Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 20,032 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
theory Polygon
imports Counterclockwise_2D_Strict
begin

subsection \<open>Polygonal chains\<close>

definition "polychain xs = (\<forall>i. Suc i<length xs \<longrightarrow> snd (xs ! i) = (fst (xs ! Suc i)))"

lemma polychainI:
  assumes "\<And>i. Suc i < length xs \<Longrightarrow> snd (xs ! i) = fst (xs ! Suc i)"
  shows "polychain xs"
  by (auto intro!: assms simp: polychain_def)

lemma polychain_Nil[simp]: "polychain [] = True"
  and polychain_singleton[simp]: "polychain [x] = True"
  by (auto simp: polychain_def)

lemma polychain_Cons:
  "polychain (y # ys) = (if ys = [] then True else snd y = fst (ys ! 0) \<and> polychain ys)"
  by (auto simp: polychain_def nth_Cons split: nat.split)

lemma polychain_appendI:
  "polychain xs \<Longrightarrow> polychain ys \<Longrightarrow> (xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> snd (last xs) = fst (hd ys)) \<Longrightarrow>
    polychain (xs @ ys)"
  by (induct xs arbitrary: ys)
    (auto simp add: polychain_Cons nth_append hd_conv_nth split: if_split_asm)

fun pairself where "pairself f (x, y) = (f x, f y)"

lemma pairself_apply: "pairself f x = (f (fst x), f (snd x))"
  by (cases x, simp)

lemma polychain_map_pairself: "polychain xs \<Longrightarrow> polychain (map (pairself f) xs)"
  by (auto simp: polychain_def pairself_apply)

definition "convex_polychain xs \<longleftrightarrow>
  (polychain xs \<and>
  (\<forall>i. Suc i < length xs \<longrightarrow> det3 (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i)) > 0))"

lemma convex_polychain_Cons2[simp]:
  "convex_polychain (x#y#zs) \<longleftrightarrow>
    snd x = fst y \<and> det3 (fst x) (fst y) (snd y) > 0 \<and> convex_polychain (y#zs)"
  by (auto simp add: convex_polychain_def polychain_def nth_Cons split: nat.split)

lemma convex_polychain_ConsD:
  assumes "convex_polychain (x#xs)"
  shows "convex_polychain xs"
  using assms by (auto simp: convex_polychain_def polychain_def nth_Cons split: nat.split)

definition
  "convex_polygon xs \<longleftrightarrow> (convex_polychain xs \<and> (xs \<noteq> [] \<longrightarrow> fst (hd xs) = snd (last xs)))"

lemma convex_polychain_Nil[simp]: "convex_polychain [] = True"
  and convex_polychain_Cons[simp]: "convex_polychain [x] = True"
  by (auto simp: convex_polychain_def)

lemma convex_polygon_Cons2[simp]:
  "convex_polygon (x#y#zs) \<longleftrightarrow> fst x = snd (last (y#zs)) \<and> convex_polychain (x#y#zs)"
  by (auto simp: convex_polygon_def convex_polychain_def polychain_def nth_Cons)

lemma polychain_append_connected:
  "polychain (xs @ ys) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> fst (hd ys) = snd (last xs)"
  by (auto simp: convex_polychain_def nth_append not_less polychain_def last_conv_nth hd_conv_nth
    dest!: spec[where x = "length xs - 1"])

lemma convex_polychain_appendI:
  assumes cxs: "convex_polychain xs"
  assumes cys: "convex_polychain ys"
  assumes pxy: "polychain (xs @ ys)"
  assumes "xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> det3 (fst (last xs)) (snd (last xs)) (snd (hd ys)) > 0"
  shows "convex_polychain (xs @ ys)"
proof -
  {
    fix i
    assume "i < length xs" "length xs \<le> Suc i" "Suc i < length xs + length ys"
    hence "xs \<noteq> []" "ys \<noteq> []" "i = length xs - 1" by auto
  }
  thus ?thesis
    using assms
    by (auto simp: hd_conv_nth convex_polychain_def nth_append Suc_diff_le last_conv_nth )
qed

lemma convex_polychainI:
  assumes "polychain xs"
  assumes "\<And>i. Suc i < length xs \<Longrightarrow> det3 (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i)) > 0"
  shows "convex_polychain xs"
  by (auto intro!: assms simp: convex_polychain_def ccw'_def)

lemma convex_polygon_skip:
  assumes "convex_polygon (x # y # z # w # ws)"
  assumes "ccw'.sortedP (fst x) (map snd (butlast (x # y # z # w # ws)))"
  shows "convex_polygon ((fst x, snd y) # z # w # ws)"
  using assms by (auto elim!: ccw'.sortedP_Cons simp: ccw'_def[symmetric])


primrec polychain_of::"'a::ab_group_add \<Rightarrow> 'a list \<Rightarrow> ('a*'a) list" where
  "polychain_of xc [] = []"
| "polychain_of xc (xm#xs) = (xc, xc + xm)#polychain_of (xc + xm) xs"

lemma in_set_polychain_ofD: "ab \<in> set (polychain_of x xs) \<Longrightarrow> (snd ab - fst ab) \<in> set xs"
  by (induct xs arbitrary: x) auto

lemma fst_polychain_of_nth_0[simp]: "xs \<noteq> [] \<Longrightarrow> fst ((polychain_of p xs) ! 0) = p"
  by (cases xs) (auto simp: Let_def)

lemma fst_hd_polychain_of: "xs \<noteq> [] \<Longrightarrow> fst (hd (polychain_of x xs)) = x"
  by (cases xs) (auto simp: )

lemma length_polychain_of_eq[simp]:
  shows "length (polychain_of p qs) = length qs"
  by (induct qs arbitrary: p) simp_all

lemma
  polychain_of_subsequent_eq:
  assumes "Suc i < length qs"
  shows "snd (polychain_of p qs ! i) = fst (polychain_of p qs ! Suc i)"
  using assms
  by (induct qs arbitrary: p i) (auto simp add: nth_Cons split: nat.split)

lemma polychain_of_eq_empty_iff[simp]: "polychain_of p xs = [] \<longleftrightarrow> xs = []"
  by (cases xs) (auto simp: Let_def)

lemma in_set_polychain_of_imp_sum_list:
  assumes "z \<in> set (polychain_of Pc Ps)"
  obtains d where "z = (Pc + sum_list (take d Ps), Pc + sum_list (take (Suc d) Ps))"
  using assms
  apply atomize_elim
proof (induction Ps arbitrary: Pc z)
  case Nil thus ?case by simp
next
  case (Cons P Ps)
  hence "z = (Pc, Pc + P) \<or> z \<in> set (polychain_of (Pc + P) Ps)"
    by auto
  thus ?case
  proof
    assume "z \<in> set ((polychain_of (Pc + P) Ps))"
    from Cons.IH[OF this]
    obtain d
    where "z = (Pc + P + sum_list (take d Ps), Pc + P + sum_list (take (Suc d) Ps))"
      by auto
    thus ?case
      by (auto intro!: exI[where x="Suc d"])
  qed (auto intro!: exI[where x=0])
qed

lemma last_polychain_of: "length xs > 0 \<Longrightarrow> snd (last (polychain_of p xs)) = p + sum_list xs"
  by (induct xs arbitrary: p) simp_all

lemma polychain_of_singleton_iff: "polychain_of p xs = [a] \<longleftrightarrow> fst a = p \<and> xs = [(snd a - p)]"
  by (induct xs) auto

lemma polychain_of_add: "polychain_of (x + y) xs = map (((+) (y, y))) (polychain_of x xs)"
  by (induct xs arbitrary: x y) (auto simp: algebra_simps)

subsection \<open>Dirvec: Inverse of Polychain\<close>

primrec dirvec where "dirvec (x, y) = (y - x)"

lemma dirvec_minus: "dirvec x = snd x - fst x"
  by (cases x) simp

lemma dirvec_nth_polychain_of: "n < length xs \<Longrightarrow> dirvec ((polychain_of p xs) ! n ) = (xs ! n)"
  by (induct xs arbitrary: p n) (auto simp: nth_Cons split: nat.split)

lemma dirvec_hd_polychain_of: "xs \<noteq> [] \<Longrightarrow> dirvec (hd (polychain_of p xs)) = (hd xs)"
  by (simp add: hd_conv_nth dirvec_nth_polychain_of)

lemma dirvec_last_polychain_of: "xs \<noteq> [] \<Longrightarrow> dirvec (last (polychain_of p xs)) = (last xs)"
  by (simp add: last_conv_nth dirvec_nth_polychain_of)

lemma map_dirvec_polychain_of[simp]: "map dirvec (polychain_of x xs) = xs"
  by (induct xs arbitrary: x) simp_all


subsection \<open>Polychain of Sorted (@{term polychain_of}, @{term ccw'.sortedP})\<close>

lemma ccw'_sortedP_translateD:
  "linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs) \<Longrightarrow>
    linorder_list0.sortedP (ccw' (x0 - x)) (map g xs)"
proof (induct xs arbitrary: x0 x)
  case Nil thus ?case by (auto simp: linorder_list0.sortedP.Nil)
next
  case (Cons a xs x0 x)
  hence "\<forall>y\<in>set xs. ccw' (x0 - x) (g a) (g y)"
    by (auto elim!: linorder_list0.sortedP_Cons simp: ccw'.translate_origin algebra_simps)
  thus ?case
    using Cons.prems(1)
    by (auto elim!: linorder_list0.sortedP_Cons intro!: linorder_list0.sortedP.Cons simp: Cons.hyps)
qed

lemma ccw'_sortedP_translateI:
  "linorder_list0.sortedP (ccw' (x0 - x)) (map g xs) \<Longrightarrow>
    linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs)"
  using ccw'_sortedP_translateD[of "x0 - x" "-x" "(+) x o g" xs]
  by (simp add: o_def)

lemma ccw'_sortedP_translate_comp[simp]:
  "linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs) \<longleftrightarrow>
    linorder_list0.sortedP (ccw' (x0 - x)) (map g xs)"
  by (metis ccw'_sortedP_translateD ccw'_sortedP_translateI)

lemma snd_plus_commute: "snd \<circ> (+) (x0, x0) = (+) x0 o snd"
  by auto

lemma ccw'_sortedP_renormalize:
  "ccw'.sortedP a (map snd (polychain_of (x0 + x) xs)) \<longleftrightarrow>
   ccw'.sortedP (a - x0) (map snd (polychain_of x xs))"
  by (simp add: polychain_of_add add.commute snd_plus_commute)

lemma ccw'_sortedP_polychain_of01:
  shows "ccw'.sortedP 0 [u] \<Longrightarrow> ccw'.sortedP x0 (map snd (polychain_of x0 [u]))"
    and "ccw'.sortedP 0 [] \<Longrightarrow> ccw'.sortedP x0 (map snd (polychain_of x0 []))"
  by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons  simp: ac_simps)

lemma ccw'_sortedP_polychain_of2:
  assumes "ccw'.sortedP 0 [u, v]"
  shows "ccw'.sortedP x0 (map snd (polychain_of x0 [u, v]))"
  using assms
  by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
    elim!: linorder_list0.sortedP_Cons simp: ac_simps ccw'.translate_origin)

lemma ccw'_sortedP_polychain_of3:
  assumes "ccw'.sortedP 0 (u#v#w#xs)"
  shows "ccw'.sortedP x0 (map snd (polychain_of x0 (u#v#w#xs)))"
  using assms
proof (induct xs arbitrary: x0 u v w)
  case Nil
  then have *: "ccw' 0 u v" "ccw' 0 v w" "ccw' 0 u w"
    by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
      elim!: linorder_list0.sortedP_Cons simp: ac_simps)
  moreover have "ccw' 0 (u + v) (u + (v + w))"
    by (metis add.assoc ccw'.add1 ccw'.add3_self *(2-))
  ultimately show ?case
    by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
      elim!: linorder_list0.sortedP_Cons simp: ac_simps ccw'.translate_origin ccw'.add3)
next
  case (Cons y ys)
  have s1: "linorder_list0.sortedP (ccw' 0)  ((u + v)#w#y#ys)" using Cons.prems
    by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
      elim!: linorder_list0.sortedP_Cons simp: ccw'.add1)
  have s2: "linorder_list0.sortedP (ccw' 0)  (u#(v + w)#y#ys)" using Cons.prems
    by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
      elim!: linorder_list0.sortedP_Cons simp: ccw'.add3 ccw'.add1)
  have s3: "linorder_list0.sortedP (ccw' 0)  (u#v#(w + y)#ys)" using Cons.prems
    by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
      elim!: linorder_list0.sortedP_Cons simp: ccw'.add3 ccw'.add1)
  show ?case
    using Cons.hyps[OF s1, of x0] Cons.hyps[OF s2, of x0] Cons.hyps[OF s3, of x0] Cons.prems
    by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
      elim!: linorder_list0.sortedP_Cons simp: ac_simps)
qed

lemma ccw'_sortedP_polychain_of_snd:
  assumes "ccw'.sortedP 0 xs"
  shows "ccw'.sortedP x0 (map snd (polychain_of x0 xs))"
  using assms
  by (metis ccw'_sortedP_polychain_of01 ccw'_sortedP_polychain_of2 ccw'_sortedP_polychain_of3
    list.exhaust)

lemma ccw'_sortedP_implies_distinct:
  assumes "ccw'.sortedP x qs"
  shows "distinct qs"
  using assms
proof induct
  case Cons thus ?case by (meson ccw'_contra distinct.simps(2))
qed simp

lemma ccw'_sortedP_implies_nonaligned:
  assumes "ccw'.sortedP x qs"
  assumes "y \<in> set qs" "z \<in> set qs" "y \<noteq> z"
  shows "\<not> coll x y z"
  using assms
  by induct (force simp: ccw'_def det3_def' algebra_simps)+

lemma list_all_mp: "list_all P xs \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> P x \<Longrightarrow> Q x) \<Longrightarrow> list_all Q xs"
  by (auto simp: list_all_iff)

lemma
  ccw'_scale_origin:
  assumes "e \<in> UNIV \<rightarrow> {0<..<1}"
  assumes "x \<in> set (polychain_of Pc (P # QRRs))"
  assumes "ccw'.sortedP 0 (P # QRRs)"
  assumes "ccw' (fst x) (snd x) (P + (Pc + (\<Sum>P\<in>set QRRs. e P *\<^sub>R P)))"
  shows "ccw' (fst x) (snd x) (e P *\<^sub>R P + (Pc + (\<Sum>P\<in>set QRRs. e P *\<^sub>R P)))"
proof -
  from assms(2) have "fst x = Pc \<and> snd x = Pc + P \<or> x \<in> set (polychain_of (Pc + P) QRRs)" by auto
  thus ?thesis
  proof
    assume x: "x \<in> set (polychain_of (Pc + P) QRRs)"
    define q where "q = snd x - fst x"
    from Polygon.in_set_polychain_of_imp_sum_list[OF x]
    obtain d where d: "fst x = (Pc + P + sum_list (take d QRRs))" by (auto simp: prod_eq_iff)
    from in_set_polychain_ofD[OF x]
    have q_in: "q \<in> set QRRs" by (simp add: q_def)
    define R where "R = set QRRs - {q}"
    hence QRRs: "set QRRs = R \<union> {q}" "q \<notin> R" "finite R" using q_in by auto
    have "ccw' 0 q (-P)"
      using assms(3)
      by (auto simp: ccw'.sortedP_Cons_iff q_in)
    hence "ccw' 0 q ((1 - e P) *\<^sub>R (-P))"
      using assms(1) by (subst ccw'.scaleR2_eq) (auto simp: algebra_simps)
    moreover
    from assms(4) have "ccw' 0 q ((\<Sum>P\<in>set QRRs. e P *\<^sub>R P) - sum_list (take d QRRs))"
      by (auto simp: q_def ccw'.translate_origin d)
    ultimately
    have "ccw' 0 q ((1 - e P) *\<^sub>R (-P) + ((\<Sum>P\<in>set QRRs. e P *\<^sub>R P) - sum_list (take d QRRs)))"
      by (intro ccw'.add3) auto
    thus ?thesis
      by (auto simp: ccw'.translate_origin q_def algebra_simps d)
  qed (metis (no_types, lifting) add.left_commute assms(4) ccw'.add3_self ccw'.scale_add3
    ccw'.translate)
qed

lemma polychain_of_ccw_convex:
  assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}"
  assumes sorted: "linorder_list0.sortedP (ccw' 0) (P#Q#Ps)"
  shows "list_all
    (\<lambda>(xi, xj). ccw' xi xj (Pc + (\<Sum>P \<in> set (P#Q#Ps). e P *\<^sub>R P)))
    (polychain_of Pc (P#Q#Ps))"
  using assms(1) assms(2)
proof (induct Ps arbitrary: P Q Pc)
  case Nil
  have eq: "e P *\<^sub>R P + e Q *\<^sub>R Q - P = (1 - e P) *\<^sub>R (- P) + e Q *\<^sub>R Q"
    using \<open>e \<in> _\<close>
    by (auto simp add: algebra_simps)
  from Nil ccw'_sortedP_implies_distinct[OF Nil(2)]
  have "P \<noteq> Q" "e P < 1" "0 < e Q" "ccw' 0 P Q"
    by (auto elim!: linorder_list0.sortedP_Cons)
  thus ?case
    by (auto simp: ccw'_not_coll ccw'.translate_origin eq)
next
  case (Cons R Rs)
  hence "ccw' 0 P Q" "P \<noteq> Q" using ccw'_sortedP_implies_distinct[OF Cons(3)]
    by (auto elim!: linorder_list0.sortedP_Cons)
  have "list_all (\<lambda>(xi, xj). ccw' xi xj ((Pc + P) + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))
    (polychain_of (Pc + P) (Q # R # Rs))"
    using Cons(2-)
    by (intro Cons(1)) (auto elim: linorder_list0.sortedP_Cons)
  also have "polychain_of (Pc + P) (Q # R # Rs) = tl (polychain_of Pc (P # Q # R # Rs))"
    by simp
  finally have "list_all (\<lambda>(xi, xj). ccw' xi xj (Pc + P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))
    (tl (polychain_of Pc (P # Q # R # Rs)))" .
  moreover
  have "list_all
      (\<lambda>(xi, xj). ccw' xi xj (P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))
      (polychain_of P (Q # R # Rs))"
    using Cons(2-)
    by (intro Cons(1)) (auto elim: linorder_list0.sortedP_Cons)
  have "(\<lambda>(xi, xj). ccw' xi xj (Pc + P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))
    (hd (polychain_of Pc (P # Q # R # Rs)))"
    using ccw'_sortedP_implies_nonaligned[OF Cons(3), of P Q]
      ccw'_sortedP_implies_nonaligned[OF Cons(3), of Q R]
      ccw'_sortedP_implies_nonaligned[OF Cons(3), of P R]
      Cons(2,3)
    by (auto simp add: Pi_iff add.assoc simp del: scaleR_Pair intro!: ccw'.sum
        elim!: linorder_list0.sortedP_Cons)
  ultimately
  have "list_all
      (\<lambda>(xi, xj). ccw' xi xj (P + (Pc + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P))))
      (polychain_of Pc (P # Q # R # Rs))"
    by (simp add: ac_simps)
  hence "list_all
      (\<lambda>(xi, xj). ccw' xi xj (e P *\<^sub>R P + (Pc + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P))))
      (polychain_of Pc (P # Q # R # Rs))"
    unfolding split_beta'
    by (rule list_all_mp, intro ccw'_scale_origin[OF assms(1)])
      (auto intro!: ccw'_scale_origin Cons(3))
  thus ?case
    using ccw'_sortedP_implies_distinct[OF Cons(3)] Cons
    by (simp add: ac_simps)
qed

lemma polychain_of_ccw:
  assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}"
  assumes sorted: "ccw'.sortedP 0 qs"
  assumes qs: "length qs \<noteq> 1"
  shows "list_all (\<lambda>(xi, xj). ccw' xi xj (Pc + (\<Sum>P \<in> set qs. e P *\<^sub>R P))) (polychain_of Pc qs)"
  using assms
proof (cases qs)
  case (Cons Q Qs)
  note CQ = this
  show ?thesis using assms
  proof (cases Qs)
    case (Cons R Rs)
    thus ?thesis using assms
      unfolding CQ Cons
      by (intro polychain_of_ccw_convex) (auto simp: CQ Cons intro!: polychain_of_ccw_convex)
  qed (auto simp: CQ)
qed simp

lemma in_polychain_of_ccw:
  assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}"
  assumes "ccw'.sortedP 0 qs"
  assumes "length qs \<noteq> 1"
  assumes "seg \<in> set (polychain_of Pc qs)"
  shows "ccw' (fst seg) (snd seg) (Pc + (\<Sum>P \<in> set qs. e P *\<^sub>R P))"
  using polychain_of_ccw[OF assms(1,2,3)] assms(4)
  by (simp add: list_all_iff split_beta)

lemma distinct_butlast_ne_last: "distinct xs \<Longrightarrow> x \<in> set (butlast xs) \<Longrightarrow> x \<noteq> last xs"
  by (metis append_butlast_last_id distinct_butlast empty_iff in_set_butlastD list.set(1)
    not_distinct_conv_prefix)

lemma
  ccw'_sortedP_convex_rotate_aux:
  assumes "ccw'.sortedP 0 (zs)" "ccw'.sortedP x (map snd (polychain_of x (zs)))"
  shows "ccw'.sortedP (snd (last (polychain_of x (zs)))) (map snd (butlast (polychain_of x (zs))))"
  using assms
proof (induct zs arbitrary: x rule: list.induct)
  case (Cons z zs)
  {
    assume "zs \<noteq> []"
    have "ccw'.sortedP (snd (last (polychain_of (x + z) zs)))
      (map snd (butlast (polychain_of (x + z) zs)))"
      using Cons.prems
      by (auto elim!: ccw'.sortedP_Cons intro!: ccw'_sortedP_polychain_of_snd Cons.hyps)
    from _ this
    have "linorder_list0.sortedP (ccw' (snd (last (polychain_of (x + z) zs))))
       ((x + z) # map snd (butlast (polychain_of (x + z) zs)))"
    proof (rule ccw'.sortedP.Cons, safe)
      fix c d
      assume cd: "(c, d) \<in> set (map snd (butlast (polychain_of (x + z) zs)))"
      then obtain a b where ab: "((a, b), c, d) \<in> set (butlast (polychain_of (x + z) zs))"
        by auto
      have cd': "(c, d) \<in> set (butlast (map snd (polychain_of (x + z) zs)))" using cd
        by (auto simp: map_butlast)
      have "ccw' (x + z) (c, d) (last (map snd (polychain_of (x + z) zs)))"
      proof (rule ccw'.sortedP_right_of_last)
        show "ccw'.sortedP (x + z) (map snd (polychain_of (x + z) zs))"
           using Cons
           by (force intro!: ccw'.sortedP.Cons ccw'.sortedP.Nil ccw'_sortedP_polychain_of_snd
             elim!: ccw'.sortedP_Cons)
        show "(c, d) \<in> set (map snd (polychain_of (x + z) zs))"
          using in_set_butlastD[OF ab]
          by force
        from Cons(3) cd'
        show "(c, d) \<noteq> last (map snd (polychain_of (x + z) zs))"
          by (intro distinct_butlast_ne_last ccw'_sortedP_implies_distinct[where x=x])
            (auto elim!: ccw'.sortedP_Cons)
      qed
      thus "ccw' (snd (last (polychain_of (x + z) zs))) (x + z) (c, d)"
         by (auto simp: last_map[symmetric, where f= snd] \<open>zs \<noteq> []\<close> intro: ccw'.cyclicI)
    qed
  }
  thus ?case
    by (auto simp: ccw'.sortedP.Nil)
qed (simp add: ccw'.sortedP.Nil)

lemma ccw'_polychain_of_sorted_center_last:
  assumes set_butlast: "(c, d) \<in> set (butlast (polychain_of x0 xs))"
  assumes sorted: "ccw'.sortedP 0 xs"
  assumes ne: "xs \<noteq> []"
  shows "ccw' x0 d (snd (last (polychain_of x0 xs)))"
proof -
  from ccw'_sortedP_polychain_of_snd[OF sorted, of x0]
  have "ccw'.sortedP x0 (map snd (polychain_of x0 xs))" .
  also
  from set_butlast obtain ys zs where "butlast (polychain_of x0 xs) = ys@((c, d)#zs)"
    by (auto simp add: in_set_conv_decomp)
  hence "polychain_of x0 xs = ys @ (c, d) # zs @ [last (polychain_of x0 xs)]"
    by (metis append_Cons append_assoc append_butlast_last_id ne polychain_of_eq_empty_iff)
  finally show ?thesis by (auto elim!: ccw'.sortedP_Cons simp: ccw'.sortedP_append_iff)
qed

end