Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 43,314 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
(* Title: Toy.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke
Author: Peter Höfner
*)
section "Simple toy example"
theory Toy
imports Main AWN_Main Qmsg_Lifting
begin
subsection "Messages used in the protocol"
datatype msg =
Pkt data ip
| Newpkt data ip
instantiation msg :: msg
begin
definition newpkt_def [simp]: "newpkt \<equiv> \<lambda>(d,did). Newpkt d did"
definition eq_newpkt_def: "eq_newpkt m \<equiv> case m of Newpkt d did \<Rightarrow> True | _ \<Rightarrow> False"
instance by intro_classes (simp add: eq_newpkt_def)
end
definition pkt :: "nat \<times> nat \<Rightarrow> msg"
where "pkt \<equiv> \<lambda>(no, sid). Pkt no sid"
lemma pkt_simp [simp]:
"pkt(no, sid) = Pkt no sid"
unfolding pkt_def by simp
lemma not_eq_newpkt_pkt [simp]: "\<not>eq_newpkt (Pkt no sid)"
unfolding eq_newpkt_def by simp
subsection "Protocol model"
record state =
id :: "nat"
no :: "nat"
nhid :: "nat"
(* all locals *)
msg :: "msg"
num :: "nat"
sid :: "nat"
abbreviation toy_init :: "ip \<Rightarrow> state"
where "toy_init i \<equiv> \<lparr>
id = i,
no = 0,
nhid = i,
msg = (SOME x. True),
num = (SOME x. True),
sid = (SOME x. True)
\<rparr>"
lemma some_neq_not_eq [simp]: "\<not>((SOME x :: nat. x \<noteq> i) = i)"
by (subst some_eq_ex) (metis zero_neq_numeral)
definition clear_locals :: "state \<Rightarrow> state"
where "clear_locals \<xi> = \<xi> \<lparr>
msg := (SOME x. True),
num := (SOME x. True),
sid := (SOME x. True)
\<rparr>"
lemma clear_locals_but_not_globals [simp]:
"id (clear_locals \<xi>) = id \<xi>"
"no (clear_locals \<xi>) = no \<xi>"
"nhid (clear_locals \<xi>) = nhid \<xi>"
unfolding clear_locals_def by auto
definition is_newpkt
where "is_newpkt \<xi> \<equiv> case msg \<xi> of
Newpkt data did \<Rightarrow> { \<xi>\<lparr>num := data\<rparr> }
| _ \<Rightarrow> {}"
definition is_pkt
where "is_pkt \<xi> \<equiv> case msg \<xi> of
Pkt num' sid' \<Rightarrow> { \<xi>\<lparr> num := num', sid := sid' \<rparr> }
| _ \<Rightarrow> {}"
lemmas is_msg_defs =
is_pkt_def is_newpkt_def
lemma is_msg_inv_id [simp]:
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> id \<xi>' = id \<xi>"
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> id \<xi>' = id \<xi>"
unfolding is_msg_defs
by (cases "msg \<xi>", clarsimp+)+
lemma is_msg_inv_sid [simp]:
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> sid \<xi>' = sid \<xi>"
unfolding is_msg_defs
by (cases "msg \<xi>", clarsimp+)+
lemma is_msg_inv_no [simp]:
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> no \<xi>' = no \<xi>"
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> no \<xi>' = no \<xi>"
unfolding is_msg_defs
by (cases "msg \<xi>", clarsimp+)+
lemma is_msg_inv_nhid [simp]:
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> nhid \<xi>' = nhid \<xi>"
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> nhid \<xi>' = nhid \<xi>"
unfolding is_msg_defs
by (cases "msg \<xi>", clarsimp+)+
lemma is_msg_inv_msg [simp]:
"\<xi>' \<in> is_pkt \<xi> \<Longrightarrow> msg \<xi>' = msg \<xi>"
"\<xi>' \<in> is_newpkt \<xi> \<Longrightarrow> msg \<xi>' = msg \<xi>"
unfolding is_msg_defs
by (cases "msg \<xi>", clarsimp+)+
datatype pseqp =
PToy
fun nat_of_seqp :: "pseqp \<Rightarrow> nat"
where
"nat_of_seqp PToy = 1"
instantiation "pseqp" :: ord
begin
definition less_eq_seqp [iff]: "l1 \<le> l2 = (nat_of_seqp l1 \<le> nat_of_seqp l2)"
definition less_seqp [iff]: "l1 < l2 = (nat_of_seqp l1 < nat_of_seqp l2)"
instance ..
end
abbreviation Toy
where
"Toy \<equiv> \<lambda>_. \<lbrakk>clear_locals\<rbrakk> call(PToy)"
fun \<Gamma>\<^sub>T\<^sub>O\<^sub>Y :: "(state, msg, pseqp, pseqp label) seqp_env"
where
"\<Gamma>\<^sub>T\<^sub>O\<^sub>Y PToy = labelled PToy (
receive(\<lambda>msg' \<xi>. \<xi> \<lparr> msg := msg' \<rparr>).
\<lbrakk>\<xi>. \<xi> \<lparr>nhid := id \<xi>\<rparr>\<rbrakk>
( \<langle>is_newpkt\<rangle>
(
\<lbrakk>\<xi>. \<xi> \<lparr>no := max (no \<xi>) (num \<xi>)\<rparr>\<rbrakk>
broadcast(\<lambda>\<xi>. pkt(no \<xi>, id \<xi>)). Toy()
)
\<oplus> \<langle>is_pkt\<rangle>
(
\<langle>\<xi>. num \<xi> > no \<xi>\<rangle>
\<lbrakk>\<xi>. \<xi> \<lparr>no := num \<xi>\<rparr>\<rbrakk>
\<lbrakk>\<xi>. \<xi> \<lparr>nhid := sid \<xi>\<rparr>\<rbrakk>
broadcast(\<lambda>\<xi>. pkt(no \<xi>, id \<xi>)). Toy()
\<oplus> \<langle>\<xi>. num \<xi> \<le> no \<xi>\<rangle>
Toy()
)
))"
declare \<Gamma>\<^sub>T\<^sub>O\<^sub>Y.simps [simp del, code del]
lemmas \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_simps [simp, code] = \<Gamma>\<^sub>T\<^sub>O\<^sub>Y.simps [simplified]
fun \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_skeleton
where "\<Gamma>\<^sub>T\<^sub>O\<^sub>Y_skeleton PToy = seqp_skeleton (\<Gamma>\<^sub>T\<^sub>O\<^sub>Y PToy)"
lemma \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_skeleton_wf [simp]:
"wellformed \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_skeleton"
proof (rule, intro allI)
fix pn pn'
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>T\<^sub>O\<^sub>Y_skeleton pn)"
by (cases pn) simp_all
qed
declare \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_skeleton.simps [simp del, code del]
lemmas \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_skeleton_simps [simp, code] = \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_skeleton.simps [simplified \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_simps seqp_skeleton.simps]
lemma toy_proc_cases [dest]:
fixes p pn
assumes "p \<in> ctermsl (\<Gamma>\<^sub>T\<^sub>O\<^sub>Y pn)"
shows "p \<in> ctermsl (\<Gamma>\<^sub>T\<^sub>O\<^sub>Y PToy)"
using assms
by (cases pn) simp_all
definition \<sigma>\<^sub>T\<^sub>O\<^sub>Y :: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp) set"
where "\<sigma>\<^sub>T\<^sub>O\<^sub>Y i \<equiv> {(toy_init i, \<Gamma>\<^sub>T\<^sub>O\<^sub>Y PToy)}"
abbreviation ptoy
:: "ip \<Rightarrow> (state \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton"
where
"ptoy i \<equiv> \<lparr> init = \<sigma>\<^sub>T\<^sub>O\<^sub>Y i, trans = seqp_sos \<Gamma>\<^sub>T\<^sub>O\<^sub>Y \<rparr>"
lemma toy_trans: "trans (ptoy i) = seqp_sos \<Gamma>\<^sub>T\<^sub>O\<^sub>Y"
by simp
lemma toy_control_within [simp]: "control_within \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (init (ptoy i))"
unfolding \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_simps)
lemma toy_wf [simp]:
"wellformed \<Gamma>\<^sub>T\<^sub>O\<^sub>Y"
proof (rule, intro allI)
fix pn pn'
show "call(pn') \<notin> stermsl (\<Gamma>\<^sub>T\<^sub>O\<^sub>Y pn)"
by (cases pn) simp_all
qed
lemmas toy_labels_not_empty [simp] = labels_not_empty [OF toy_wf]
lemma toy_ex_label [intro]: "\<exists>l. l\<in>labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p"
by (metis toy_labels_not_empty all_not_in_conv)
lemma toy_ex_labelE [elim]:
assumes "\<forall>l\<in>labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p. P l p"
and "\<exists>p l. P l p \<Longrightarrow> Q"
shows "Q"
using assms by (metis toy_ex_label)
lemma toy_simple_labels [simp]: "simple_labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y"
proof
fix pn p
assume "p\<in>subterms(\<Gamma>\<^sub>T\<^sub>O\<^sub>Y pn)"
thus "\<exists>!l. labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p = {l}"
by (cases pn) (simp_all cong: seqp_congs | elim disjE)+
qed
lemma \<sigma>\<^sub>T\<^sub>O\<^sub>Y_labels [simp]: "(\<xi>, p) \<in> \<sigma>\<^sub>T\<^sub>O\<^sub>Y i \<Longrightarrow> labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p = {PToy-:0}"
unfolding \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def by simp
text \<open>By default, we no longer let the simplifier descend into process terms.\<close>
declare seqp_congs [cong]
(* configure the inv_cterms tactic *)
declare
\<Gamma>\<^sub>T\<^sub>O\<^sub>Y_simps [cterms_env]
toy_proc_cases [ctermsl_cases]
seq_invariant_ctermsI [OF toy_wf toy_control_within toy_simple_labels toy_trans, cterms_intros]
seq_step_invariant_ctermsI [OF toy_wf toy_control_within toy_simple_labels toy_trans, cterms_intros]
subsection "Define an open version of the protocol"
definition \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y :: "((ip \<Rightarrow> state) \<times> ((state, msg, pseqp, pseqp label) seqp)) set"
where "\<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y \<equiv> {(toy_init, \<Gamma>\<^sub>T\<^sub>O\<^sub>Y PToy)}"
abbreviation optoy
:: "ip \<Rightarrow> ((ip \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton"
where
"optoy i \<equiv> \<lparr> init = \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y, trans = oseqp_sos \<Gamma>\<^sub>T\<^sub>O\<^sub>Y i \<rparr>"
lemma initiali_toy [intro!, simp]: "initiali i (init (optoy i)) (init (ptoy i))"
unfolding \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y_def by rule simp_all
lemma oaodv_control_within [simp]: "control_within \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (init (optoy i))"
unfolding \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>T\<^sub>O\<^sub>Y_simps)
lemma \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y_labels [simp]: "(\<sigma>, p) \<in> \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y \<Longrightarrow> labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p = {PToy-:0}"
unfolding \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y_def by simp
lemma otoy_trans: "trans (optoy i) = oseqp_sos \<Gamma>\<^sub>T\<^sub>O\<^sub>Y i"
by simp
(* configure the inv_cterms tactic *)
declare
oseq_invariant_ctermsI [OF toy_wf oaodv_control_within toy_simple_labels otoy_trans, cterms_intros]
oseq_step_invariant_ctermsI [OF toy_wf oaodv_control_within toy_simple_labels otoy_trans, cterms_intros]
subsection "Predicates"
definition msg_sender :: "msg \<Rightarrow> ip"
where "msg_sender m \<equiv> case m of Pkt _ ipc \<Rightarrow> ipc"
lemma msg_sender_simps [simp]:
"\<And>d did sid. msg_sender (Pkt d sid) = sid"
unfolding msg_sender_def by simp_all
abbreviation not_Pkt :: "msg \<Rightarrow> bool"
where "not_Pkt m \<equiv> case m of Pkt _ _ \<Rightarrow> False | _ \<Rightarrow> True"
definition nos_inc :: "state \<Rightarrow> state \<Rightarrow> bool"
where "nos_inc \<xi> \<xi>' \<equiv> (no \<xi> \<le> no \<xi>')"
definition msg_ok :: "(ip \<Rightarrow> state) \<Rightarrow> msg \<Rightarrow> bool"
where "msg_ok \<sigma> m \<equiv> case m of Pkt num' sid' \<Rightarrow> num' \<le> no (\<sigma> sid') | _ \<Rightarrow> True"
lemma msg_okI [intro]:
assumes "\<And>num' sid'. m = Pkt num' sid' \<Longrightarrow> num' \<le> no (\<sigma> sid')"
shows "msg_ok \<sigma> m"
using assms unfolding msg_ok_def
by (auto split: msg.split)
lemma msg_ok_Pkt [simp]:
"msg_ok \<sigma> (Pkt data src) = (data \<le> no (\<sigma> src))"
unfolding msg_ok_def by simp
lemma msg_ok_pkt [simp]:
"msg_ok \<sigma> (pkt(data, src)) = (data \<le> no (\<sigma> src))"
unfolding msg_ok_def by simp
lemma msg_ok_Newpkt [simp]:
"msg_ok \<sigma> (Newpkt data dst)"
unfolding msg_ok_def by simp
lemma msg_ok_newpkt [simp]:
"msg_ok \<sigma> (newpkt(data, dst))"
unfolding msg_ok_def by simp
subsection "Sequential Invariants"
lemma seq_no_leq_num:
"ptoy i \<TTurnstile> onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<xi>, l). l\<in>{PToy-:7..PToy-:8} \<longrightarrow> no \<xi> \<le> num \<xi>)"
by inv_cterms
lemma seq_nos_incs:
"ptoy i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>((\<xi>, _), _, (\<xi>', _)). nos_inc \<xi> \<xi>')"
unfolding nos_inc_def
by (inv_cterms inv add: onl_invariant_sterms [OF toy_wf seq_no_leq_num])
lemma seq_nos_incs':
"ptoy i \<TTurnstile>\<^sub>A (\<lambda>((\<xi>, _), _, (\<xi>', _)). nos_inc \<xi> \<xi>')"
by (rule step_invariant_weakenE [OF seq_nos_incs]) (auto dest!: onllD)
lemma sender_ip_valid:
"ptoy i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>((\<xi>, _), a, _). anycast (\<lambda>m. msg_sender m = id \<xi>) a)"
by inv_cterms
lemma id_constant:
"ptoy i \<TTurnstile> onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<xi>, _). id \<xi> = i)"
by inv_cterms (simp add: \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def)
lemma nhid_eq_id:
"ptoy i \<TTurnstile> onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<xi>, l). l\<in>{PToy-:2..PToy-:8} \<longrightarrow> nhid \<xi> = id \<xi>)"
by inv_cterms
lemma seq_msg_ok:
"ptoy i \<TTurnstile>\<^sub>A onll \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>((\<xi>, _), a, _).
anycast (\<lambda>m. case m of Pkt num' sid' \<Rightarrow> num' = no \<xi> \<and> sid' = i | _ \<Rightarrow> True) a)"
by (inv_cterms inv add: onl_invariant_sterms [OF toy_wf id_constant])
lemma nhid_eq_i:
"ptoy i \<TTurnstile> onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<xi>, l). l\<in>{PToy-:2..PToy-:8} \<longrightarrow> nhid \<xi> = i)"
proof (rule invariant_arbitraryI, clarify intro!: onlI impI)
fix \<xi> p l n
assume "(\<xi>, p) \<in> reachable (ptoy i) TT"
and "l \<in> labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p"
and "l \<in> {PToy-:2..PToy-:8}"
from this(1-3) have "nhid \<xi> = id \<xi>"
by - (drule invariantD [OF nhid_eq_id], auto)
moreover with \<open>(\<xi>, p) \<in> reachable (ptoy i) TT\<close> and \<open>l \<in> labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p\<close> have "id \<xi> = i"
by (auto dest: invariantD [OF id_constant])
ultimately show "nhid \<xi> = i"
by simp
qed
subsection "Global Invariants"
lemma nos_incD [dest]:
assumes "nos_inc \<xi> \<xi>'"
shows "no \<xi> \<le> no \<xi>'"
using assms unfolding nos_inc_def .
lemma nos_inc_simp [simp]:
"nos_inc \<xi> \<xi>' = (no \<xi> \<le> no \<xi>')"
unfolding nos_inc_def ..
lemmas oseq_nos_incs =
open_seq_step_invariant [OF seq_nos_incs initiali_toy otoy_trans toy_trans,
simplified seqll_onll_swap]
lemmas oseq_no_leq_num =
open_seq_invariant [OF seq_no_leq_num initiali_toy otoy_trans toy_trans,
simplified seql_onl_swap]
lemma all_nos_inc:
shows "optoy i \<Turnstile>\<^sub>A (otherwith nos_inc {i} S,
other nos_inc {i} \<rightarrow>)
onll \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>((\<sigma>, _), a, (\<sigma>', _)). (\<forall>j. nos_inc (\<sigma> j) (\<sigma>' j)))"
proof -
have *: "\<And>\<sigma> \<sigma>' a. \<lbrakk> otherwith nos_inc {i} S \<sigma> \<sigma>' a; no (\<sigma> i) \<le> no (\<sigma>' i) \<rbrakk>
\<Longrightarrow> \<forall>j. no (\<sigma> j) \<le> no (\<sigma>' j)"
by (auto dest!: otherwith_syncD)
show ?thesis
by (inv_cterms
inv add: oseq_step_invariant_sterms [OF oseq_nos_incs [THEN oinvariant_step_anyact]
toy_wf otoy_trans]
simp add: seqllsimp) (auto elim!: *)
qed
lemma oreceived_msg_inv:
assumes other: "\<And>\<sigma> \<sigma>' m. \<lbrakk> P \<sigma> m; other Q {i} \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P \<sigma>' m"
and local: "\<And>\<sigma> m. P \<sigma> m \<Longrightarrow> P (\<sigma>(i := \<sigma> i\<lparr>msg := m\<rparr>)) m"
shows "optoy i \<Turnstile> (otherwith Q {i} (orecvmsg P), other Q {i} \<rightarrow>)
onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<sigma>, l). l \<in> {PToy-:1} \<longrightarrow> P \<sigma> (msg (\<sigma> i)))"
proof (inv_cterms, intro impI)
fix \<sigma> \<sigma>' l
assume "l = PToy-:1 \<longrightarrow> P \<sigma> (msg (\<sigma> i))"
and "l = PToy-:1"
and "other Q {i} \<sigma> \<sigma>'"
from this(1-2) have "P \<sigma> (msg (\<sigma> i))" ..
hence "P \<sigma>' (msg (\<sigma> i))" using \<open>other Q {i} \<sigma> \<sigma>'\<close>
by (rule other)
moreover from \<open>other Q {i} \<sigma> \<sigma>'\<close> have "\<sigma>' i = \<sigma> i" ..
ultimately show "P \<sigma>' (msg (\<sigma>' i))" by simp
next
fix \<sigma> \<sigma>' msg
assume "otherwith Q {i} (orecvmsg P) \<sigma> \<sigma>' (receive msg)"
and "\<sigma>' i = \<sigma> i\<lparr>msg := msg\<rparr>"
from this(1) have "P \<sigma> msg"
and "\<forall>j. j\<noteq>i \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)" by auto
from this(1) have "P (\<sigma>(i := \<sigma> i\<lparr>msg := msg\<rparr>)) msg" by (rule local)
thus "P \<sigma>' msg"
proof (rule other)
from \<open>\<sigma>' i = \<sigma> i\<lparr>msg := msg\<rparr>\<close> and \<open>\<forall>j. j\<noteq>i \<longrightarrow> Q (\<sigma> j) (\<sigma>' j)\<close>
show "other Q {i} (\<sigma>(i := \<sigma> i\<lparr>msg := msg\<rparr>)) \<sigma>'"
by - (rule otherI, auto)
qed
qed
lemma msg_ok_other_nos_inc [elim]:
assumes "msg_ok \<sigma> m"
and "other nos_inc {i} \<sigma> \<sigma>'"
shows "msg_ok \<sigma>' m"
proof (cases m)
fix num sid
assume "m = Pkt num sid"
with \<open>msg_ok \<sigma> m\<close> have "num \<le> no (\<sigma> sid)" by simp
also from \<open>other nos_inc {i} \<sigma> \<sigma>'\<close> have "no (\<sigma> sid) \<le> no (\<sigma>' sid)"
by (rule otherE) (metis eq_iff nos_incD)
finally have "num \<le> no (\<sigma>' sid)" .
with \<open>m = Pkt num sid\<close> show ?thesis
by simp
qed simp
lemma msg_ok_no_leq_no [simp, elim]:
assumes "msg_ok \<sigma> m"
and "\<forall>j. no (\<sigma> j) \<le> no (\<sigma>' j)"
shows "msg_ok \<sigma>' m"
using assms(1) proof (cases m)
fix num sid
assume "m = Pkt num sid"
with \<open>msg_ok \<sigma> m\<close> have "num \<le> no (\<sigma> sid)" by simp
also from \<open>\<forall>j. no (\<sigma> j) \<le> no (\<sigma>' j)\<close> have "no (\<sigma> sid) \<le> no (\<sigma>' sid)"
by simp
finally have "num \<le> no (\<sigma>' sid)" .
with \<open>m = Pkt num sid\<close> show ?thesis
by simp
qed (simp add: assms(1))
lemma oreceived_msg_ok:
"optoy i \<Turnstile> (otherwith nos_inc {i} (orecvmsg msg_ok),
other nos_inc {i} \<rightarrow>)
onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<sigma>, l). l\<in>{PToy-:1..} \<longrightarrow> msg_ok \<sigma> (msg (\<sigma> i)))"
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) _")
proof (inv_cterms inv add: oseq_step_invariant_sterms [OF all_nos_inc toy_wf otoy_trans],
intro impI, elim impE)
fix \<sigma> \<sigma>'
assume "msg_ok \<sigma> (msg (\<sigma> i))"
and other: "other nos_inc {i} \<sigma> \<sigma>'"
moreover from other have "msg (\<sigma>' i) = msg (\<sigma> i)"
by (clarsimp elim!: otherE)
ultimately show "msg_ok \<sigma>' (msg (\<sigma>' i))"
by (auto)
next
fix p l \<sigma> a q l' \<sigma>' pp p' m
assume a1: "(\<sigma>', p') \<in> oreachable (optoy i) ?S ?U"
and a2: "PToy-:1 \<in> labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p'"
and a3: "\<sigma>' i = \<sigma> i\<lparr>msg := m\<rparr>"
have inv: "optoy i \<Turnstile> (?S, ?U \<rightarrow>) onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<sigma>, l). l \<in> {PToy-:1} \<longrightarrow> msg_ok \<sigma> (msg (\<sigma> i)))"
proof (rule oreceived_msg_inv)
fix \<sigma> \<sigma>' m
assume "msg_ok \<sigma> m"
and "other nos_inc {i} \<sigma> \<sigma>'"
thus "msg_ok \<sigma>' m" ..
next
fix \<sigma> m
assume "msg_ok \<sigma> m"
thus "msg_ok (\<sigma>(i := \<sigma> i\<lparr>msg := m\<rparr>)) m"
by (cases m) auto
qed
from a1 a2 a3 show "msg_ok \<sigma>' m"
by (clarsimp dest!: oinvariantD [OF inv] onlD)
qed simp
lemma is_pkt_handler_num_leq_no:
shows "optoy i \<Turnstile> (otherwith nos_inc {i} (orecvmsg msg_ok),
other nos_inc {i} \<rightarrow>)
onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<sigma>, l). l\<in>{PToy-:6..PToy-:10} \<longrightarrow> num (\<sigma> i) \<le> no (\<sigma> (sid (\<sigma> i))))"
proof -
{ fix \<sigma> \<sigma>'
assume "\<forall>j. no (\<sigma> j) \<le> no (\<sigma>' j)"
and "num (\<sigma> i) \<le> no (\<sigma> (sid (\<sigma> i)))"
have "num (\<sigma> i) \<le> no (\<sigma>' (sid (\<sigma> i)))"
proof -
note \<open>num (\<sigma> i) \<le> no (\<sigma> (sid (\<sigma> i)))\<close>
also from \<open>\<forall>j. no (\<sigma> j) \<le> no (\<sigma>' j)\<close> have "no (\<sigma> (sid (\<sigma> i))) \<le> no (\<sigma>' (sid (\<sigma> i)))"
by auto
finally show ?thesis .
qed
} note solve_step = this
show ?thesis
proof (inv_cterms inv add: oseq_step_invariant_sterms [OF all_nos_inc toy_wf otoy_trans]
onl_oinvariant_sterms [OF toy_wf oreceived_msg_ok]
solve: solve_step, intro impI, elim impE)
fix \<sigma> \<sigma>'
assume *: "num (\<sigma> i) \<le> no (\<sigma> (sid (\<sigma> i)))"
and "other nos_inc {i} \<sigma> \<sigma>'"
from this(2) obtain "\<forall>i\<in>{i}. \<sigma>' i = \<sigma> i"
and "\<forall>j. j \<notin> {i} \<longrightarrow> nos_inc (\<sigma> j) (\<sigma>' j)" ..
show "num (\<sigma>' i) \<le> no (\<sigma>' (sid (\<sigma>' i)))"
proof (cases "sid (\<sigma> i) = i")
assume "sid (\<sigma> i) = i"
with * \<open>\<forall>i\<in>{i}. \<sigma>' i = \<sigma> i\<close>
show ?thesis by simp
next
assume "sid (\<sigma> i) \<noteq> i"
with \<open>\<forall>j. j \<notin> {i} \<longrightarrow> nos_inc (\<sigma> j) (\<sigma>' j)\<close>
have "no (\<sigma> (sid (\<sigma> i))) \<le> no (\<sigma>' (sid (\<sigma> i)))" by simp
with * \<open>\<forall>i\<in>{i}. \<sigma>' i = \<sigma> i\<close>
show ?thesis by simp
qed
next
fix p l \<sigma> a q l' \<sigma>' pp p'
assume "msg_ok \<sigma> (msg (\<sigma> i))"
and "\<forall>j. no (\<sigma> j) \<le> no (\<sigma>' j)"
and "\<sigma>' i \<in> is_pkt (\<sigma> i)"
show "num (\<sigma>' i) \<le> no (\<sigma>' (sid (\<sigma>' i)))"
proof (cases "msg (\<sigma> i)")
fix num' sid'
assume "msg (\<sigma> i) = Pkt num' sid'"
with \<open>\<sigma>' i \<in> is_pkt (\<sigma> i)\<close> obtain "num (\<sigma>' i) = num'"
and "sid (\<sigma>' i) = sid'"
unfolding is_pkt_def by auto
with \<open>msg (\<sigma> i) = Pkt num' sid'\<close> and \<open>msg_ok \<sigma> (msg (\<sigma> i))\<close>
have "num (\<sigma>' i) \<le> no (\<sigma> (sid (\<sigma>' i)))"
by simp
also from \<open>\<forall>j. no (\<sigma> j) \<le> no (\<sigma>' j)\<close> have "no (\<sigma> (sid (\<sigma>' i))) \<le> no (\<sigma>' (sid (\<sigma>' i)))" ..
finally show ?thesis .
next
fix num' sid'
assume "msg (\<sigma> i) = Newpkt num' sid'"
with \<open>\<sigma>' i \<in> is_pkt (\<sigma> i)\<close> have False
unfolding is_pkt_def by simp
thus ?thesis ..
qed
qed
qed
lemmas oseq_id_constant =
open_seq_invariant [OF id_constant initiali_toy otoy_trans toy_trans,
simplified seql_onl_swap]
lemmas oseq_nhid_eq_i =
open_seq_invariant [OF nhid_eq_i initiali_toy otoy_trans toy_trans,
simplified seql_onl_swap]
lemmas oseq_nhid_eq_id =
open_seq_invariant [OF nhid_eq_id initiali_toy otoy_trans toy_trans,
simplified seql_onl_swap]
lemma oseq_bigger_than_next:
shows "optoy i \<Turnstile> (otherwith nos_inc {i} (orecvmsg msg_ok),
other nos_inc {i} \<rightarrow>) global (\<lambda>\<sigma>. no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
(is "_ \<Turnstile> (?S, ?U \<rightarrow>) ?P")
proof -
have nhidinv: "optoy i \<Turnstile> (?S, ?U \<rightarrow>)
onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<sigma>, l). l\<in>{PToy-:2..PToy-:8}
\<longrightarrow> nhid (\<sigma> i) = id (\<sigma> i))"
by (rule oinvariant_weakenE [OF oseq_nhid_eq_id]) (auto simp: seqlsimp)
have idinv: "optoy i \<Turnstile> (?S, ?U \<rightarrow>) onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<sigma>, l). id (\<sigma> i) = i)"
by (rule oinvariant_weakenE [OF oseq_id_constant]) (auto simp: seqlsimp)
{ fix \<sigma> \<sigma>' a
assume "no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i)))"
and "\<forall>j. nos_inc (\<sigma> j) (\<sigma>' j)"
note this(1)
also from \<open>\<forall>j. nos_inc (\<sigma> j) (\<sigma>' j)\<close> have "no (\<sigma> (nhid (\<sigma> i))) \<le> no (\<sigma>' (nhid (\<sigma> i)))"
by auto
finally have "no (\<sigma> i) \<le> no (\<sigma>' (nhid (\<sigma> i)))" ..
} note * = this
have "optoy i \<Turnstile> (otherwith nos_inc {i} (orecvmsg msg_ok),
other nos_inc {i} \<rightarrow>)
onl \<Gamma>\<^sub>T\<^sub>O\<^sub>Y (\<lambda>(\<sigma>, l). no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
proof (inv_cterms
inv add: onl_oinvariant_sterms [OF toy_wf oseq_no_leq_num [THEN oinvariant_anyact]]
oseq_step_invariant_sterms [OF all_nos_inc toy_wf otoy_trans]
onl_oinvariant_sterms [OF toy_wf is_pkt_handler_num_leq_no]
onl_oinvariant_sterms [OF toy_wf nhidinv]
onl_oinvariant_sterms [OF toy_wf idinv]
simp add: seqlsimp seqllsimp
simp del: nos_inc_simp
solve: *)
fix \<sigma> p l
assume "(\<sigma>, p) \<in> \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y"
thus "no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i)))"
by (simp add: \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y_def)
next
fix \<sigma> \<sigma>' p l
assume or: "(\<sigma>, p) \<in> oreachable (optoy i) ?S ?U"
and "l \<in> labels \<Gamma>\<^sub>T\<^sub>O\<^sub>Y p"
and "no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i)))"
and "other nos_inc {i} \<sigma> \<sigma>'"
show "no (\<sigma>' i) \<le> no (\<sigma>' (nhid (\<sigma>' i)))"
proof (cases "nhid (\<sigma>' i) = i")
assume "nhid (\<sigma>' i) = i"
with \<open>no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i)))\<close> show ?thesis
by simp
next
assume "nhid (\<sigma>' i) \<noteq> i"
moreover from \<open>other nos_inc {i} \<sigma> \<sigma>'\<close> [THEN other_localD] have "\<sigma>' i = \<sigma> i"
by simp
ultimately have "no (\<sigma> (nhid (\<sigma> i))) \<le> no (\<sigma>' (nhid (\<sigma>' i)))"
using \<open>other nos_inc {i} \<sigma> \<sigma>'\<close> and \<open>\<sigma>' i = \<sigma> i\<close> by (auto)
with \<open>no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i)))\<close> and \<open>\<sigma>' i = \<sigma> i\<close> show ?thesis
by simp
qed
next
fix p l \<sigma> a q l' \<sigma>' pp p'
assume "no (\<sigma> i) \<le> num (\<sigma> i)"
and "num (\<sigma> i) \<le> no (\<sigma> (sid (\<sigma> i)))"
and "\<forall>j. nos_inc (\<sigma> j) (\<sigma>' j)"
from this(1-2) have "no (\<sigma> i) \<le> no (\<sigma> (sid (\<sigma> i)))"
by (rule le_trans)
also from \<open>\<forall>j. nos_inc (\<sigma> j) (\<sigma>' j)\<close>
have "no (\<sigma> (sid (\<sigma> i))) \<le> no (\<sigma>' (sid (\<sigma> i)))"
by auto
finally show "no (\<sigma> i) \<le> no (\<sigma>' (sid (\<sigma> i)))" ..
qed
thus ?thesis
by (rule oinvariant_weakenE)
(auto simp: onl_def)
qed
lemma anycast_weakenE [elim]:
assumes "anycast P a"
and "\<And>m. P m \<Longrightarrow> Q m"
shows "anycast Q a"
using assms unfolding anycast_def
by (auto split: seq_action.split)
lemma oseq_msg_ok:
"optoy i \<Turnstile>\<^sub>A (act TT, other U {i} \<rightarrow>) globala (\<lambda>(\<sigma>, a, _). anycast (msg_ok \<sigma>) a)"
by (rule ostep_invariant_weakenE [OF open_seq_step_invariant
[OF seq_msg_ok initiali_toy otoy_trans toy_trans, simplified seql_onl_swap]])
(auto simp: seqllsimp dest!: onllD elim!: anycast_weakenE intro!: msg_okI)
subsection "Lifting"
lemma opar_bigger_than_next:
shows "optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile> (otherwith nos_inc {i} (orecvmsg msg_ok),
other nos_inc {i} \<rightarrow>) global (\<lambda>\<sigma>. no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
proof (rule lift_into_qmsg [OF oseq_bigger_than_next])
fix \<sigma> \<sigma>' m
assume "\<forall>j. nos_inc (\<sigma> j) (\<sigma>' j)"
and "msg_ok \<sigma> m"
from this(2) show "msg_ok \<sigma>' m"
proof (cases m, simp only: msg_ok_Pkt)
fix num' sid'
assume "num' \<le> no (\<sigma> sid')"
also from \<open>\<forall>j. nos_inc (\<sigma> j) (\<sigma>' j)\<close> have "no (\<sigma> sid') \<le> no (\<sigma>' sid')"
by simp
finally show "num' \<le> no (\<sigma>' sid')" .
qed simp
next
show "optoy i \<Turnstile>\<^sub>A (otherwith nos_inc {i} (orecvmsg msg_ok), other nos_inc {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). nos_inc (\<sigma> i) (\<sigma>' i))"
by (rule ostep_invariant_weakenE [OF open_seq_step_invariant
[OF seq_nos_incs initiali_toy otoy_trans toy_trans]])
(auto simp: seqllsimp dest!: onllD)
qed simp
lemma onode_bigger_than_next:
"\<langle>i : optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o
\<Turnstile> (otherwith nos_inc {i} (oarrivemsg msg_ok), other nos_inc {i} \<rightarrow>)
global (\<lambda>\<sigma>. no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
by (rule node_lift [OF opar_bigger_than_next])
lemma node_local_nos_inc:
"\<langle>i : optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg (\<lambda>_ _. True) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). nos_inc (\<sigma> i) (\<sigma>' i))"
proof (rule node_lift_step_statelessassm)
have "optoy i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_ _. True) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). nos_inc (\<sigma> i) (\<sigma>' i))"
by (rule ostep_invariant_weakenE [OF oseq_nos_incs])
(auto simp: seqllsimp dest!: onllD)
thus "optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_ _. True) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, _, \<sigma>'). nos_inc (\<sigma> i) (\<sigma>' i))"
by (rule lift_step_into_qmsg_statelessassm) auto
qed simp
lemma opnet_bigger_than_next:
"opnet (\<lambda>i. optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) n
\<Turnstile> (otherwith nos_inc (net_tree_ips n) (oarrivemsg msg_ok),
other nos_inc (net_tree_ips n) \<rightarrow>)
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
proof (rule pnet_lift [OF onode_bigger_than_next])
fix i R\<^sub>i
have "\<langle>i : optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg msg_ok \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, _). castmsg (msg_ok \<sigma>) a)"
proof (rule node_lift_anycast_statelessassm)
have "optoy i \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_ _. True) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, _). anycast (msg_ok \<sigma>) a)"
by (rule ostep_invariant_weakenE [OF oseq_msg_ok]) auto
hence "optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg (\<lambda>_ _. True) \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, _). anycast (msg_ok \<sigma>) a)"
by (rule lift_step_into_qmsg_statelessassm) auto
thus "optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. orecvmsg msg_ok \<sigma>, other (\<lambda>_ _. True) {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, _). anycast (msg_ok \<sigma>) a)"
by (rule ostep_invariant_weakenE) auto
qed
thus "\<langle>i : optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg msg_ok \<sigma>, other nos_inc {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, _). castmsg (msg_ok \<sigma>) a)"
by (rule ostep_invariant_weakenE) auto
next
fix i R\<^sub>i
show "\<langle>i : optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<^sub>i\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg msg_ok \<sigma>,
other nos_inc {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, \<sigma>'). a \<noteq> \<tau> \<and> (\<forall>d. a \<noteq> i:deliver(d)) \<longrightarrow> nos_inc (\<sigma> i) (\<sigma>' i))"
by (rule ostep_invariant_weakenE [OF node_local_nos_inc]) auto
next
fix i R
show "\<langle>i : optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg : R\<rangle>\<^sub>o \<Turnstile>\<^sub>A (\<lambda>\<sigma> _. oarrivemsg msg_ok \<sigma>,
other nos_inc {i} \<rightarrow>)
globala (\<lambda>(\<sigma>, a, \<sigma>'). a = \<tau> \<or> (\<exists>d. a = i:deliver(d)) \<longrightarrow> nos_inc (\<sigma> i) (\<sigma>' i))"
by (rule ostep_invariant_weakenE [OF node_local_nos_inc]) auto
qed simp_all
lemma ocnet_bigger_than_next:
"oclosed (opnet (\<lambda>i. optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) n)
\<Turnstile> (\<lambda>_ _ _. True, other nos_inc (net_tree_ips n) \<rightarrow>)
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
proof (rule inclosed_closed)
show "opnet (\<lambda>i. optoy i \<langle>\<langle>\<^bsub>i\<^esub> qmsg) n
\<Turnstile> (otherwith (=) (net_tree_ips n) inoclosed, other nos_inc (net_tree_ips n) \<rightarrow>)
global (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
proof (rule oinvariant_weakenE [OF opnet_bigger_than_next])
fix s s':: "nat \<Rightarrow> state" and a :: "msg node_action"
assume "otherwith (=) (net_tree_ips n) inoclosed s s' a"
thus "otherwith nos_inc (net_tree_ips n) (oarrivemsg msg_ok) s s' a"
proof (rule otherwithE, intro otherwithI)
assume "inoclosed s a"
and "\<forall>j. j \<notin> net_tree_ips n \<longrightarrow> s j = s' j"
and "otherwith ((=)) (net_tree_ips n) inoclosed s s' a"
thus "oarrivemsg msg_ok s a"
by (cases a) auto
qed auto
qed simp
qed
subsection "Transfer"
definition
initmissing :: "(nat \<Rightarrow> state option) \<times> 'a \<Rightarrow> (nat \<Rightarrow> state) \<times> 'a"
where
"initmissing \<sigma> = (\<lambda>i. case (fst \<sigma>) i of None \<Rightarrow> toy_init i | Some s \<Rightarrow> s, snd \<sigma>)"
lemma not_in_net_ips_fst_init_missing [simp]:
assumes "i \<notin> net_ips \<sigma>"
shows "fst (initmissing (netgmap fst \<sigma>)) i = toy_init i"
using assms unfolding initmissing_def by simp
lemma fst_initmissing_netgmap_pair_fst [simp]:
"fst (initmissing (netgmap (\<lambda>(p, q). (fst (Fun.id p), snd (Fun.id p), q)) s))
= fst (initmissing (netgmap fst s))"
unfolding initmissing_def by auto
interpretation toy_openproc: openproc ptoy optoy Fun.id
rewrites "toy_openproc.initmissing = initmissing"
proof -
show "openproc ptoy optoy Fun.id"
proof unfold_locales
fix i :: ip
have "{(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> \<sigma>\<^sub>T\<^sub>O\<^sub>Y i \<and> (\<forall>j. j \<noteq> i \<longrightarrow> \<sigma> j \<in> fst ` \<sigma>\<^sub>T\<^sub>O\<^sub>Y j)} \<subseteq> \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y"
unfolding \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def \<sigma>\<^sub>O\<^sub>T\<^sub>O\<^sub>Y_def
proof (rule equalityD1)
show "\<And>f p. {(\<sigma>, \<zeta>). (\<sigma> i, \<zeta>) \<in> {(f i, p)} \<and> (\<forall>j. j \<noteq> i
\<longrightarrow> \<sigma> j \<in> fst ` {(f j, p)})} = {(f, p)}"
by (rule set_eqI) auto
qed
thus "{ (\<sigma>, \<zeta>) |\<sigma> \<zeta> s. s \<in> init (ptoy i)
\<and> (\<sigma> i, \<zeta>) = Fun.id s
\<and> (\<forall>j. j\<noteq>i \<longrightarrow> \<sigma> j \<in> (fst o Fun.id) ` init (ptoy j)) } \<subseteq> init (optoy i)"
by simp
next
show "\<forall>j. init (ptoy j) \<noteq> {}"
unfolding \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def by simp
next
fix i s a s' \<sigma> \<sigma>'
assume "\<sigma> i = fst (Fun.id s)"
and "\<sigma>' i = fst (Fun.id s')"
and "(s, a, s') \<in> trans (ptoy i)"
then obtain q q' where "s = (\<sigma> i, q)"
and "s' = (\<sigma>' i, q')"
and "((\<sigma> i, q), a, (\<sigma>' i, q')) \<in> trans (ptoy i)"
by (cases s, cases s') auto
from this(3) have "((\<sigma>, q), a, (\<sigma>', q')) \<in> trans (optoy i)"
by simp (rule open_seqp_action [OF toy_wf])
with \<open>s = (\<sigma> i, q)\<close> and \<open>s' = (\<sigma>' i, q')\<close>
show "((\<sigma>, snd (Fun.id s)), a, (\<sigma>', snd (Fun.id s'))) \<in> trans (optoy i)"
by simp
qed
then interpret op0: openproc ptoy optoy Fun.id .
have [simp]: "\<And>i. (SOME x. x \<in> (fst o Fun.id) ` init (ptoy i)) = toy_init i"
unfolding \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def by simp
hence "\<And>i. openproc.initmissing ptoy Fun.id i = initmissing i"
unfolding op0.initmissing_def op0.someinit_def initmissing_def
by (auto split: option.split)
thus "openproc.initmissing ptoy Fun.id = initmissing" ..
qed
lemma fst_initmissing_netgmap_default_toy_init_netlift:
"fst (initmissing (netgmap sr s)) = default toy_init (netlift sr s)"
unfolding initmissing_def default_def
by (simp add: fst_netgmap_netlift del: One_nat_def)
definition
netglobal :: "((nat \<Rightarrow> state) \<Rightarrow> bool) \<Rightarrow> ((state \<times> 'b) \<times> 'c) net_state \<Rightarrow> bool"
where
"netglobal P \<equiv> (\<lambda>s. P (default toy_init (netlift fst s)))"
interpretation toy_openproc_par_qmsg: openproc_parq ptoy optoy Fun.id qmsg
rewrites "toy_openproc_par_qmsg.netglobal = netglobal"
and "toy_openproc_par_qmsg.initmissing = initmissing"
proof -
show "openproc_parq ptoy optoy Fun.id qmsg"
by (unfold_locales) simp
then interpret opq: openproc_parq ptoy optoy Fun.id qmsg .
have im: "\<And>\<sigma>. openproc.initmissing (\<lambda>i. ptoy i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (Fun.id p), snd (Fun.id p), q)) \<sigma>
= initmissing \<sigma>"
unfolding opq.initmissing_def opq.someinit_def initmissing_def
unfolding \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def by (clarsimp cong: option.case_cong)
thus "openproc.initmissing (\<lambda>i. ptoy i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (Fun.id p), snd (Fun.id p), q)) = initmissing"
by (rule ext)
have "\<And>P \<sigma>. openproc.netglobal (\<lambda>i. ptoy i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (Fun.id p), snd (Fun.id p), q)) P \<sigma>
= netglobal P \<sigma>"
unfolding opq.netglobal_def netglobal_def opq.initmissing_def initmissing_def opq.someinit_def
unfolding \<sigma>\<^sub>T\<^sub>O\<^sub>Y_def \<sigma>\<^sub>Q\<^sub>M\<^sub>S\<^sub>G_def
by (clarsimp cong: option.case_cong
simp del: One_nat_def
simp add: fst_initmissing_netgmap_default_toy_init_netlift
[symmetric, unfolded initmissing_def])
thus "openproc.netglobal (\<lambda>i. ptoy i \<langle>\<langle> qmsg) (\<lambda>(p, q). (fst (Fun.id p), snd (Fun.id p), q)) = netglobal"
by auto
qed
subsection "Final result"
lemma bigger_than_next:
assumes "wf_net_tree n"
shows "closed (pnet (\<lambda>i. ptoy i \<langle>\<langle> qmsg) n) \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i. no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
(is "_ \<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i. ?inv \<sigma> i)")
proof -
from \<open>wf_net_tree n\<close>
have proto: "closed (pnet (\<lambda>i. ptoy i \<langle>\<langle> qmsg) n)
\<TTurnstile> netglobal (\<lambda>\<sigma>. \<forall>i\<in>net_tree_ips n. no (\<sigma> i) \<le> no (\<sigma> (nhid (\<sigma> i))))"
by (rule toy_openproc_par_qmsg.close_opnet [OF _ ocnet_bigger_than_next])
show ?thesis
unfolding invariant_def opnet_sos.opnet_tau1
proof (rule, simp only: toy_openproc_par_qmsg.netglobalsimp
fst_initmissing_netgmap_pair_fst, rule allI)
fix \<sigma> i
assume sr: "\<sigma> \<in> reachable (closed (pnet (\<lambda>i. ptoy i \<langle>\<langle> qmsg) n)) TT"
hence "\<forall>i\<in>net_tree_ips n. ?inv (fst (initmissing (netgmap fst \<sigma>))) i"
by - (drule invariantD [OF proto],
simp only: toy_openproc_par_qmsg.netglobalsimp
fst_initmissing_netgmap_pair_fst)
thus "?inv (fst (initmissing (netgmap fst \<sigma>))) i"
proof (cases "i\<in>net_tree_ips n")
assume "i\<notin>net_tree_ips n"
from sr have "\<sigma> \<in> reachable (pnet (\<lambda>i. ptoy i \<langle>\<langle> qmsg) n) TT" ..
hence "net_ips \<sigma> = net_tree_ips n" ..
with \<open>i\<notin>net_tree_ips n\<close> have "i\<notin>net_ips \<sigma>" by simp
hence "(fst (initmissing (netgmap fst \<sigma>))) i = toy_init i"
by simp
thus ?thesis by simp
qed metis
qed
qed
end
|