Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 20,032 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
theory Polygon
imports Counterclockwise_2D_Strict
begin
subsection \<open>Polygonal chains\<close>
definition "polychain xs = (\<forall>i. Suc i<length xs \<longrightarrow> snd (xs ! i) = (fst (xs ! Suc i)))"
lemma polychainI:
assumes "\<And>i. Suc i < length xs \<Longrightarrow> snd (xs ! i) = fst (xs ! Suc i)"
shows "polychain xs"
by (auto intro!: assms simp: polychain_def)
lemma polychain_Nil[simp]: "polychain [] = True"
and polychain_singleton[simp]: "polychain [x] = True"
by (auto simp: polychain_def)
lemma polychain_Cons:
"polychain (y # ys) = (if ys = [] then True else snd y = fst (ys ! 0) \<and> polychain ys)"
by (auto simp: polychain_def nth_Cons split: nat.split)
lemma polychain_appendI:
"polychain xs \<Longrightarrow> polychain ys \<Longrightarrow> (xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> snd (last xs) = fst (hd ys)) \<Longrightarrow>
polychain (xs @ ys)"
by (induct xs arbitrary: ys)
(auto simp add: polychain_Cons nth_append hd_conv_nth split: if_split_asm)
fun pairself where "pairself f (x, y) = (f x, f y)"
lemma pairself_apply: "pairself f x = (f (fst x), f (snd x))"
by (cases x, simp)
lemma polychain_map_pairself: "polychain xs \<Longrightarrow> polychain (map (pairself f) xs)"
by (auto simp: polychain_def pairself_apply)
definition "convex_polychain xs \<longleftrightarrow>
(polychain xs \<and>
(\<forall>i. Suc i < length xs \<longrightarrow> det3 (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i)) > 0))"
lemma convex_polychain_Cons2[simp]:
"convex_polychain (x#y#zs) \<longleftrightarrow>
snd x = fst y \<and> det3 (fst x) (fst y) (snd y) > 0 \<and> convex_polychain (y#zs)"
by (auto simp add: convex_polychain_def polychain_def nth_Cons split: nat.split)
lemma convex_polychain_ConsD:
assumes "convex_polychain (x#xs)"
shows "convex_polychain xs"
using assms by (auto simp: convex_polychain_def polychain_def nth_Cons split: nat.split)
definition
"convex_polygon xs \<longleftrightarrow> (convex_polychain xs \<and> (xs \<noteq> [] \<longrightarrow> fst (hd xs) = snd (last xs)))"
lemma convex_polychain_Nil[simp]: "convex_polychain [] = True"
and convex_polychain_Cons[simp]: "convex_polychain [x] = True"
by (auto simp: convex_polychain_def)
lemma convex_polygon_Cons2[simp]:
"convex_polygon (x#y#zs) \<longleftrightarrow> fst x = snd (last (y#zs)) \<and> convex_polychain (x#y#zs)"
by (auto simp: convex_polygon_def convex_polychain_def polychain_def nth_Cons)
lemma polychain_append_connected:
"polychain (xs @ ys) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> fst (hd ys) = snd (last xs)"
by (auto simp: convex_polychain_def nth_append not_less polychain_def last_conv_nth hd_conv_nth
dest!: spec[where x = "length xs - 1"])
lemma convex_polychain_appendI:
assumes cxs: "convex_polychain xs"
assumes cys: "convex_polychain ys"
assumes pxy: "polychain (xs @ ys)"
assumes "xs \<noteq> [] \<Longrightarrow> ys \<noteq> [] \<Longrightarrow> det3 (fst (last xs)) (snd (last xs)) (snd (hd ys)) > 0"
shows "convex_polychain (xs @ ys)"
proof -
{
fix i
assume "i < length xs" "length xs \<le> Suc i" "Suc i < length xs + length ys"
hence "xs \<noteq> []" "ys \<noteq> []" "i = length xs - 1" by auto
}
thus ?thesis
using assms
by (auto simp: hd_conv_nth convex_polychain_def nth_append Suc_diff_le last_conv_nth )
qed
lemma convex_polychainI:
assumes "polychain xs"
assumes "\<And>i. Suc i < length xs \<Longrightarrow> det3 (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i)) > 0"
shows "convex_polychain xs"
by (auto intro!: assms simp: convex_polychain_def ccw'_def)
lemma convex_polygon_skip:
assumes "convex_polygon (x # y # z # w # ws)"
assumes "ccw'.sortedP (fst x) (map snd (butlast (x # y # z # w # ws)))"
shows "convex_polygon ((fst x, snd y) # z # w # ws)"
using assms by (auto elim!: ccw'.sortedP_Cons simp: ccw'_def[symmetric])
primrec polychain_of::"'a::ab_group_add \<Rightarrow> 'a list \<Rightarrow> ('a*'a) list" where
"polychain_of xc [] = []"
| "polychain_of xc (xm#xs) = (xc, xc + xm)#polychain_of (xc + xm) xs"
lemma in_set_polychain_ofD: "ab \<in> set (polychain_of x xs) \<Longrightarrow> (snd ab - fst ab) \<in> set xs"
by (induct xs arbitrary: x) auto
lemma fst_polychain_of_nth_0[simp]: "xs \<noteq> [] \<Longrightarrow> fst ((polychain_of p xs) ! 0) = p"
by (cases xs) (auto simp: Let_def)
lemma fst_hd_polychain_of: "xs \<noteq> [] \<Longrightarrow> fst (hd (polychain_of x xs)) = x"
by (cases xs) (auto simp: )
lemma length_polychain_of_eq[simp]:
shows "length (polychain_of p qs) = length qs"
by (induct qs arbitrary: p) simp_all
lemma
polychain_of_subsequent_eq:
assumes "Suc i < length qs"
shows "snd (polychain_of p qs ! i) = fst (polychain_of p qs ! Suc i)"
using assms
by (induct qs arbitrary: p i) (auto simp add: nth_Cons split: nat.split)
lemma polychain_of_eq_empty_iff[simp]: "polychain_of p xs = [] \<longleftrightarrow> xs = []"
by (cases xs) (auto simp: Let_def)
lemma in_set_polychain_of_imp_sum_list:
assumes "z \<in> set (polychain_of Pc Ps)"
obtains d where "z = (Pc + sum_list (take d Ps), Pc + sum_list (take (Suc d) Ps))"
using assms
apply atomize_elim
proof (induction Ps arbitrary: Pc z)
case Nil thus ?case by simp
next
case (Cons P Ps)
hence "z = (Pc, Pc + P) \<or> z \<in> set (polychain_of (Pc + P) Ps)"
by auto
thus ?case
proof
assume "z \<in> set ((polychain_of (Pc + P) Ps))"
from Cons.IH[OF this]
obtain d
where "z = (Pc + P + sum_list (take d Ps), Pc + P + sum_list (take (Suc d) Ps))"
by auto
thus ?case
by (auto intro!: exI[where x="Suc d"])
qed (auto intro!: exI[where x=0])
qed
lemma last_polychain_of: "length xs > 0 \<Longrightarrow> snd (last (polychain_of p xs)) = p + sum_list xs"
by (induct xs arbitrary: p) simp_all
lemma polychain_of_singleton_iff: "polychain_of p xs = [a] \<longleftrightarrow> fst a = p \<and> xs = [(snd a - p)]"
by (induct xs) auto
lemma polychain_of_add: "polychain_of (x + y) xs = map (((+) (y, y))) (polychain_of x xs)"
by (induct xs arbitrary: x y) (auto simp: algebra_simps)
subsection \<open>Dirvec: Inverse of Polychain\<close>
primrec dirvec where "dirvec (x, y) = (y - x)"
lemma dirvec_minus: "dirvec x = snd x - fst x"
by (cases x) simp
lemma dirvec_nth_polychain_of: "n < length xs \<Longrightarrow> dirvec ((polychain_of p xs) ! n ) = (xs ! n)"
by (induct xs arbitrary: p n) (auto simp: nth_Cons split: nat.split)
lemma dirvec_hd_polychain_of: "xs \<noteq> [] \<Longrightarrow> dirvec (hd (polychain_of p xs)) = (hd xs)"
by (simp add: hd_conv_nth dirvec_nth_polychain_of)
lemma dirvec_last_polychain_of: "xs \<noteq> [] \<Longrightarrow> dirvec (last (polychain_of p xs)) = (last xs)"
by (simp add: last_conv_nth dirvec_nth_polychain_of)
lemma map_dirvec_polychain_of[simp]: "map dirvec (polychain_of x xs) = xs"
by (induct xs arbitrary: x) simp_all
subsection \<open>Polychain of Sorted (@{term polychain_of}, @{term ccw'.sortedP})\<close>
lemma ccw'_sortedP_translateD:
"linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs) \<Longrightarrow>
linorder_list0.sortedP (ccw' (x0 - x)) (map g xs)"
proof (induct xs arbitrary: x0 x)
case Nil thus ?case by (auto simp: linorder_list0.sortedP.Nil)
next
case (Cons a xs x0 x)
hence "\<forall>y\<in>set xs. ccw' (x0 - x) (g a) (g y)"
by (auto elim!: linorder_list0.sortedP_Cons simp: ccw'.translate_origin algebra_simps)
thus ?case
using Cons.prems(1)
by (auto elim!: linorder_list0.sortedP_Cons intro!: linorder_list0.sortedP.Cons simp: Cons.hyps)
qed
lemma ccw'_sortedP_translateI:
"linorder_list0.sortedP (ccw' (x0 - x)) (map g xs) \<Longrightarrow>
linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs)"
using ccw'_sortedP_translateD[of "x0 - x" "-x" "(+) x o g" xs]
by (simp add: o_def)
lemma ccw'_sortedP_translate_comp[simp]:
"linorder_list0.sortedP (ccw' x0) (map ((+) x \<circ> g) xs) \<longleftrightarrow>
linorder_list0.sortedP (ccw' (x0 - x)) (map g xs)"
by (metis ccw'_sortedP_translateD ccw'_sortedP_translateI)
lemma snd_plus_commute: "snd \<circ> (+) (x0, x0) = (+) x0 o snd"
by auto
lemma ccw'_sortedP_renormalize:
"ccw'.sortedP a (map snd (polychain_of (x0 + x) xs)) \<longleftrightarrow>
ccw'.sortedP (a - x0) (map snd (polychain_of x xs))"
by (simp add: polychain_of_add add.commute snd_plus_commute)
lemma ccw'_sortedP_polychain_of01:
shows "ccw'.sortedP 0 [u] \<Longrightarrow> ccw'.sortedP x0 (map snd (polychain_of x0 [u]))"
and "ccw'.sortedP 0 [] \<Longrightarrow> ccw'.sortedP x0 (map snd (polychain_of x0 []))"
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons simp: ac_simps)
lemma ccw'_sortedP_polychain_of2:
assumes "ccw'.sortedP 0 [u, v]"
shows "ccw'.sortedP x0 (map snd (polychain_of x0 [u, v]))"
using assms
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
elim!: linorder_list0.sortedP_Cons simp: ac_simps ccw'.translate_origin)
lemma ccw'_sortedP_polychain_of3:
assumes "ccw'.sortedP 0 (u#v#w#xs)"
shows "ccw'.sortedP x0 (map snd (polychain_of x0 (u#v#w#xs)))"
using assms
proof (induct xs arbitrary: x0 u v w)
case Nil
then have *: "ccw' 0 u v" "ccw' 0 v w" "ccw' 0 u w"
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
elim!: linorder_list0.sortedP_Cons simp: ac_simps)
moreover have "ccw' 0 (u + v) (u + (v + w))"
by (metis add.assoc ccw'.add1 ccw'.add3_self *(2-))
ultimately show ?case
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
elim!: linorder_list0.sortedP_Cons simp: ac_simps ccw'.translate_origin ccw'.add3)
next
case (Cons y ys)
have s1: "linorder_list0.sortedP (ccw' 0) ((u + v)#w#y#ys)" using Cons.prems
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
elim!: linorder_list0.sortedP_Cons simp: ccw'.add1)
have s2: "linorder_list0.sortedP (ccw' 0) (u#(v + w)#y#ys)" using Cons.prems
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
elim!: linorder_list0.sortedP_Cons simp: ccw'.add3 ccw'.add1)
have s3: "linorder_list0.sortedP (ccw' 0) (u#v#(w + y)#ys)" using Cons.prems
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
elim!: linorder_list0.sortedP_Cons simp: ccw'.add3 ccw'.add1)
show ?case
using Cons.hyps[OF s1, of x0] Cons.hyps[OF s2, of x0] Cons.hyps[OF s3, of x0] Cons.prems
by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons
elim!: linorder_list0.sortedP_Cons simp: ac_simps)
qed
lemma ccw'_sortedP_polychain_of_snd:
assumes "ccw'.sortedP 0 xs"
shows "ccw'.sortedP x0 (map snd (polychain_of x0 xs))"
using assms
by (metis ccw'_sortedP_polychain_of01 ccw'_sortedP_polychain_of2 ccw'_sortedP_polychain_of3
list.exhaust)
lemma ccw'_sortedP_implies_distinct:
assumes "ccw'.sortedP x qs"
shows "distinct qs"
using assms
proof induct
case Cons thus ?case by (meson ccw'_contra distinct.simps(2))
qed simp
lemma ccw'_sortedP_implies_nonaligned:
assumes "ccw'.sortedP x qs"
assumes "y \<in> set qs" "z \<in> set qs" "y \<noteq> z"
shows "\<not> coll x y z"
using assms
by induct (force simp: ccw'_def det3_def' algebra_simps)+
lemma list_all_mp: "list_all P xs \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> P x \<Longrightarrow> Q x) \<Longrightarrow> list_all Q xs"
by (auto simp: list_all_iff)
lemma
ccw'_scale_origin:
assumes "e \<in> UNIV \<rightarrow> {0<..<1}"
assumes "x \<in> set (polychain_of Pc (P # QRRs))"
assumes "ccw'.sortedP 0 (P # QRRs)"
assumes "ccw' (fst x) (snd x) (P + (Pc + (\<Sum>P\<in>set QRRs. e P *\<^sub>R P)))"
shows "ccw' (fst x) (snd x) (e P *\<^sub>R P + (Pc + (\<Sum>P\<in>set QRRs. e P *\<^sub>R P)))"
proof -
from assms(2) have "fst x = Pc \<and> snd x = Pc + P \<or> x \<in> set (polychain_of (Pc + P) QRRs)" by auto
thus ?thesis
proof
assume x: "x \<in> set (polychain_of (Pc + P) QRRs)"
define q where "q = snd x - fst x"
from Polygon.in_set_polychain_of_imp_sum_list[OF x]
obtain d where d: "fst x = (Pc + P + sum_list (take d QRRs))" by (auto simp: prod_eq_iff)
from in_set_polychain_ofD[OF x]
have q_in: "q \<in> set QRRs" by (simp add: q_def)
define R where "R = set QRRs - {q}"
hence QRRs: "set QRRs = R \<union> {q}" "q \<notin> R" "finite R" using q_in by auto
have "ccw' 0 q (-P)"
using assms(3)
by (auto simp: ccw'.sortedP_Cons_iff q_in)
hence "ccw' 0 q ((1 - e P) *\<^sub>R (-P))"
using assms(1) by (subst ccw'.scaleR2_eq) (auto simp: algebra_simps)
moreover
from assms(4) have "ccw' 0 q ((\<Sum>P\<in>set QRRs. e P *\<^sub>R P) - sum_list (take d QRRs))"
by (auto simp: q_def ccw'.translate_origin d)
ultimately
have "ccw' 0 q ((1 - e P) *\<^sub>R (-P) + ((\<Sum>P\<in>set QRRs. e P *\<^sub>R P) - sum_list (take d QRRs)))"
by (intro ccw'.add3) auto
thus ?thesis
by (auto simp: ccw'.translate_origin q_def algebra_simps d)
qed (metis (no_types, lifting) add.left_commute assms(4) ccw'.add3_self ccw'.scale_add3
ccw'.translate)
qed
lemma polychain_of_ccw_convex:
assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}"
assumes sorted: "linorder_list0.sortedP (ccw' 0) (P#Q#Ps)"
shows "list_all
(\<lambda>(xi, xj). ccw' xi xj (Pc + (\<Sum>P \<in> set (P#Q#Ps). e P *\<^sub>R P)))
(polychain_of Pc (P#Q#Ps))"
using assms(1) assms(2)
proof (induct Ps arbitrary: P Q Pc)
case Nil
have eq: "e P *\<^sub>R P + e Q *\<^sub>R Q - P = (1 - e P) *\<^sub>R (- P) + e Q *\<^sub>R Q"
using \<open>e \<in> _\<close>
by (auto simp add: algebra_simps)
from Nil ccw'_sortedP_implies_distinct[OF Nil(2)]
have "P \<noteq> Q" "e P < 1" "0 < e Q" "ccw' 0 P Q"
by (auto elim!: linorder_list0.sortedP_Cons)
thus ?case
by (auto simp: ccw'_not_coll ccw'.translate_origin eq)
next
case (Cons R Rs)
hence "ccw' 0 P Q" "P \<noteq> Q" using ccw'_sortedP_implies_distinct[OF Cons(3)]
by (auto elim!: linorder_list0.sortedP_Cons)
have "list_all (\<lambda>(xi, xj). ccw' xi xj ((Pc + P) + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))
(polychain_of (Pc + P) (Q # R # Rs))"
using Cons(2-)
by (intro Cons(1)) (auto elim: linorder_list0.sortedP_Cons)
also have "polychain_of (Pc + P) (Q # R # Rs) = tl (polychain_of Pc (P # Q # R # Rs))"
by simp
finally have "list_all (\<lambda>(xi, xj). ccw' xi xj (Pc + P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))
(tl (polychain_of Pc (P # Q # R # Rs)))" .
moreover
have "list_all
(\<lambda>(xi, xj). ccw' xi xj (P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))
(polychain_of P (Q # R # Rs))"
using Cons(2-)
by (intro Cons(1)) (auto elim: linorder_list0.sortedP_Cons)
have "(\<lambda>(xi, xj). ccw' xi xj (Pc + P + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P)))
(hd (polychain_of Pc (P # Q # R # Rs)))"
using ccw'_sortedP_implies_nonaligned[OF Cons(3), of P Q]
ccw'_sortedP_implies_nonaligned[OF Cons(3), of Q R]
ccw'_sortedP_implies_nonaligned[OF Cons(3), of P R]
Cons(2,3)
by (auto simp add: Pi_iff add.assoc simp del: scaleR_Pair intro!: ccw'.sum
elim!: linorder_list0.sortedP_Cons)
ultimately
have "list_all
(\<lambda>(xi, xj). ccw' xi xj (P + (Pc + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P))))
(polychain_of Pc (P # Q # R # Rs))"
by (simp add: ac_simps)
hence "list_all
(\<lambda>(xi, xj). ccw' xi xj (e P *\<^sub>R P + (Pc + (\<Sum>P\<in>set (Q # R # Rs). e P *\<^sub>R P))))
(polychain_of Pc (P # Q # R # Rs))"
unfolding split_beta'
by (rule list_all_mp, intro ccw'_scale_origin[OF assms(1)])
(auto intro!: ccw'_scale_origin Cons(3))
thus ?case
using ccw'_sortedP_implies_distinct[OF Cons(3)] Cons
by (simp add: ac_simps)
qed
lemma polychain_of_ccw:
assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}"
assumes sorted: "ccw'.sortedP 0 qs"
assumes qs: "length qs \<noteq> 1"
shows "list_all (\<lambda>(xi, xj). ccw' xi xj (Pc + (\<Sum>P \<in> set qs. e P *\<^sub>R P))) (polychain_of Pc qs)"
using assms
proof (cases qs)
case (Cons Q Qs)
note CQ = this
show ?thesis using assms
proof (cases Qs)
case (Cons R Rs)
thus ?thesis using assms
unfolding CQ Cons
by (intro polychain_of_ccw_convex) (auto simp: CQ Cons intro!: polychain_of_ccw_convex)
qed (auto simp: CQ)
qed simp
lemma in_polychain_of_ccw:
assumes "e \<in> UNIV \<rightarrow> {0 <..< 1}"
assumes "ccw'.sortedP 0 qs"
assumes "length qs \<noteq> 1"
assumes "seg \<in> set (polychain_of Pc qs)"
shows "ccw' (fst seg) (snd seg) (Pc + (\<Sum>P \<in> set qs. e P *\<^sub>R P))"
using polychain_of_ccw[OF assms(1,2,3)] assms(4)
by (simp add: list_all_iff split_beta)
lemma distinct_butlast_ne_last: "distinct xs \<Longrightarrow> x \<in> set (butlast xs) \<Longrightarrow> x \<noteq> last xs"
by (metis append_butlast_last_id distinct_butlast empty_iff in_set_butlastD list.set(1)
not_distinct_conv_prefix)
lemma
ccw'_sortedP_convex_rotate_aux:
assumes "ccw'.sortedP 0 (zs)" "ccw'.sortedP x (map snd (polychain_of x (zs)))"
shows "ccw'.sortedP (snd (last (polychain_of x (zs)))) (map snd (butlast (polychain_of x (zs))))"
using assms
proof (induct zs arbitrary: x rule: list.induct)
case (Cons z zs)
{
assume "zs \<noteq> []"
have "ccw'.sortedP (snd (last (polychain_of (x + z) zs)))
(map snd (butlast (polychain_of (x + z) zs)))"
using Cons.prems
by (auto elim!: ccw'.sortedP_Cons intro!: ccw'_sortedP_polychain_of_snd Cons.hyps)
from _ this
have "linorder_list0.sortedP (ccw' (snd (last (polychain_of (x + z) zs))))
((x + z) # map snd (butlast (polychain_of (x + z) zs)))"
proof (rule ccw'.sortedP.Cons, safe)
fix c d
assume cd: "(c, d) \<in> set (map snd (butlast (polychain_of (x + z) zs)))"
then obtain a b where ab: "((a, b), c, d) \<in> set (butlast (polychain_of (x + z) zs))"
by auto
have cd': "(c, d) \<in> set (butlast (map snd (polychain_of (x + z) zs)))" using cd
by (auto simp: map_butlast)
have "ccw' (x + z) (c, d) (last (map snd (polychain_of (x + z) zs)))"
proof (rule ccw'.sortedP_right_of_last)
show "ccw'.sortedP (x + z) (map snd (polychain_of (x + z) zs))"
using Cons
by (force intro!: ccw'.sortedP.Cons ccw'.sortedP.Nil ccw'_sortedP_polychain_of_snd
elim!: ccw'.sortedP_Cons)
show "(c, d) \<in> set (map snd (polychain_of (x + z) zs))"
using in_set_butlastD[OF ab]
by force
from Cons(3) cd'
show "(c, d) \<noteq> last (map snd (polychain_of (x + z) zs))"
by (intro distinct_butlast_ne_last ccw'_sortedP_implies_distinct[where x=x])
(auto elim!: ccw'.sortedP_Cons)
qed
thus "ccw' (snd (last (polychain_of (x + z) zs))) (x + z) (c, d)"
by (auto simp: last_map[symmetric, where f= snd] \<open>zs \<noteq> []\<close> intro: ccw'.cyclicI)
qed
}
thus ?case
by (auto simp: ccw'.sortedP.Nil)
qed (simp add: ccw'.sortedP.Nil)
lemma ccw'_polychain_of_sorted_center_last:
assumes set_butlast: "(c, d) \<in> set (butlast (polychain_of x0 xs))"
assumes sorted: "ccw'.sortedP 0 xs"
assumes ne: "xs \<noteq> []"
shows "ccw' x0 d (snd (last (polychain_of x0 xs)))"
proof -
from ccw'_sortedP_polychain_of_snd[OF sorted, of x0]
have "ccw'.sortedP x0 (map snd (polychain_of x0 xs))" .
also
from set_butlast obtain ys zs where "butlast (polychain_of x0 xs) = ys@((c, d)#zs)"
by (auto simp add: in_set_conv_decomp)
hence "polychain_of x0 xs = ys @ (c, d) # zs @ [last (polychain_of x0 xs)]"
by (metis append_Cons append_assoc append_butlast_last_id ne polychain_of_eq_empty_iff)
finally show ?thesis by (auto elim!: ccw'.sortedP_Cons simp: ccw'.sortedP_append_iff)
qed
end
|