Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,715 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
section \<open>Target Language debug messages\<close>
theory Print
imports
"HOL-Decision_Procs.Approximation"
Affine_Code
Show.Show_Instances
"HOL-Library.Monad_Syntax"
Optimize_Float
begin
hide_const (open) floatarith.Max
subsection \<open>Printing\<close>
text \<open>Just for debugging purposes\<close>
definition print::"String.literal \<Rightarrow> unit" where "print x = ()"
context includes integer.lifting begin
end
code_printing constant print \<rightharpoonup> (SML) "TextIO.print"
subsection \<open>Write to File\<close>
definition file_output::"String.literal \<Rightarrow> ((String.literal \<Rightarrow> unit) \<Rightarrow> 'a) \<Rightarrow> 'a" where
"file_output _ f = f (\<lambda>_. ())"
code_printing constant file_output \<rightharpoonup> (SML) "(fn s => fn f => File.open'_output (fn os => f (File.output os)) (Path.explode s))"
subsection \<open>Show for Floats\<close>
definition showsp_float :: "float showsp"
where
"showsp_float p x = (
let m = mantissa x; e = exponent x in
if e = 0 then showsp_int p m else showsp_int p m o shows_string ''*2^'' o showsp_int p e)"
lemma show_law_float [show_law_intros]:
"show_law showsp_float r"
by (auto simp: showsp_float_def Let_def show_law_simps intro!: show_lawI)
lemma showsp_float_append [show_law_simps]:
"showsp_float p r (x @ y) = showsp_float p r x @ y"
by (intro show_lawD show_law_intros)
local_setup \<open>Show_Generator.register_foreign_showsp @{typ float} @{term "showsp_float"} @{thm show_law_float}\<close>
derive "show" float
subsection \<open>Convert Float to Decimal number\<close>
text \<open>type for decimal floating point numbers
(currently just for printing, TODO? generalize theory Float for arbitrary base)\<close>
datatype float10 = Float10 (mantissa10: int) (exponent10: int)
notation Float10 (infix "\<e>" 999)
partial_function (tailrec) normalize_float10
where [code]: "normalize_float10 f =
(if mantissa10 f mod 10 \<noteq> 0 \<or> mantissa10 f = 0 then f
else normalize_float10 (Float10 (mantissa10 f div 20) (exponent10 f + 1)))"
subsubsection \<open>Version that should be easy to prove correct, but slow!\<close>
context includes floatarith_notation begin
definition "float_to_float10_approximation f = the
(do {
let (x, y) = (mantissa f * 1024, exponent f - 10);
let p = nat (bitlen (abs x) + bitlen (abs y) + 80); \<comment> \<open>FIXME: are there guarantees?\<close>
y_log \<leftarrow> approx p (Mult (Num (of_int y))
((Mult (Ln (Num 2))
(Inverse (Ln (Num 10)))))) [];
let e_fl = floor_fl (lower y_log);
let e = int_floor_fl e_fl;
m \<leftarrow> approx p (Mult (Num (of_int x)) (Powr (Num 10) (Add(Var 0) (Minus (Num e_fl))))) [Some y_log];
let ml = lower m;
let mu = upper m;
Some (normalize_float10 (Float10 (int_floor_fl ml) e), normalize_float10 (Float10 (- int_floor_fl (- mu)) e))
})"
end
lemma compute_float_of[code]: "float_of (real_of_float f) = f" by simp
subsection \<open>Trusted, but faster version\<close>
text \<open>TODO: this is the HOL version of the SML-code in Approximation.thy\<close>
lemma prod_case_call_mono[partial_function_mono]:
"mono_tailrec (\<lambda>f. (let (d, e) = a in (\<lambda>y. f (c d e y))) b)"
by (simp add: split_beta' call_mono)
definition divmod_int::"int \<Rightarrow> int \<Rightarrow> int * int"
where "divmod_int a b = (a div b, a mod b)"
partial_function (tailrec) f2f10_frac where
"f2f10_frac c p r digits cnt e =
(if r = 0 then (digits, cnt, 0)
else if p = 0 then (digits, cnt, r)
else (let
(d, r) = divmod_int (r * 10) (power_int 2 (-e))
in f2f10_frac (c \<or> d \<noteq> 0) (if d \<noteq> 0 \<or> c then p - 1 else p) r
(digits * 10 + d) (cnt + 1)) e)"
declare f2f10_frac.simps[code]
definition float2_float10::"int \<Rightarrow> bool \<Rightarrow> int \<Rightarrow> int \<Rightarrow> (int * int)" where
"float2_float10 prec rd m e = (
let
(m, e) = (if e < 0 then (m,e) else (m * power_int 2 e, 0));
sgn = sgn m;
m = abs m;
round_down = (sgn = 1 \<and> rd) \<or> (sgn = -1 \<and> \<not> rd);
(x, r) = divmod_int m ((power_int 2 (-e)));
p = ((if x = 0 then prec else prec - (log2 x + 1)) * 3) div 10 + 1;
(digits, e10, r) = if p > 0 then f2f10_frac (x \<noteq> 0) p r 0 0 e else (0,0,0);
digits = if round_down \<or> r = 0 then digits else digits + 1
in (sgn * (digits + x * (power_int 10 e10)), -e10))"
definition "lfloat10 r = (let f = float_of r in case_prod Float10 (float2_float10 20 True (mantissa f) (exponent f)))"
definition "ufloat10 r = (let f = float_of r in case_prod Float10 (float2_float10 20 False (mantissa f) (exponent f)))"
partial_function (tailrec) digits
where [code]: "digits m ds = (if m = 0 then ds else digits (m div 10) (m mod 10 # ds))"
primrec showsp_float10 :: "float10 showsp"
where
"showsp_float10 p (Float10 m e) = (
let
ds = digits (nat (abs m)) [];
d = int (length ds);
e = e + d - 1;
mp = take 1 ds;
ms = drop 1 ds;
ms = rev (dropWhile ((=) 0) (rev ms));
show_digits = shows_list_gen (showsp_nat p) ''0'' '''' '''' ''''
in (if m < 0 then shows_string ''-'' else (\<lambda>x. x)) o
show_digits mp o
(if ms = [] then (\<lambda>x. x) else shows_string ''.'' o show_digits ms) o
(if e = 0 then (\<lambda>x. x) else shows_string ''e'' o showsp_int p e))"
lemma show_law_float10_aux:
fixes m e
shows "show_law showsp_float10 (Float10 m e)"
apply (rule show_lawI)
unfolding showsp_float10.simps Let_def
apply (simp add: show_law_simps )
done
lemma show_law_float10 [show_law_intros]: "show_law showsp_float10 r"
by (cases r) (auto simp: show_law_float10_aux)
lemma showsp_float10_append [show_law_simps]:
"showsp_float10 p r (x @ y) = showsp_float10 p r x @ y"
by (intro show_lawD show_law_intros)
local_setup \<open>Show_Generator.register_foreign_showsp @{typ float10} @{term "showsp_float10"} @{thm show_law_float10}\<close>
derive "show" float10
definition "showsp_real p x = showsp_float10 p (lfloat10 x)"
lemma show_law_real[show_law_intros]: "show_law showsp_real x"
using show_law_float10[of "lfloat10 x"]
by (auto simp: showsp_real_def[abs_def] Let_def show_law_def
simp del: showsp_float10.simps intro!: show_law_intros)
local_setup \<open>Show_Generator.register_foreign_showsp @{typ real} @{term "showsp_real"} @{thm show_law_real}\<close>
derive "show" real
subsection \<open>gnuplot output\<close>
subsubsection \<open>vector output of 2D zonotope\<close>
fun polychain_of_segments::"((real \<times> real) \<times> (real \<times> real)) list \<Rightarrow> (real \<times> real) list"
where
"polychain_of_segments [] = []"
| "polychain_of_segments (((x0, y0), z)#segs) = (x0, y0)#z#map snd segs"
definition shows_segments_of_aform
where "shows_segments_of_aform a b xs color =
shows_list_gen id '''' '''' ''\<newline>'' ''\<newline>'' (map (\<lambda>(x0, y0).
shows_words (map lfloat10 [x0, y0]) o shows_space o shows_string color)
(polychain_of_segments (segments_of_aform (prod_of_aforms (xs ! a) (xs ! b)))))"
abbreviation "show_segments_of_aform a b x c \<equiv> shows_segments_of_aform a b x c ''''"
definition shows_box_of_aforms\<comment> \<open>box and some further information\<close>
where "shows_box_of_aforms (XS::real aform list) = (let
RS = map (Radius' 20) XS;
l = map (Inf_aform' 20) XS;
u = map (Sup_aform' 20) XS
in shows_words
(l @ u @ RS) o shows_space o
shows (card (\<Union>((\<lambda>x. pdevs_domain (snd x)) ` (set XS))))
)"
abbreviation "show_box_of_aforms x \<equiv> shows_box_of_aforms x ''''"
definition "pdevs_domains ((XS::real aform list)) = (\<Union>((\<lambda>x. pdevs_domain (snd x)) ` (set XS)))"
definition "generators XS =
(let
is = sorted_list_of_set (pdevs_domains XS);
rs = map (\<lambda>i. (i, map (\<lambda>x. pdevs_apply (snd x) i) XS)) is
in
(map fst XS, rs))"
definition shows_box_of_aforms_hr\<comment> \<open>human readable\<close>
where "shows_box_of_aforms_hr XS = (let
RS = map (Radius' 20) XS;
l = map (Inf_aform' 20) XS;
u = map (Sup_aform' 20) XS
in shows_paren (shows_words l) o shows_string '' .. '' o shows_paren (shows_words u) o
shows_string ''; devs: '' o shows (card (pdevs_domains XS)) o
shows_string ''; tdev: '' o shows_paren (shows_words RS)
)"
abbreviation "show_box_of_aforms_hr x \<equiv> shows_box_of_aforms_hr x ''''"
definition shows_aforms_hr\<comment> \<open>human readable\<close>
where "shows_aforms_hr XS = shows (generators XS)"
abbreviation "show_aform_hr x \<equiv> shows_aforms_hr x ''''"
end
|