Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,837 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
section \<open>CCW Vector Space\<close>
theory Counterclockwise_Vector
imports Counterclockwise
begin

locale ccw_vector_space = ccw_system12 ccw S for ccw::"'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" and S +
  assumes translate_plus[simp]: "ccw (a + x) (b + x) (c + x) \<longleftrightarrow> ccw a b c"
  assumes scaleR1_eq[simp]: "0 < e \<Longrightarrow> ccw 0 (e*\<^sub>Ra) b = ccw 0 a b"
  assumes uminus1[simp]: "ccw 0 (-a) b = ccw 0 b a"
  assumes add1: "ccw 0 a b \<Longrightarrow> ccw 0 c b \<Longrightarrow> ccw 0 (a + c) b"
begin

lemma translate_plus'[simp]:
  "ccw (x + a) (x + b) (x + c) \<longleftrightarrow> ccw a b c"
  by (auto simp: ac_simps)

lemma uminus2[simp]: "ccw 0 a (- b) = ccw 0 b a"
  by (metis minus_minus uminus1)

lemma uminus_all[simp]: "ccw (-a) (-b) (-c) \<longleftrightarrow> ccw a b c"
proof -
  have "ccw (-a) (-b) (-c) \<longleftrightarrow> ccw 0 (- (b - a)) (- (c - a))"
    using translate_plus[of "-a" a "-b" "-c"]
    by simp
  also have "\<dots> \<longleftrightarrow> ccw 0 (b - a) (c - a)"
    by (simp del: minus_diff_eq)
  also have "\<dots> \<longleftrightarrow> ccw a b c"
    using translate_plus[of a "-a" b c]
    by simp
  finally show ?thesis .
qed

lemma translate_origin: "NO_MATCH 0 p \<Longrightarrow> ccw p q r \<longleftrightarrow> ccw 0 (q - p) (r - p)"
  using translate_plus[of p "- p" q r]
  by simp

lemma translate[simp]: "ccw a (a + b) (a + c) \<longleftrightarrow> ccw 0 b c"
  by (simp add: translate_origin)

lemma translate_plus3: "ccw (a - x) (b - x) c \<longleftrightarrow> ccw a b (c + x)"
  using translate_plus[of a "-x" b "c + x"] by simp

lemma renormalize:
  "ccw 0 (a - b) (c - a) \<Longrightarrow> ccw b a c"
  by (metis diff_add_cancel diff_self cyclic minus_diff_eq translate_plus3 uminus1)

lemma cyclicI: "ccw p q r \<Longrightarrow> ccw q r p"
  by (metis cyclic)

lemma
  scaleR2_eq[simp]:
  "0 < e \<Longrightarrow> ccw 0 xr (e *\<^sub>R P) \<longleftrightarrow> ccw 0 xr P"
  using scaleR1_eq[of e "-P" xr]
  by simp

lemma scaleR1_nonzero_eq:
  "e \<noteq> 0 \<Longrightarrow> ccw 0 (e *\<^sub>R a) b = (if e > 0 then ccw 0 a b else ccw 0 b a)"
proof cases
  assume "e < 0"
  define e' where "e' = - e"
  hence "e = -e'" "e' > 0" using \<open>e < 0\<close> by simp_all
  thus ?thesis by simp
qed simp

lemma neg_scaleR[simp]: "x < 0 \<Longrightarrow> ccw 0 (x *\<^sub>R b) c \<longleftrightarrow> ccw 0 c b"
  using scaleR1_nonzero_eq by auto

lemma
  scaleR1:
  "0 < e \<Longrightarrow> ccw 0 xr P \<Longrightarrow> ccw 0 (e *\<^sub>R xr) P"
  by simp

lemma
  add3: "ccw 0 a b \<and> ccw 0 a c \<Longrightarrow> ccw 0 a (b + c)"
  using add1[of "-b" a "-c"] uminus1[of "b + c" a]
  by simp

lemma add3_self[simp]: "ccw 0 p (p + q) \<longleftrightarrow> ccw 0 p q"
  using translate[of "-p" p "p + q"]
  apply (simp add: cyclic)
  apply (metis cyclic uminus2)
  done

lemma add2_self[simp]: "ccw 0 (p + q) p \<longleftrightarrow> ccw 0 q p"
  using translate[of "-p" "p + q" p]
  apply simp
  apply (metis cyclic uminus1)
  done

lemma scale_add3[simp]: "ccw 0 a (x *\<^sub>R a + b) \<longleftrightarrow> ccw 0 a b"
proof -
  {
    assume "x = 0"
    hence ?thesis by simp
  } moreover {
    assume "x > 0"
    hence ?thesis using add3_self scaleR1_eq by blast
  } moreover {
    assume "x < 0"
    define x' where "x' = - x"
    hence "x = -x'" "x' > 0" using \<open>x < 0\<close> by simp_all
    hence "ccw 0 a (x *\<^sub>R a + b) = ccw 0 (x' *\<^sub>R a + - b) (x' *\<^sub>R a)"
      by (subst uminus1[symmetric]) simp
    also have "\<dots> = ccw 0 (- b) a"
      unfolding add2_self by (simp add: \<open>x' > 0\<close>)
    also have "\<dots> = ccw 0 a b"
      by simp
    finally have ?thesis .
  } ultimately show ?thesis by arith
qed

lemma scale_add3'[simp]: "ccw 0 a (b + x *\<^sub>R a) \<longleftrightarrow> ccw 0 a b"
  and scale_minus3[simp]: "ccw 0 a (x *\<^sub>R a - b) \<longleftrightarrow> ccw 0 b a"
  and scale_minus3'[simp]: "ccw 0 a (b - x *\<^sub>R a) \<longleftrightarrow> ccw 0 a b"
  using
    scale_add3[of a x b]
    scale_add3[of a "-x" b]
    scale_add3[of a x "-b"]
  by (simp_all add: ac_simps)

lemma sum:
  assumes fin: "finite X"
  assumes ne: "X\<noteq>{}"
  assumes ncoll: "(\<And>x. x \<in> X \<Longrightarrow> ccw 0 a (f x))"
  shows "ccw 0 a (sum f X)"
proof -
  from ne obtain x where "x \<in> X" "insert x X = X" by auto
  have "ccw 0 a (sum f (insert x X))"
    using fin ncoll
  proof (induction X)
    case empty thus ?case using \<open>x \<in> X\<close> ncoll
      by auto
  next
    case (insert y F)
    hence "ccw 0 a (sum f (insert y (insert x F)))"
      by (cases "y = x") (auto intro!: add3)
    thus ?case
      by (simp add: insert_commute)
  qed
  thus ?thesis using \<open>insert x X = X\<close> by simp
qed

lemma sum2:
  assumes fin: "finite X"
  assumes ne: "X\<noteq>{}"
  assumes ncoll: "(\<And>x. x \<in> X \<Longrightarrow> ccw 0 (f x) a)"
  shows "ccw 0 (sum f X) a"
  using sum[OF assms(1,2), of "-a" f] ncoll
  by simp

lemma translate_minus[simp]:
  "ccw (x - a) (x - b) (x - c) = ccw (-a) (-b) (-c)"
  using translate_plus[of "-a" x "-b" "-c"]
  by simp

end

locale ccw_convex = ccw_system ccw S for ccw and S::"'a::real_vector set" +
  fixes oriented
  assumes convex2:
    "u \<ge> 0 \<Longrightarrow> v \<ge> 0 \<Longrightarrow> u + v = 1 \<Longrightarrow> ccw a b c \<Longrightarrow> ccw a b d \<Longrightarrow> oriented a b \<Longrightarrow>
      ccw a b (u *\<^sub>R c + v *\<^sub>R d)"
begin

lemma convex_hull:
  assumes [intro, simp]: "finite C"
  assumes ccw: "\<And>c. c \<in> C \<Longrightarrow> ccw a b c"
  assumes ch: "x \<in> convex hull C"
  assumes oriented: "oriented a b"
  shows "ccw a b x"
proof -
  define D where "D = C"
  have D: "C \<subseteq> D" "\<And>c. c \<in> D \<Longrightarrow> ccw a b c" by (simp_all add: D_def ccw)
  show "ccw a b x"
    using \<open>finite C\<close> D ch
  proof (induct arbitrary: x)
    case empty thus ?case by simp
  next
    case (insert c C)
    hence "C \<subseteq> D" by simp
    {
      assume "C = {}"
      hence ?case
        using insert
        by simp
    } moreover {
      assume "C \<noteq> {}"
      from convex_hull_insert[OF this, of c] insert(6)
      obtain u v d where "u \<ge> 0" "v \<ge> 0" "d \<in> convex hull C" "u + v = 1"
        and x: "x = u *\<^sub>R c + v *\<^sub>R d"
        by blast
      have "ccw a b d"
        by (auto intro: insert.hyps(3)[OF \<open>C \<subseteq> D\<close>] insert.prems \<open>d \<in> convex hull C\<close>)
      from insert
      have "ccw a b c"
        by simp
      from convex2[OF \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> \<open>u + v = 1\<close> \<open>ccw a b c\<close> \<open>ccw a b d\<close> \<open>oriented a b\<close>]
      have ?case by (simp add: x)
    } ultimately show ?case by blast
  qed
qed

end

end