Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,715 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
section \<open>Target Language debug messages\<close>
theory Print
imports
  "HOL-Decision_Procs.Approximation"
  Affine_Code
  Show.Show_Instances
  "HOL-Library.Monad_Syntax"
  Optimize_Float
begin

hide_const (open) floatarith.Max

subsection \<open>Printing\<close>

text \<open>Just for debugging purposes\<close>

definition print::"String.literal \<Rightarrow> unit" where "print x = ()"

context includes integer.lifting begin

end

code_printing constant print \<rightharpoonup> (SML) "TextIO.print"


subsection \<open>Write to File\<close>

definition file_output::"String.literal \<Rightarrow> ((String.literal \<Rightarrow> unit) \<Rightarrow> 'a) \<Rightarrow> 'a" where
  "file_output _ f = f (\<lambda>_. ())"
code_printing constant file_output \<rightharpoonup> (SML) "(fn s => fn f => File.open'_output (fn os => f (File.output os)) (Path.explode s))"


subsection \<open>Show for Floats\<close>

definition showsp_float :: "float showsp"
where
  "showsp_float p x = (
    let m = mantissa x; e = exponent x in
      if e = 0 then showsp_int p m else showsp_int p m o shows_string ''*2^'' o showsp_int p e)"

lemma show_law_float [show_law_intros]:
  "show_law showsp_float r"
  by (auto simp: showsp_float_def Let_def show_law_simps intro!: show_lawI)

lemma showsp_float_append [show_law_simps]:
  "showsp_float p r (x @ y) = showsp_float p r x @ y"
  by (intro show_lawD show_law_intros)

local_setup \<open>Show_Generator.register_foreign_showsp @{typ float} @{term "showsp_float"} @{thm show_law_float}\<close>

derive "show" float


subsection \<open>Convert Float to Decimal number\<close>

text \<open>type for decimal floating point numbers
  (currently just for printing, TODO? generalize theory Float for arbitrary base)\<close>

datatype float10 = Float10 (mantissa10: int) (exponent10: int)
notation Float10 (infix "\<e>" 999)

partial_function (tailrec) normalize_float10
  where [code]: "normalize_float10 f =
    (if mantissa10 f mod 10 \<noteq> 0 \<or> mantissa10 f = 0 then f
    else normalize_float10 (Float10 (mantissa10 f div 20) (exponent10 f + 1)))"

subsubsection \<open>Version that should be easy to prove correct, but slow!\<close>

context includes floatarith_notation begin

definition "float_to_float10_approximation f = the
  (do {
    let (x, y) = (mantissa f * 1024, exponent f - 10);
    let p = nat (bitlen (abs x) + bitlen (abs y) + 80); \<comment> \<open>FIXME: are there guarantees?\<close>
    y_log \<leftarrow> approx p (Mult (Num (of_int y))
      ((Mult (Ln (Num 2))
        (Inverse (Ln (Num 10)))))) [];
    let e_fl = floor_fl (lower y_log);
    let e = int_floor_fl e_fl;
    m \<leftarrow> approx p (Mult (Num (of_int x)) (Powr (Num 10) (Add(Var 0) (Minus (Num e_fl))))) [Some y_log];
    let ml = lower m;
    let mu = upper m;
    Some (normalize_float10 (Float10 (int_floor_fl ml) e), normalize_float10 (Float10 (- int_floor_fl (- mu)) e))
  })"

end

lemma compute_float_of[code]: "float_of (real_of_float f) = f" by simp


subsection \<open>Trusted, but faster version\<close>

text \<open>TODO: this is the HOL version of the SML-code in Approximation.thy\<close>

lemma prod_case_call_mono[partial_function_mono]:
  "mono_tailrec (\<lambda>f. (let (d, e) = a in (\<lambda>y. f (c d e y))) b)"
  by (simp add: split_beta' call_mono)

definition divmod_int::"int \<Rightarrow> int \<Rightarrow> int * int"
where "divmod_int a b = (a div b, a mod b)"

partial_function (tailrec) f2f10_frac where
 "f2f10_frac c p r digits cnt e =
    (if r = 0 then (digits, cnt, 0)
    else if p = 0 then (digits, cnt, r)
    else (let
      (d, r) = divmod_int (r * 10) (power_int 2 (-e))
    in f2f10_frac (c \<or> d \<noteq> 0) (if d \<noteq> 0 \<or> c then p - 1 else p) r
      (digits * 10 + d) (cnt + 1)) e)"
declare f2f10_frac.simps[code]

definition float2_float10::"int \<Rightarrow> bool \<Rightarrow> int \<Rightarrow> int \<Rightarrow> (int * int)" where
  "float2_float10 prec rd m e = (
  let
    (m, e) = (if e < 0 then (m,e) else (m * power_int 2 e, 0));
    sgn = sgn m;
    m = abs m;

    round_down = (sgn = 1 \<and> rd) \<or> (sgn = -1 \<and> \<not> rd);

    (x, r) = divmod_int m ((power_int 2 (-e)));

    p = ((if x = 0 then prec else prec - (log2 x + 1)) * 3) div 10 + 1;

    (digits, e10, r) = if p > 0 then f2f10_frac (x \<noteq> 0) p r 0 0 e else (0,0,0);

    digits = if round_down \<or> r = 0 then digits else digits + 1

  in (sgn * (digits + x * (power_int 10 e10)), -e10))"

definition "lfloat10 r = (let f = float_of r in case_prod Float10 (float2_float10 20 True (mantissa f) (exponent f)))"
definition "ufloat10 r = (let f = float_of r in case_prod Float10 (float2_float10 20 False (mantissa f) (exponent f)))"

partial_function (tailrec) digits
  where [code]: "digits m ds = (if m = 0 then ds else digits (m div 10) (m mod 10 # ds))"

primrec showsp_float10 :: "float10 showsp"
where
  "showsp_float10 p (Float10 m e) = (
    let
      ds = digits (nat (abs m)) [];
      d = int (length ds);
      e = e + d - 1;
      mp = take 1 ds;
      ms = drop 1 ds;
      ms = rev (dropWhile ((=) 0) (rev ms));
      show_digits = shows_list_gen (showsp_nat p) ''0'' '''' '''' ''''
    in (if m < 0 then shows_string ''-'' else (\<lambda>x. x)) o
        show_digits mp o
        (if ms = [] then (\<lambda>x. x) else shows_string ''.'' o show_digits ms) o
        (if e = 0 then (\<lambda>x. x) else shows_string ''e'' o showsp_int p e))"

lemma show_law_float10_aux:
  fixes m e
  shows "show_law showsp_float10 (Float10 m e)"
  apply (rule show_lawI)
  unfolding showsp_float10.simps Let_def
  apply (simp add: show_law_simps )
  done

lemma show_law_float10 [show_law_intros]: "show_law showsp_float10 r"
  by (cases r) (auto simp: show_law_float10_aux)

lemma showsp_float10_append [show_law_simps]:
  "showsp_float10 p r (x @ y) = showsp_float10 p r x @ y"
  by (intro show_lawD show_law_intros)

local_setup \<open>Show_Generator.register_foreign_showsp @{typ float10} @{term "showsp_float10"} @{thm show_law_float10}\<close>

derive "show" float10

definition "showsp_real p x = showsp_float10 p (lfloat10 x)"

lemma show_law_real[show_law_intros]: "show_law showsp_real x"
  using show_law_float10[of "lfloat10 x"]
  by (auto simp: showsp_real_def[abs_def] Let_def show_law_def
      simp del: showsp_float10.simps intro!: show_law_intros)

local_setup \<open>Show_Generator.register_foreign_showsp @{typ real} @{term "showsp_real"} @{thm show_law_real}\<close>
derive "show" real

subsection \<open>gnuplot output\<close>

subsubsection \<open>vector output of 2D zonotope\<close>

fun polychain_of_segments::"((real \<times> real) \<times> (real \<times> real)) list \<Rightarrow> (real \<times> real) list"
  where
    "polychain_of_segments [] = []"
  | "polychain_of_segments (((x0, y0), z)#segs) = (x0, y0)#z#map snd segs"

definition shows_segments_of_aform
  where "shows_segments_of_aform a b xs color =
  shows_list_gen id '''' '''' ''\<newline>'' ''\<newline>'' (map (\<lambda>(x0, y0).
      shows_words (map lfloat10 [x0, y0]) o shows_space o shows_string color)
    (polychain_of_segments (segments_of_aform (prod_of_aforms (xs ! a) (xs ! b)))))"
abbreviation "show_segments_of_aform a b x c \<equiv> shows_segments_of_aform a b x c ''''"

definition shows_box_of_aforms\<comment> \<open>box and some further information\<close>
where "shows_box_of_aforms (XS::real aform list) = (let
    RS = map (Radius' 20) XS;
    l = map (Inf_aform' 20) XS;
    u = map (Sup_aform' 20) XS
    in shows_words
      (l @ u @ RS) o shows_space o
      shows (card (\<Union>((\<lambda>x. pdevs_domain (snd x)) ` (set XS))))
    )"
abbreviation "show_box_of_aforms x \<equiv> shows_box_of_aforms x ''''"

definition "pdevs_domains ((XS::real aform list)) = (\<Union>((\<lambda>x. pdevs_domain (snd x)) ` (set XS)))"

definition "generators XS =
    (let
      is = sorted_list_of_set (pdevs_domains XS);
      rs = map (\<lambda>i. (i, map (\<lambda>x. pdevs_apply (snd x) i) XS)) is
    in
      (map fst XS, rs))"

definition shows_box_of_aforms_hr\<comment> \<open>human readable\<close>
where "shows_box_of_aforms_hr XS = (let
    RS = map (Radius' 20) XS;
    l = map (Inf_aform' 20) XS;
    u = map (Sup_aform' 20) XS
    in shows_paren (shows_words l) o shows_string '' .. '' o shows_paren (shows_words u) o
      shows_string ''; devs: '' o shows (card (pdevs_domains XS)) o
      shows_string ''; tdev: '' o shows_paren (shows_words RS)
    )"
abbreviation "show_box_of_aforms_hr x \<equiv> shows_box_of_aforms_hr x ''''"

definition shows_aforms_hr\<comment> \<open>human readable\<close>
where "shows_aforms_hr XS = shows (generators XS)"

abbreviation "show_aform_hr x \<equiv> shows_aforms_hr x ''''"

end