS s t"
                              and str: "SubnetS s t \<in> reachable (pnet np (p1 \<parallel> p2)) I"
      by (metis net_par_reachable_is_subnet)
    note this(2)
    moreover from IH and \<open>st = SubnetS s t\<close> have "P s t" .
    moreover from \<open>st = SubnetS s t\<close> and tr
      have "(SubnetS s t, a, SubnetS s' t') \<in> trans (pnet np (p1 \<parallel> p2))" by simp
    ultimately show "P s' t'"
      using \<open>I a\<close> by (rule step)
  qed

lemma subnet_reachable:
  assumes "SubnetS s1 s2 \<in> reachable (pnet np (p1 \<parallel> p2)) TT"
    shows "s1 \<in> reachable (pnet np p1) TT"
          "s2 \<in> reachable (pnet np p2) TT"
  proof -
    from assms have "s1 \<in> reachable (pnet np p1) TT
                  \<and> s2 \<in> reachable (pnet np p2) TT"
    proof (induction rule: reachable_par_subnet_induct)
      fix s1 s2
      assume "SubnetS s1 s2 \<in> init (pnet np (p1 \<parallel> p2))"
      thus "s1 \<in> reachable (pnet np p1) TT
          \<and> s2 \<in> reachable (pnet np p2) TT"
        by (auto dest: reachable_init)
    next
      case (step s1 s2 s1' s2' a)
      hence "SubnetS s1 s2 \<in> reachable (pnet np (p1 \<parallel> p2)) TT"
        and sr1: "s1 \<in> reachable (pnet np p1) TT"
        and sr2: "s2 \<in> reachable (pnet np p2) TT"
        and "(SubnetS s1 s2, a, SubnetS s1' s2') \<in> trans (pnet np (p1 \<parallel> p2))" by auto
      from this(4)
        have "(SubnetS s1 s2, a, SubnetS s1' s2') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))"
          by simp
      thus "s1' \<in> reachable (pnet np p1) TT
         \<and> s2' \<in> reachable (pnet np p2) TT"
        by cases (insert sr1 sr2, auto elim: reachable_step)
    qed
    thus "s1 \<in> reachable (pnet np p1) TT"
         "s2 \<in> reachable (pnet np p2) TT" by auto
  qed

lemma delivered_to_node [elim]:
  assumes "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT"
      and "(s, i:deliver(d), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)"
    shows "i = ii"
  proof -
    from assms(1) obtain P R where "s = NodeS ii P R"
      by (metis net_node_reachable_is_node)
    with assms(2) show "i = ii"
       by (clarsimp simp add: trans_node_comp elim!: node_deliverTE')
  qed

lemma delivered_to_net_ips:
  assumes "s \<in> reachable (pnet np p) TT"
      and "(s, i:deliver(d), s') \<in> trans (pnet np p)"
    shows "i \<in> net_ips s"
  using assms proof (induction p arbitrary: s s')
    fix ii R\<^sub>i s s'
    assume sr: "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT"
       and "(s, i:deliver(d), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)"
    from this(2) have tr: "(s, i:deliver(d), s') \<in> node_sos (trans (np ii))" by simp
    from sr obtain P R where [simp]: "s = NodeS ii P R"
      by (metis net_node_reachable_is_node)
    moreover from tr obtain P' R' where [simp]: "s' = NodeS ii P' R'"
      by simp (metis node_sos_dest)
    ultimately have "i = ii" using tr by auto
    thus "i \<in> net_ips s" by simp
  next
    fix p1 p2 s s'
    assume IH1: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p1) TT;
                          (s, i:deliver(d), s') \<in> trans (pnet np p1) \<rbrakk> \<Longrightarrow> i \<in> net_ips s"
       and IH2: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p2) TT;
                          (s, i:deliver(d), s') \<in> trans (pnet np p2) \<rbrakk> \<Longrightarrow> i \<in> net_ips s"
       and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT"
       and tr: "(s, i:deliver(d), s') \<in> trans (pnet np (p1 \<parallel> p2))"
    from tr have "(s, i:deliver(d), s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))"
      by simp
    thus "i \<in> net_ips s"
    proof (rule partial_deliverTE)
      fix s1 s1' s2
      assume "s = SubnetS s1 s2"
         and "s' = SubnetS s1' s2"
         and tr: "(s1, i:deliver(d), s1') \<in> trans (pnet np p1)"
      from sr have "s1 \<in> reachable (pnet np p1) TT"
        by (auto simp only: \<open>s = SubnetS s1 s2\<close> elim: subnet_reachable)
      hence "i \<in> net_ips s1" using tr by (rule IH1)
      thus "i \<in> net_ips s" by (simp add: \<open>s = SubnetS s1 s2\<close>)
    next
      fix s2 s2' s1
      assume "s = SubnetS s1 s2"
         and "s' = SubnetS s1 s2'"
         and tr: "(s2, i:deliver(d), s2') \<in> trans (pnet np p2)"
      from sr have "s2 \<in> reachable (pnet np p2) TT"
        by (auto simp only: \<open>s = SubnetS s1 s2\<close> elim: subnet_reachable)
      hence "i \<in> net_ips s2" using tr by (rule IH2)
      thus "i \<in> net_ips s" by (simp add: \<open>s = SubnetS s1 s2\<close>)
    qed
  qed

lemma wf_net_tree_net_ips_disjoint [elim]:
  assumes "wf_net_tree (p1 \<parallel> p2)"
      and "s1 \<in> reachable (pnet np p1) S"
      and "s2 \<in> reachable (pnet np p2) S"
    shows "net_ips s1 \<inter> net_ips s2 = {}"
  proof -
    from \<open>wf_net_tree (p1 \<parallel> p2)\<close> have "net_tree_ips p1 \<inter> net_tree_ips p2 = {}" by auto
    moreover from assms(2) have "net_ips s1 = net_tree_ips p1" ..
    moreover from assms(3) have "net_ips s2 = net_tree_ips p2" ..
    ultimately show ?thesis by simp
  qed

lemma init_mapstate_Some_aodv_init [elim]:
  assumes "s \<in> init (pnet np p)"
      and "netmap s i = Some v"
    shows "v \<in> init (np i)"
  using assms proof (induction p arbitrary: s)
    fix ii R s
    assume "s \<in> init (pnet np \<langle>ii; R\<rangle>)"
       and "netmap s i = Some v"
    from this(1) obtain ns where s: "s = NodeS ii ns R"
      and ns: "ns \<in> init (np ii)" ..
    from s and \<open>netmap s i = Some v\<close> have "i = ii"
      by simp (metis domI domIff)
    with s ns show "v \<in> init (np i)"
      using \<open>netmap s i = Some v\<close> by simp
  next
    fix p1 p2 s
    assume IH1: "\<And>s. s \<in> init (pnet np p1) \<Longrightarrow> netmap s i = Some v \<Longrightarrow> v \<in> init (np i)"
       and IH2: "\<And>s. s \<in> init (pnet np p2) \<Longrightarrow> netmap s i = Some v \<Longrightarrow> v \<in> init (np i)"
       and "s \<in> init (pnet np (p1 \<parallel> p2))"
       and "netmap s i = Some v"
    from this(3) obtain s1 s2 where "s = SubnetS s1 s2"
                                and "s1 \<in> init (pnet np p1)"
                                and "s2 \<in> init (pnet np p2)" by auto
    from this(1) and \<open>netmap s i = Some v\<close>
      have "netmap s1 i = Some v \<or> netmap s2 i = Some v" by auto
    thus "v \<in> init (np i)"
    proof
      assume "netmap s1 i = Some v"
      with \<open>s1 \<in> init (pnet np p1)\<close> show ?thesis by (rule IH1)
    next
      assume "netmap s2 i = Some v"
      with \<open>s2 \<in> init (pnet np p2)\<close> show ?thesis by (rule IH2)
    qed
  qed

lemma reachable_connect_netmap [elim]:
  assumes "s \<in> reachable (pnet np n) TT"
      and "(s, connect(i, i'), s') \<in> trans (pnet np n)"
    shows "netmap s' = netmap s"
  using assms proof (induction n arbitrary: s s')
    fix ii R\<^sub>i s s'
    assume sr: "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT"
       and "(s, connect(i, i'), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)"
    from this(2) have tr: "(s, connect(i, i'), s') \<in> node_sos (trans (np ii))" ..
    from sr obtain p R where "s = NodeS ii p R"
      by (metis net_node_reachable_is_node)
    with tr show "netmap s' = netmap s"
      by (auto elim!: node_sos.cases)
  next
    fix p1 p2 s s'
    assume IH1: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p1) TT;
                          (s, connect(i, i'), s') \<in> trans (pnet np p1) \<rbrakk> \<Longrightarrow> netmap s' = netmap s"
       and IH2: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p2) TT;
                          (s, connect(i, i'), s') \<in> trans (pnet np p2) \<rbrakk> \<Longrightarrow> netmap s' = netmap s"
       and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT"
       and tr: "(s, connect(i, i'), s') \<in> trans (pnet np (p1 \<parallel> p2))"
    from tr have "(s, connect(i, i'), s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))"
      by simp
    thus "netmap s' = netmap s"
    proof cases
      fix s1 s1' s2 s2'
      assume "s = SubnetS s1 s2"
         and "s' = SubnetS s1' s2'"
         and tr1: "(s1, connect(i, i'), s1') \<in> trans (pnet np p1)"
         and tr2: "(s2, connect(i, i'), s2') \<in> trans (pnet np p2)"
    from this(1) and sr
      have "SubnetS s1 s2 \<in> reachable (pnet np (p1 \<parallel> p2)) TT" by simp
    hence sr1: "s1 \<in> reachable (pnet np p1) TT"
      and sr2: "s2 \<in> reachable (pnet np p2) TT"
      by (auto intro: subnet_reachable)
    from sr1 tr1 have "netmap s1' = netmap s1" by (rule IH1)
    moreover from sr2 tr2 have "netmap s2' = netmap s2" by (rule IH2)
    ultimately show "netmap s' = netmap s"
      using \<open>s = SubnetS s1 s2\<close> and \<open>s' = SubnetS s1' s2'\<close> by simp
    qed simp_all
  qed

lemma reachable_disconnect_netmap [elim]:
  assumes "s \<in> reachable (pnet np n) TT"
      and "(s, disconnect(i, i'), s') \<in> trans (pnet np n)"
    shows "netmap s' = netmap s"
  using assms proof (induction n arbitrary: s s')
    fix ii R\<^sub>i s s'
    assume sr: "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT"
       and "(s, disconnect(i, i'), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)"
    from this(2) have tr: "(s, disconnect(i, i'), s') \<in> node_sos (trans (np ii))" ..
    from sr obtain p R where "s = NodeS ii p R"
      by (metis net_node_reachable_is_node)
    with tr show "netmap s' = netmap s"
      by (auto elim!: node_sos.cases)
  next
    fix p1 p2 s s'
    assume IH1: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p1) TT;
                          (s, disconnect(i, i'), s') \<in> trans (pnet np p1) \<rbrakk> \<Longrightarrow> netmap s' = netmap s"
       and IH2: "\<And>s s'. \<lbrakk> s \<in> reachable (pnet np p2) TT;
                          (s, disconnect(i, i'), s') \<in> trans (pnet np p2) \<rbrakk> \<Longrightarrow> netmap s' = netmap s"
       and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT"
       and tr: "(s, disconnect(i, i'), s') \<in> trans (pnet np (p1 \<parallel> p2))"
    from tr have "(s, disconnect(i, i'), s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))"
      by simp
    thus "netmap s' = netmap s"
    proof cases
      fix s1 s1' s2 s2'
      assume "s = SubnetS s1 s2"
         and "s' = SubnetS s1' s2'"
         and tr1: "(s1, disconnect(i, i'), s1') \<in> trans (pnet np p1)"
         and tr2: "(s2, disconnect(i, i'), s2') \<in> trans (pnet np p2)"
    from this(1) and sr
      have "SubnetS s1 s2 \<in> reachable (pnet np (p1 \<parallel> p2)) TT" by simp
    hence sr1: "s1 \<in> reachable (pnet np p1) TT"
      and sr2: "s2 \<in> reachable (pnet np p2) TT"
      by (auto intro: subnet_reachable)
    from sr1 tr1 have "netmap s1' = netmap s1" by (rule IH1)
    moreover from sr2 tr2 have "netmap s2' = netmap s2" by (rule IH2)
    ultimately show "netmap s' = netmap s"
      using \<open>s = SubnetS s1 s2\<close> and \<open>s' = SubnetS s1' s2'\<close> by simp
    qed simp_all
  qed

fun net_ip_action :: "(ip \<Rightarrow> ('s, 'm seq_action) automaton)
                       \<Rightarrow> 'm node_action \<Rightarrow> ip \<Rightarrow> net_tree \<Rightarrow> 's net_state \<Rightarrow> 's net_state \<Rightarrow> bool"
where
    "net_ip_action np a i (p1 \<parallel> p2) (SubnetS s1 s2) (SubnetS s1' s2') =
         ((i \<in> net_ips s1 \<longrightarrow> ((s1, a, s1') \<in> trans (pnet np p1)
                                \<and> s2' = s2 \<and> net_ip_action np a i p1 s1 s1'))
          \<and> (i \<in> net_ips s2 \<longrightarrow> ((s2, a, s2') \<in> trans (pnet np p2))
                                   \<and> s1' = s1 \<and> net_ip_action np a i p2 s2 s2'))"
  | "net_ip_action np a i p s s' = True"

lemma pnet_tau_single_node [elim]:
  assumes "wf_net_tree p"
      and "s \<in> reachable (pnet np p) TT"
      and "(s, \<tau>, s') \<in> trans (pnet np p)"
  shows "\<exists>i\<in>net_ips s. ((\<forall>j. j\<noteq>i \<longrightarrow> netmap s' j = netmap s j)
                         \<and> net_ip_action np \<tau> i p s s')"
  using assms proof (induction p arbitrary: s s')
    fix ii R\<^sub>i s s'
    assume "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT"
       and "(s, \<tau>, s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)"
    from this obtain p R p' R' where "s = NodeS ii p R" and "s' = NodeS ii p' R'"
      by (metis (opaque_lifting, no_types) TT_True net_node_reachable_is_node
                                      reachable_step)
    hence "net_ips s = {ii}"
      and "net_ips s' = {ii}" by simp_all
    hence "\<exists>i\<in>dom (netmap s). \<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j"
      by (simp add: net_ips_is_dom_netmap)
    thus "\<exists>i\<in>net_ips s. (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j)
                         \<and> net_ip_action np \<tau> i (\<langle>ii; R\<^sub>i\<rangle>) s s'"
      by (simp add: net_ips_is_dom_netmap)
  next
    fix p1 p2 s s'
    assume IH1: "\<And>s s'. \<lbrakk> wf_net_tree p1;
                          s \<in> reachable (pnet np p1) TT;
                          (s, \<tau>, s') \<in> trans (pnet np p1) \<rbrakk>
                         \<Longrightarrow> \<exists>i\<in>net_ips s. (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j)
                                            \<and> net_ip_action np \<tau> i p1 s s'"
       and IH2: "\<And>s s'. \<lbrakk> wf_net_tree p2;
                          s \<in> reachable (pnet np p2) TT;
                          (s, \<tau>, s') \<in> trans (pnet np p2) \<rbrakk>
                         \<Longrightarrow> \<exists>i\<in>net_ips s. (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j)
                                            \<and> net_ip_action np \<tau> i p2 s s'"
       and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT"
       and "wf_net_tree (p1 \<parallel> p2)"
       and tr: "(s, \<tau>, s') \<in> trans (pnet np (p1 \<parallel> p2))"
    from \<open>wf_net_tree (p1 \<parallel> p2)\<close> have "net_tree_ips p1 \<inter> net_tree_ips p2 = {}"
                                  and "wf_net_tree p1" 
                                  and "wf_net_tree p2" by auto
    from tr have "(s, \<tau>, s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" by simp
    thus "\<exists>i\<in>net_ips s. (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j)
                        \<and> net_ip_action np \<tau> i (p1 \<parallel> p2) s s'"
    proof cases
      fix s1 s1' s2
      assume subs:  "s = SubnetS s1 s2"
         and subs': "s' = SubnetS s1' s2"
         and tr1: "(s1, \<tau>, s1') \<in> trans (pnet np p1)"
      from sr have sr1: "s1 \<in> reachable (pnet np p1) TT"
               and "s2 \<in> reachable (pnet np p2) TT"
        by (simp_all only: subs) (erule subnet_reachable)+
      with \<open>net_tree_ips p1 \<inter> net_tree_ips p2 = {}\<close> have "dom(netmap s1) \<inter> dom(netmap s2) = {}"
        by (metis net_ips_is_dom_netmap pnet_net_ips_net_tree_ips)
      from \<open>wf_net_tree p1\<close> sr1 tr1 obtain i where "i\<in>dom(netmap s1)"
                                               and *: "\<forall>j. j \<noteq> i \<longrightarrow> netmap s1' j = netmap s1 j"
                                               and "net_ip_action np \<tau> i p1 s1 s1'"
          by (auto simp add: net_ips_is_dom_netmap dest!: IH1)
      from this(1) and \<open>dom(netmap s1) \<inter> dom(netmap s2) = {}\<close> have "i\<notin>dom(netmap s2)"
        by auto
      with subs subs' tr1 \<open>net_ip_action np \<tau> i p1 s1 s1'\<close> have "net_ip_action np \<tau> i (p1 \<parallel> p2) s s'"
        by (simp add: net_ips_is_dom_netmap)
      moreover have "\<forall>j. j \<noteq> i \<longrightarrow> (netmap s1' ++ netmap s2) j = (netmap s1 ++ netmap s2) j"
      proof (intro allI impI)
        fix j
        assume "j \<noteq> i"
        with * have "netmap s1' j = netmap s1 j" by simp
        thus "(netmap s1' ++ netmap s2) j = (netmap s1 ++ netmap s2) j"
          by (metis (opaque_lifting, mono_tags) map_add_dom_app_simps(1) map_add_dom_app_simps(3))
      qed
      ultimately show ?thesis using \<open>i\<in>dom(netmap s1)\<close> subs subs'
        by (auto simp add: net_ips_is_dom_netmap)
    next
      fix s2 s2' s1
      assume subs: "s = SubnetS s1 s2"
         and subs': "s' = SubnetS s1 s2'"
         and tr2: "(s2, \<tau>, s2') \<in> trans (pnet np p2)"
      from sr have "s1 \<in> reachable (pnet np p1) TT"
               and sr2: "s2 \<in> reachable (pnet np p2) TT"
        by (simp_all only: subs) (erule subnet_reachable)+
      with \<open>net_tree_ips p1 \<inter> net_tree_ips p2 = {}\<close> have "dom(netmap s1) \<inter> dom(netmap s2) = {}"
        by (metis net_ips_is_dom_netmap pnet_net_ips_net_tree_ips)
      from \<open>wf_net_tree p2\<close> sr2 tr2 obtain i where "i\<in>dom(netmap s2)"
                                               and *: "\<forall>j. j \<noteq> i \<longrightarrow> netmap s2' j = netmap s2 j"
                                               and "net_ip_action np \<tau> i p2 s2 s2'"
          by (auto simp add: net_ips_is_dom_netmap dest!: IH2)
      from this(1) and \<open>dom(netmap s1) \<inter> dom(netmap s2) = {}\<close> have "i\<notin>dom(netmap s1)"
        by auto
      with subs subs' tr2 \<open>net_ip_action np \<tau> i p2 s2 s2'\<close> have "net_ip_action np \<tau> i (p1 \<parallel> p2) s s'"
        by (simp add: net_ips_is_dom_netmap)
      moreover have "\<forall>j. j \<noteq> i \<longrightarrow> (netmap s1 ++ netmap s2') j = (netmap s1 ++ netmap s2) j"
      proof (intro allI impI)
        fix j
        assume "j \<noteq> i"
        with * have "netmap s2' j = netmap s2 j" by simp
        thus "(netmap s1 ++ netmap s2') j = (netmap s1 ++ netmap s2) j"
          by (metis (opaque_lifting, mono_tags) domD map_add_Some_iff map_add_dom_app_simps(3))
      qed
      ultimately show ?thesis using \<open>i\<in>dom(netmap s2)\<close> subs subs'
        by (clarsimp simp add: net_ips_is_dom_netmap)
           (metis domI dom_map_add map_add_find_right)
    qed simp_all
  qed

lemma pnet_deliver_single_node [elim]:
  assumes "wf_net_tree p"
      and "s \<in> reachable (pnet np p) TT"
      and "(s, i:deliver(d), s') \<in> trans (pnet np p)"
  shows "(\<forall>j. j\<noteq>i \<longrightarrow> netmap s' j = netmap s j) \<and> net_ip_action np (i:deliver(d)) i p s s'"
    (is "?P p s s'")
  using assms proof (induction p arbitrary: s s')
    fix ii R\<^sub>i s s'
    assume sr: "s \<in> reachable (pnet np \<langle>ii; R\<^sub>i\<rangle>) TT"
       and tr: "(s, i:deliver(d), s') \<in> trans (pnet np \<langle>ii; R\<^sub>i\<rangle>)"
    from this obtain p R p' R' where "s = NodeS ii p R" and "s' = NodeS ii p' R'"
      by (metis (opaque_lifting, no_types) TT_True net_node_reachable_is_node
                                      reachable_step)
    hence "net_ips s = {ii}"
      and "net_ips s' = {ii}" by simp_all
    hence "\<forall>j. j \<noteq> ii \<longrightarrow> netmap s' j = netmap s j"
      by simp
    moreover from sr tr have "i = ii" by (rule delivered_to_node)
    ultimately show "(\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j)
                     \<and> net_ip_action np (i:deliver(d)) i (\<langle>ii; R\<^sub>i\<rangle>) s s'"
      by simp
  next
    fix p1 p2 s s'
    assume IH1: "\<And>s s'. \<lbrakk> wf_net_tree p1;
                          s \<in> reachable (pnet np p1) TT;
                          (s, i:deliver(d), s') \<in> trans (pnet np p1) \<rbrakk>
                         \<Longrightarrow> (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j)
                             \<and> net_ip_action np (i:deliver(d)) i p1 s s'"
       and IH2: "\<And>s s'. \<lbrakk> wf_net_tree p2;
                          s \<in> reachable (pnet np p2) TT;
                          (s, i:deliver(d), s') \<in> trans (pnet np p2) \<rbrakk>
                         \<Longrightarrow> (\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j)
                             \<and> net_ip_action np (i:deliver(d)) i p2 s s'"
       and sr: "s \<in> reachable (pnet np (p1 \<parallel> p2)) TT"
       and "wf_net_tree (p1 \<parallel> p2)"
       and tr: "(s, i:deliver(d), s') \<in> trans (pnet np (p1 \<parallel> p2))"
    from \<open>wf_net_tree (p1 \<parallel> p2)\<close> have "net_tree_ips p1 \<inter> net_tree_ips p2 = {}"
                                  and "wf_net_tree p1" 
                                  and "wf_net_tree p2" by auto
    from tr have "(s, i:deliver(d), s') \<in> pnet_sos (trans (pnet np p1)) (trans (pnet np p2))" by simp
    thus "(\<forall>j. j \<noteq> i \<longrightarrow> netmap s' j = netmap s j)
          \<and> net_ip_action np (i:deliver(d)) i (p1 \<parallel> p2) s s'"
    proof cases
      fix s1 s1' s2
      assume subs:  "s = SubnetS s1 s2"
         and subs': "s' = SubnetS s1' s2"
         and tr1: "(s1, i:deliver(d), s1') \<in> trans (pnet np p1)"
      from sr have sr1: "s1 \<in> reachable (pnet np p1) TT"
               and "s2 \<in> reachable (pnet np p2) TT"
        by (simp_all only: subs) (erule subnet_reachable)+
      with \<open>net_tree_ips p1 \<inter> net_tree_ips p2 = {}\<close> have "dom(netmap s1) \<inter> dom(netmap s2) = {}"
        by (metis net_ips_is_dom_netmap pnet_net_ips_net_tree_ips)
      moreover from sr1 tr1 have "i \<in> net_ips s1" by (rule delivered_to_net_ips)
      ultimately have "i\<notin>dom(netmap s2)" by (auto simp add: net_ips_is_dom_netmap)

      from \<open>wf_net_tree p1\<close> sr1 tr1 have *: "\<forall>j. j \<noteq> i \<longrightarrow> netmap s1' j = netmap s1 j"
                                     and "net_ip_action np (i:deliver(d)) i p1 s1 s1'"
          by (auto dest!: IH1)
      from subs subs' tr1 this(2) \<open>i\<notin>dom(netmap s2)\<close>
        have "net_ip_action np (i:deliver(d)) i (p1 \<parallel> p2) s s'"
          by (simp add: net_ips_is_dom_netmap)
      moreover have "\<forall>j. j \<noteq> i \<longrightarrow> (netmap s1' ++ netmap s2) j = (netmap s1 ++ netmap s2) j"
      proof (intro allI impI)
        fix j
        assume "j \<noteq> i"
        with * have "netmap s1' j = netmap s1 j" by simp
        thus "(netmap s1' ++ netmap s2) j = (netmap s1 ++ netmap s2) j"
          by (metis (opaque_lifting, mono_tags) map_add_dom_app_simps(1) map_add_dom_app_simps(3))
      qed
      ultimately show ?thesis using \<open>i\<in>net_ips s1\<close> subs subs' by auto
    next
      fix s2 s2' s1
      assume subs: "s = SubnetS s1 s2"
         and subs': "s' = SubnetS s1 s2'"
         and tr2: "(s2, i:deliver(d), s2') \<in> trans (pnet np p2)"
      from sr have "s1 \<in> reachable (pnet np p1) TT"
               and sr2: "s2 \<in> reachable (pnet np p2) TT"
        by (simp_all only: subs) (erule subnet_reachable)+
      with \<open>net_tree_ips p1 \<inter> net_tree_ips p2 = {}\<close> have "dom(netmap s1) \<inter> dom(netmap s2) = {}"
        by (metis net_ips_is_dom_netmap pnet_net_ips_net_tree_ips)
      moreover from sr2 tr2 have "i \<in> net_ips s2" by (rule delivered_to_net_ips)
      ultimately have "i\<notin>dom(netmap s1)" by (auto simp add: net_ips_is_dom_netmap)

      from \<open>wf_net_tree p2\<close> sr2 tr2 have *: "\<forall>j. j \<noteq> i \<longrightarrow> netmap s2' j = netmap s2 j"
                                     and "net_ip_action np (i:deliver(d)) i p2 s2 s2'"
          by (auto dest!: IH2)
      from subs subs' tr2 this(2) \<open>i\<notin>dom(netmap s1)\<close>
        have "net_ip_action np (i:deliver(d)) i (p1 \<parallel> p2) s s'"
          by (simp add: net_ips_is_dom_netmap)
      moreover have "\<forall>j. j \<noteq> i \<longrightarrow> (netmap s1 ++ netmap s2') j = (netmap s1 ++ netmap s2) j"
      proof (intro allI impI)
        fix j
        assume "j \<noteq> i"
        with * have "netmap s2' j = netmap s2 j" by simp
        thus "(netmap s1 ++ netmap s2') j = (netmap s1 ++ netmap s2) j"
          by (metis (opaque_lifting, mono_tags) domD map_add_Some_iff map_add_dom_app_simps(3))
      qed
      ultimately show ?thesis using \<open>i\<in>net_ips s2\<close> subs subs' by auto
    qed simp_all
  qed

end