Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 25,413 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
(*  Title:       Qmsg_Lifting.thy
    License:     BSD 2-Clause. See LICENSE.
    Author:      Timothy Bourke
*)

section "Lifting rules for parallel compositions with QMSG"

theory Qmsg_Lifting
imports Qmsg OAWN_SOS Inv_Cterms OAWN_Invariants
begin

lemma oseq_no_change_on_send:
  fixes \<sigma> s a \<sigma>' s'
  assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oseqp_sos \<Gamma> i"
  shows "case a of
           broadcast m     \<Rightarrow> \<sigma>' i = \<sigma> i
         | groupcast ips m \<Rightarrow> \<sigma>' i = \<sigma> i
         | unicast ips m   \<Rightarrow> \<sigma>' i = \<sigma> i
         | \<not>unicast ips    \<Rightarrow> \<sigma>' i = \<sigma> i
         | send m          \<Rightarrow> \<sigma>' i = \<sigma> i
         | deliver m       \<Rightarrow> \<sigma>' i = \<sigma> i
         | _ \<Rightarrow> True"
  using assms by induction simp_all

lemma qmsg_no_change_on_send_or_receive:
    fixes \<sigma> s a \<sigma>' s'
  assumes "((\<sigma>, s), a, (\<sigma>', s')) \<in> oparp_sos i (oseqp_sos \<Gamma> i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
      and "a \<noteq> \<tau>"
    shows "\<sigma>' i = \<sigma> i"
  proof -
    from assms(1) obtain p q p' q'
      where "((\<sigma>, (p, q)), a, (\<sigma>', (p', q'))) \<in> oparp_sos i (oseqp_sos \<Gamma> i) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
      by (cases s, cases s', simp)
    thus ?thesis
    proof
      assume "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
         and "\<And>m. a \<noteq> receive m"
      with \<open>a \<noteq> \<tau>\<close> show "\<sigma>' i = \<sigma> i"
        by - (drule oseq_no_change_on_send, cases a, auto)
    next
      assume "(q, a, q') \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G"
         and "\<sigma>' i = \<sigma> i"
        thus "\<sigma>' i = \<sigma> i" by simp
    next
      assume "a = \<tau>" with \<open>a \<noteq> \<tau>\<close> show ?thesis by auto
    qed
  qed

lemma qmsg_msgs_not_empty:
  "qmsg \<TTurnstile> onl \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G (\<lambda>(msgs, l). l = ()-:1 \<longrightarrow> msgs \<noteq> [])"
  by inv_cterms

lemma qmsg_send_from_queue:
  "qmsg \<TTurnstile>\<^sub>A (\<lambda>((msgs, q), a, _). sendmsg (\<lambda>m. m\<in>set msgs) a)"
  proof -
    have "qmsg \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G (\<lambda>((msgs, _), a, _). sendmsg (\<lambda>m. m\<in>set msgs) a)"
      by (inv_cterms inv add: onl_invariant_sterms [OF qmsg_wf qmsg_msgs_not_empty])
    thus ?thesis
      by (rule step_invariant_weakenE) (auto dest!: onllD)
  qed

lemma qmsg_queue_contents:
  "qmsg \<TTurnstile>\<^sub>A (\<lambda>((msgs, q), a, (msgs', q')). case a of
                                             receive m \<Rightarrow> set msgs' \<subseteq> set (msgs @ [m])
                                           | _ \<Rightarrow> set msgs' \<subseteq> set msgs)"
  proof -
    have "qmsg \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G (\<lambda>((msgs, q), a, (msgs', q')).
                                     case a of
                                       receive m \<Rightarrow> set msgs' \<subseteq> set (msgs @ [m])
                                     | _ \<Rightarrow> set msgs' \<subseteq> set msgs)"
      by (inv_cterms) (clarsimp simp add: in_set_tl)+
    thus ?thesis
      by (rule step_invariant_weakenE) (auto dest!: onllD)
  qed

lemma qmsg_send_receive_or_tau:
  "qmsg \<TTurnstile>\<^sub>A (\<lambda>(_, a, _). \<exists>m. a = send m \<or> a = receive m \<or> a = \<tau>)"
  proof -
   have "qmsg \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G (\<lambda>(_, a, _). \<exists>m. a = send m \<or> a = receive m \<or> a = \<tau>)"
     by inv_cterms
   thus ?thesis
    by rule (auto dest!: onllD)
  qed

lemma par_qmsg_oreachable:
  assumes "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg) (otherwith S {i} (orecvmsg R)) (other U {i})"
           (is "_ \<in> oreachable _ ?owS _")
      and pinv: "A \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>)
                       globala (\<lambda>(\<sigma>, _, \<sigma>'). U (\<sigma> i) (\<sigma>' i))"
      and ustutter: "\<And>\<xi>. U \<xi> \<xi>"
      and sgivesu: "\<And>\<xi> \<xi>'. S \<xi> \<xi>' \<Longrightarrow> U \<xi> \<xi>'"
      and upreservesq: "\<And>\<sigma> \<sigma>' m. \<lbrakk> \<forall>j. U (\<sigma> j) (\<sigma>' j); R \<sigma> m \<rbrakk> \<Longrightarrow> R \<sigma>' m"
  shows "(\<sigma>, fst \<zeta>) \<in> oreachable A ?owS (other U {i})
         \<and> snd \<zeta> \<in> reachable qmsg (recvmsg (R \<sigma>))
         \<and> (\<forall>m\<in>set (fst (snd \<zeta>)). R \<sigma> m)"
  using assms(1) proof (induction rule: oreachable_pair_induct)
    fix \<sigma> pq
    assume "(\<sigma>, pq) \<in> init (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg)"
    then obtain p ms q where "pq = (p, (ms, q))"
                         and "(\<sigma>, p) \<in> init A"
                         and "(ms, q) \<in> init qmsg"
      by (clarsimp simp del: \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_simps)
    from this(2) have "(\<sigma>, p) \<in> oreachable A ?owS (other U {i})" ..
    moreover from \<open>(ms, q) \<in> init qmsg\<close> have "(ms, q) \<in> reachable qmsg (recvmsg (R \<sigma>))" ..
    moreover from \<open>(ms, q) \<in> init qmsg\<close> have "ms = []"
        unfolding \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def by simp
    ultimately show "(\<sigma>, fst pq) \<in> oreachable A ?owS (other U {i})
                     \<and> snd pq \<in> reachable qmsg (recvmsg (R \<sigma>))
                     \<and> (\<forall>m\<in>set (fst (snd pq)). R \<sigma> m)"
      using \<open>pq = (p, (ms, q))\<close> by simp
  next
    note \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_simps [simp del]
    case (other \<sigma> pq \<sigma>')
    hence "(\<sigma>, fst pq) \<in> oreachable A ?owS (other U {i})"
      and "other U {i} \<sigma> \<sigma>'"
      and qr: "snd pq \<in> reachable qmsg (recvmsg (R \<sigma>))"
      and "\<forall>m\<in>set (fst (snd pq)). R \<sigma> m"
      by simp_all
    from \<open>other U {i} \<sigma> \<sigma>'\<close> and ustutter have "\<forall>j. U (\<sigma> j) (\<sigma>' j)"
        by (clarsimp elim!: otherE) metis
    from \<open>other U {i} \<sigma> \<sigma>'\<close>
     and \<open>(\<sigma>, fst pq) \<in> oreachable A ?owS (other U {i})\<close>
      have "(\<sigma>', fst pq) \<in> oreachable A ?owS (other U {i})"
        by - (rule oreachable_other')
    moreover have "\<forall>m\<in>set (fst (snd pq)). R \<sigma>' m"
    proof
      fix m assume "m \<in> set (fst (snd pq))"
      with \<open>\<forall>m\<in>set (fst (snd pq)). R \<sigma> m\<close> have "R \<sigma> m" ..
      with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m" by (rule upreservesq)
    qed
    moreover from qr have "snd pq \<in> reachable qmsg (recvmsg (R \<sigma>'))"
    proof
      fix a
      assume "recvmsg (R \<sigma>) a"
      thus "recvmsg (R \<sigma>') a"
      proof (rule recvmsgE [where R=R])
        fix m assume "R \<sigma> m"
        with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m" by (rule upreservesq)
      qed
    qed
    ultimately show ?case using qr by simp
  next
    case (local \<sigma> pq \<sigma>' pq' a)
    obtain p ms q p' ms' q' where "pq = (p, (ms, q))"
                              and "pq' = (p', (ms', q'))"
      by (cases pq, cases pq') metis
    with local.hyps local.IH
      have pqtr: "((\<sigma>, (p, (ms, q))), a, (\<sigma>', (p', (ms', q'))))
                    \<in> oparp_sos i (trans A) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
        and por: "(\<sigma>, p) \<in> oreachable A ?owS (other U {i})"
        and qr: "(ms, q) \<in> reachable qmsg (recvmsg (R \<sigma>))"
        and "\<forall>m\<in>set ms. R \<sigma> m"
        and "?owS \<sigma> \<sigma>' a"
      by (simp_all del: \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_simps)

    from \<open>?owS \<sigma> \<sigma>' a\<close> have "\<forall>j. j\<noteq>i \<longrightarrow> S (\<sigma> j) (\<sigma>' j)"
      by (clarsimp dest!: otherwith_syncD)
    with sgivesu have "\<forall>j. j\<noteq>i \<longrightarrow> U (\<sigma> j) (\<sigma>' j)" by simp

    from \<open>?owS \<sigma> \<sigma>' a\<close> have "orecvmsg R \<sigma> a" by (rule otherwithE)
    hence "recvmsg (R \<sigma>) a" ..

    from pqtr have "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})
                  \<and> (ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))
                  \<and> (\<forall>m\<in>set ms'. R \<sigma>' m)"
    proof
      assume "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
         and "\<And>m. a \<noteq> receive m"
         and "(ms', q') = (ms, q)"
      from this(1) have ptr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" by simp
      with pinv por and \<open>?owS \<sigma> \<sigma>' a\<close> have "U (\<sigma> i) (\<sigma>' i)"
        by (auto dest!: ostep_invariantD)
      with \<open>\<forall>j. j\<noteq>i \<longrightarrow> U (\<sigma> j) (\<sigma>' j)\<close> have "\<forall>j. U (\<sigma> j) (\<sigma>' j)" by auto

      hence recvmsg': "\<And>a. recvmsg (R \<sigma>) a \<Longrightarrow> recvmsg (R \<sigma>') a"
        by (auto elim!: recvmsgE [where R=R] upreservesq)

      from por ptr \<open>?owS \<sigma> \<sigma>' a\<close> have "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})"
        by - (rule oreachable_local')

      moreover have "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))"
      proof -
        from qr and \<open>(ms', q') = (ms, q)\<close>
          have "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>))" by simp
        thus ?thesis by (rule reachable_weakenE) (erule recvmsg')
      qed

      moreover have "\<forall>m\<in>set ms'. R \<sigma>' m"
      proof
        fix m
        assume "m\<in>set ms'"
        with \<open>(ms', q') = (ms, q)\<close> have "m\<in>set ms" by simp
        with \<open>\<forall>m\<in>set ms. R \<sigma> m\<close> have "R \<sigma> m" ..
        with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m"
          by (rule upreservesq)
      qed

      ultimately show
        "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})
          \<and> (ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))
          \<and> (\<forall>m\<in>set ms'. R \<sigma>' m)" by simp_all
    next
      assume qtr: "((ms, q), a, (ms', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G"
         and "\<And>m. a \<noteq> send m"
         and "p' = p"
         and "\<sigma>' i = \<sigma> i"

      from this(4) and \<open>\<And>\<xi>. U \<xi> \<xi>\<close> have "U (\<sigma> i) (\<sigma>' i)" by simp
      with \<open>\<forall>j. j\<noteq>i \<longrightarrow> U (\<sigma> j) (\<sigma>' j)\<close> have "\<forall>j. U (\<sigma> j) (\<sigma>' j)" by auto

      hence recvmsg': "\<And>a. recvmsg (R \<sigma>) a \<Longrightarrow> recvmsg (R \<sigma>') a"
        by (auto elim!: recvmsgE [where R=R] upreservesq)

      from qtr have tqtr: "((ms, q), a, (ms', q')) \<in> trans qmsg" by simp

      from \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> and  \<open>\<sigma>' i = \<sigma> i\<close> have "other U {i} \<sigma> \<sigma>'" by auto
      with por and \<open>p' = p\<close>
        have "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})"
          by (auto dest: oreachable_other)

      moreover have "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))"
      proof (rule reachable_weakenE [where P="recvmsg (R \<sigma>)"])
        from qr tqtr \<open>recvmsg (R \<sigma>) a\<close> show "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>))" ..
      qed (rule recvmsg')

      moreover have "\<forall>m\<in>set ms'. R \<sigma>' m"
      proof
        fix m
        assume "m \<in> set ms'"
        moreover have "case a of receive m \<Rightarrow> set ms' \<subseteq> set (ms @ [m]) | _ \<Rightarrow> set ms' \<subseteq> set ms"
          proof -
            from qr have "(ms, q) \<in> reachable qmsg TT" ..
            thus ?thesis using tqtr
              by (auto dest!: step_invariantD [OF qmsg_queue_contents])
          qed
        ultimately have "R \<sigma> m" using \<open>\<forall>m\<in>set ms. R \<sigma> m\<close> and \<open>orecvmsg R \<sigma> a\<close> 
          by (cases a) auto
        with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m"
          by (rule upreservesq)
      qed

      ultimately show "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})
                     \<and> (ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))
                     \<and> (\<forall>m\<in>set ms'. R \<sigma>' m)" by simp
    next
      fix m
      assume "a = \<tau>"
         and "((\<sigma>, p), receive m, (\<sigma>', p')) \<in> trans A"
         and "((ms, q), send m, (ms', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G"
      from this(2-3)
        have ptr: "((\<sigma>, p), receive m, (\<sigma>', p')) \<in> trans A"
         and qtr: "((ms, q), send m, (ms', q')) \<in> trans qmsg" by simp_all

      from qr have "(ms, q) \<in> reachable qmsg TT" ..
      with qtr have "m \<in> set ms"
        by (auto dest!: step_invariantD [OF qmsg_send_from_queue])
      with \<open>\<forall>m\<in>set ms. R \<sigma> m\<close> have "R \<sigma> m" ..
      hence "orecvmsg R \<sigma> (receive m)" by simp

      with \<open>\<forall>j. j\<noteq>i \<longrightarrow> S (\<sigma> j) (\<sigma>' j)\<close> have "?owS \<sigma> \<sigma>' (receive m)"
        by (auto intro!: otherwithI)
      with pinv por ptr have "U (\<sigma> i) (\<sigma>' i)"
        by (auto dest!: ostep_invariantD)
      with \<open>\<forall>j. j\<noteq>i \<longrightarrow> U (\<sigma> j) (\<sigma>' j)\<close> have "\<forall>j. U (\<sigma> j) (\<sigma>' j)" by auto
      hence recvmsg': "\<And>a. recvmsg (R \<sigma>) a \<Longrightarrow> recvmsg (R \<sigma>') a"
        by (auto elim!: recvmsgE [where R=R] upreservesq)

      from por ptr have "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})"
        using \<open>?owS \<sigma> \<sigma>' (receive m)\<close> by - (erule(1) oreachable_local, simp)

      moreover have "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))"
      proof (rule reachable_weakenE [where P="recvmsg (R \<sigma>)"])
        have "recvmsg (R \<sigma>) (send m)" by simp
        with qr qtr show "(ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>))" ..
      qed (rule recvmsg')

      moreover have "\<forall>m\<in>set ms'. R \<sigma>' m"
      proof
        fix m
        assume "m \<in> set ms'"
        moreover have "set ms' \<subseteq> set ms"
          proof -
            from qr have "(ms, q) \<in> reachable qmsg TT" ..
            thus ?thesis using qtr
              by (auto dest!: step_invariantD [OF qmsg_queue_contents])
          qed
        ultimately have "R \<sigma> m" using \<open>\<forall>m\<in>set ms. R \<sigma> m\<close> by auto
        with \<open>\<forall>j. U (\<sigma> j) (\<sigma>' j)\<close> show "R \<sigma>' m"
          by (rule upreservesq)
      qed

      ultimately show "(\<sigma>', p') \<in> oreachable A ?owS (other U {i})
                     \<and> (ms', q') \<in> reachable qmsg (recvmsg (R \<sigma>'))
                     \<and> (\<forall>m\<in>set ms'. R \<sigma>' m)" by simp
    qed
    with \<open>pq = (p, (ms, q))\<close> and \<open>pq' = (p', (ms', q'))\<close> show ?case
      by (simp_all del: \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_simps)
  qed

lemma par_qmsg_oreachable_statelessassm:
  assumes "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg)
                               (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>) (other (\<lambda>_ _. True) {i})"
      and ustutter: "\<And>\<xi>. U \<xi> \<xi>"
  shows "(\<sigma>, fst \<zeta>) \<in> oreachable A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>) (other (\<lambda>_ _. True) {i})
         \<and> snd \<zeta> \<in> reachable qmsg (recvmsg R)
         \<and> (\<forall>m\<in>set (fst (snd \<zeta>)). R m)"
  proof -
    from assms(1)
      have "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg)
                                (otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R)))
                                (other (\<lambda>_ _. True) {i})" by auto
    moreover
      have "A \<Turnstile>\<^sub>A (otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R)),
                  other (\<lambda>_ _. True) {i} \<rightarrow>) globala (\<lambda>(\<sigma>, _, \<sigma>'). True)"
        by auto
    ultimately
      obtain "(\<sigma>, fst \<zeta>) \<in> oreachable A
                           (otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R))) (other (\<lambda>_ _. True) {i})"
         and  *: "snd \<zeta> \<in> reachable qmsg (recvmsg R)"
         and **: "(\<forall>m\<in>set (fst (snd \<zeta>)). R m)"
        by (auto dest!: par_qmsg_oreachable)
    from this(1)
      have "(\<sigma>, fst \<zeta>) \<in> oreachable A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>) (other (\<lambda>_ _. True) {i})"
        by rule auto
    thus ?thesis using * ** by simp
  qed

lemma lift_into_qmsg:
  assumes "A \<Turnstile> (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) global P"
      and "\<And>\<xi>. U \<xi> \<xi>"
      and "\<And>\<xi> \<xi>'. S \<xi> \<xi>' \<Longrightarrow> U \<xi> \<xi>'"
      and "\<And>\<sigma> \<sigma>' m. \<lbrakk> \<forall>j. U (\<sigma> j) (\<sigma>' j); R \<sigma> m \<rbrakk> \<Longrightarrow> R \<sigma>' m"
      and "A \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>)
                 globala (\<lambda>(\<sigma>, _, \<sigma>'). U (\<sigma> i) (\<sigma>' i))"
    shows "A \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile> (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) global P"
  proof (rule oinvariant_oreachableI)
    fix \<sigma> \<zeta>
    assume "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg) (otherwith S {i} (orecvmsg R)) (other U {i})"
    then obtain s where "(\<sigma>, s) \<in> oreachable A (otherwith S {i} (orecvmsg R)) (other U {i})"
      by (auto dest!: par_qmsg_oreachable [OF _ assms(5,2-4)])
    with assms(1) show "global P (\<sigma>, \<zeta>)"
      by (auto dest: oinvariant_weakenD [OF assms(1)])
  qed

lemma lift_step_into_qmsg:
  assumes inv: "A \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) globala P"
      and ustutter: "\<And>\<xi>. U \<xi> \<xi>"
      and sgivesu: "\<And>\<xi> \<xi>'. S \<xi> \<xi>' \<Longrightarrow> U \<xi> \<xi>'"
      and upreservesq: "\<And>\<sigma> \<sigma>' m. \<lbrakk> \<forall>j. U (\<sigma> j) (\<sigma>' j); R \<sigma> m \<rbrakk> \<Longrightarrow> R \<sigma>' m"
      and self_sync: "A \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>)
                            globala (\<lambda>(\<sigma>, _, \<sigma>'). U (\<sigma> i) (\<sigma>' i))"

      and recv_stutter:  "\<And>\<sigma> \<sigma>' m. \<lbrakk> \<forall>j. U (\<sigma> j) (\<sigma>' j); \<sigma>' i = \<sigma> i \<rbrakk> \<Longrightarrow> P (\<sigma>, receive m, \<sigma>')"
      and receive_right: "\<And>\<sigma> \<sigma>' m.  P (\<sigma>, receive m, \<sigma>') \<Longrightarrow> P (\<sigma>, \<tau>, \<sigma>')"
    shows "A \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (otherwith S {i} (orecvmsg R), other U {i} \<rightarrow>) globala P"
      (is "_ \<Turnstile>\<^sub>A (?owS, ?U \<rightarrow>) _")
  proof (rule ostep_invariantI)
    fix \<sigma> \<zeta> a \<sigma>' \<zeta>'
    assume or: "(\<sigma>, \<zeta>) \<in> oreachable (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg) ?owS ?U"
       and otr: "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> trans (A \<langle>\<langle>\<^bsub>i\<^esub> qmsg)"
       and "?owS \<sigma> \<sigma>' a"
    from this(2) have "((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>')) \<in> oparp_sos i (trans A) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
        by simp
    then obtain s msgs q s' msgs' q'
      where "\<zeta> = (s, (msgs, q))" "\<zeta>' = (s', (msgs', q'))"
        and "((\<sigma>, (s, (msgs, q))), a, (\<sigma>', (s', (msgs', q'))))
               \<in> oparp_sos i (trans A) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
        by (metis prod_cases3)
    from this(1-2) and or
      obtain "(\<sigma>, s) \<in> oreachable A ?owS ?U"
             "(msgs, q) \<in> reachable qmsg (recvmsg (R \<sigma>))"
             "(\<forall>m\<in>set msgs. R \<sigma> m)"
       by (auto dest: par_qmsg_oreachable [OF _ self_sync ustutter sgivesu]
                elim!: upreservesq)
    from otr \<open>\<zeta> = (s, (msgs, q))\<close> \<open>\<zeta>' = (s', (msgs', q'))\<close>
      have "((\<sigma>, (s, (msgs, q))), a, (\<sigma>', (s', (msgs', q'))))
              \<in> oparp_sos i (trans A) (seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G)"
        by simp
    hence "globala P ((\<sigma>, s), a, (\<sigma>', s'))"
    proof
      assume "((\<sigma>, s), a, (\<sigma>', s')) \<in> trans A"
      with \<open>(\<sigma>, s) \<in> oreachable A ?owS ?U\<close>
        show "globala P ((\<sigma>, s), a, (\<sigma>', s'))"
          using \<open>?owS \<sigma> \<sigma>' a\<close> by (rule ostep_invariantD [OF inv])
    next
      assume "((msgs, q), a, (msgs', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G"
         and "\<And>m. a \<noteq> send m"
         and "\<sigma>' i = \<sigma> i"
      from this(3) and ustutter have "U (\<sigma> i) (\<sigma>' i)" by simp
      with \<open>?owS \<sigma> \<sigma>' a\<close> and sgivesu have "\<forall>j. U (\<sigma> j) (\<sigma>' j)"
        by (clarsimp dest!: otherwith_syncD) metis
      moreover have "(\<exists>m. a = receive m) \<or> (a = \<tau>)"
      proof -
        from \<open>(msgs, q) \<in> reachable qmsg (recvmsg (R \<sigma>))\<close>
          have "(msgs, q) \<in> reachable qmsg TT" ..
        moreover from \<open>((msgs, q), a, (msgs', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G\<close>
          have "((msgs, q), a, (msgs', q')) \<in> trans qmsg" by simp
        ultimately show ?thesis
          using \<open>\<And>m. a \<noteq> send m\<close>
          by (auto dest!: step_invariantD [OF qmsg_send_receive_or_tau])
      qed
      ultimately show "globala P ((\<sigma>, s), a, (\<sigma>', s'))"
        using \<open>\<sigma>' i = \<sigma> i\<close>
        by simp (metis receive_right recv_stutter step_seq_tau)
    next
      fix m
      assume "a = \<tau>"
         and "((\<sigma>, s), receive m, (\<sigma>', s')) \<in> trans A"
         and "((msgs, q), send m, (msgs', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G"

      from \<open>(msgs, q) \<in> reachable qmsg (recvmsg (R \<sigma>))\<close>
        have "(msgs, q) \<in> reachable qmsg TT" ..
      moreover from \<open>((msgs, q), send m, (msgs', q')) \<in> seqp_sos \<Gamma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G\<close>
        have "((msgs, q), send m, (msgs', q')) \<in> trans qmsg" by simp
      ultimately have "m\<in>set msgs"
        by (auto dest!: step_invariantD [OF qmsg_send_from_queue])

      with \<open>\<forall>m\<in>set msgs. R \<sigma> m\<close> have "R \<sigma> m" ..
      with \<open>?owS \<sigma> \<sigma>' a\<close> have "?owS \<sigma> \<sigma>' (receive m)"
          by (auto dest!: otherwith_syncD)

      with \<open>((\<sigma>, s), receive m, (\<sigma>', s')) \<in> trans A\<close>
        have "globala P ((\<sigma>, s), receive m, (\<sigma>', s'))"
          using \<open>(\<sigma>, s) \<in> oreachable A ?owS ?U\<close>
          by - (rule ostep_invariantD [OF inv])
      hence "P (\<sigma>, receive m, \<sigma>')" by simp
      hence "P (\<sigma>, \<tau>, \<sigma>')" by (rule receive_right)
      with \<open>a = \<tau>\<close> show "globala P ((\<sigma>, s), a, (\<sigma>', s'))" by simp
    qed
    with \<open>\<zeta> = (s, (msgs, q))\<close> and \<open>\<zeta>' = (s', (msgs', q'))\<close> show "globala P ((\<sigma>, \<zeta>), a, (\<sigma>', \<zeta>'))"
      by simp
  qed

lemma lift_step_into_qmsg_statelessassm:
  assumes "A \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) globala P"
      and "\<And>\<sigma> \<sigma>' m. \<sigma>' i = \<sigma> i \<Longrightarrow> P (\<sigma>, receive m, \<sigma>')"
      and "\<And>\<sigma> \<sigma>' m. P (\<sigma>, receive m, \<sigma>') \<Longrightarrow> P (\<sigma>, \<tau>, \<sigma>')"
    shows "A \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_. R) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>) globala P"
  proof -
    from assms(1) have *: "A \<Turnstile>\<^sub>A (otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R)),
                                 other (\<lambda>_ _. True) {i} \<rightarrow>) globala P"
      by rule auto
    hence "A \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A
              (otherwith (\<lambda>_ _. True) {i} (orecvmsg (\<lambda>_. R)), other (\<lambda>_ _. True) {i} \<rightarrow>) globala P"
      by (rule lift_step_into_qmsg)
         (auto elim!: assms(2-3) simp del: step_seq_tau)
    thus ?thesis by rule auto
  qed

end