Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 59,594 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 |
(*
Author: René Thiemann
Akihisa Yamada
Contributors: Manuel Eberl (algebraic integers)
License: BSD
*)
section \<open>Algebraic Numbers: Addition and Multiplication\<close>
text \<open>This theory contains the remaining field operations for algebraic numbers, namely
addition and multiplication.\<close>
theory Algebraic_Numbers
imports
Algebraic_Numbers_Prelim
Resultant
Polynomial_Factorization.Polynomial_Divisibility
begin
interpretation coeff_hom: monoid_add_hom "\<lambda>p. coeff p i" by (unfold_locales, auto)
interpretation coeff_hom: comm_monoid_add_hom "\<lambda>p. coeff p i"..
interpretation coeff_hom: group_add_hom "\<lambda>p. coeff p i"..
interpretation coeff_hom: ab_group_add_hom "\<lambda>p. coeff p i"..
interpretation coeff_0_hom: monoid_mult_hom "\<lambda>p. coeff p 0" by (unfold_locales, auto simp: coeff_mult)
interpretation coeff_0_hom: semiring_hom "\<lambda>p. coeff p 0"..
interpretation coeff_0_hom: comm_monoid_mult_hom "\<lambda>p. coeff p 0"..
interpretation coeff_0_hom: comm_semiring_hom "\<lambda>p. coeff p 0"..
subsection \<open>Addition of Algebraic Numbers\<close>
definition "x_y \<equiv> [: [: 0, 1 :], -1 :]"
definition "poly_x_minus_y p = poly_lift p \<circ>\<^sub>p x_y"
lemma coeff_xy_power:
assumes "k \<le> n"
shows "coeff (x_y ^ n :: 'a :: comm_ring_1 poly poly) k =
monom (of_nat (n choose (n - k)) * (- 1) ^ k) (n - k)"
proof -
define X :: "'a poly poly" where "X = monom (monom 1 1) 0"
define Y :: "'a poly poly" where "Y = monom (-1) 1"
have [simp]: "monom 1 b * (-1) ^ k = monom ((-1)^k :: 'a) b" for b k
by (auto simp: monom_altdef minus_one_power_iff)
have "(X + Y) ^ n = (\<Sum>i\<le>n. of_nat (n choose i) * X ^ i * Y ^ (n - i))"
by (subst binomial_ring) auto
also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * monom (monom ((-1) ^ (n - i)) i) (n - i))"
by (simp add: X_def Y_def monom_power mult_monom mult.assoc)
also have "\<dots> = (\<Sum>i\<le>n. monom (monom (of_nat (n choose i) * (-1) ^ (n - i)) i) (n - i))"
by (simp add: of_nat_poly smult_monom)
also have "coeff \<dots> k =
(\<Sum>i\<le>n. if n - i = k then monom (of_nat (n choose i) * (- 1) ^ (n - i)) i else 0)"
by (simp add: of_nat_poly coeff_sum)
also have "\<dots> = (\<Sum>i\<in>{n-k}. monom (of_nat (n choose i) * (- 1) ^ (n - i)) i)"
using \<open>k \<le> n\<close> by (intro sum.mono_neutral_cong_right) auto
also have "X + Y = x_y"
by (simp add: X_def Y_def x_y_def monom_altdef)
finally show ?thesis
using \<open>k \<le> n\<close> by simp
qed
text \<open>The following polynomial represents the sum of two algebraic numbers.\<close>
definition poly_add :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
"poly_add p q = resultant (poly_x_minus_y p) (poly_lift q)"
subsubsection \<open>@{term poly_add} has desired root\<close>
interpretation poly_x_minus_y_hom:
comm_ring_hom poly_x_minus_y by (unfold_locales; simp add: poly_x_minus_y_def hom_distribs)
lemma poly2_x_y[simp]:
fixes x :: "'a :: comm_ring_1"
shows "poly2 x_y x y = x - y" unfolding poly2_def by (simp add: x_y_def)
lemma degree_poly_x_minus_y[simp]:
fixes p :: "'a::idom poly"
shows "degree (poly_x_minus_y p) = degree p" unfolding poly_x_minus_y_def x_y_def by auto
lemma poly_x_minus_y_pCons[simp]:
"poly_x_minus_y (pCons a p) = [:[: a :]:] + poly_x_minus_y p * x_y"
unfolding poly_x_minus_y_def x_y_def by simp
lemma poly_poly_poly_x_minus_y[simp]:
fixes p :: "'a :: comm_ring_1 poly"
shows "poly (poly (poly_x_minus_y p) q) x = poly p (x - poly q x)"
by (induct p; simp add: ring_distribs x_y_def)
lemma poly2_poly_x_minus_y[simp]:
fixes p :: "'a :: comm_ring_1 poly"
shows "poly2 (poly_x_minus_y p) x y = poly p (x-y)" unfolding poly2_def by simp
interpretation x_y_mult_hom: zero_hom_0 "\<lambda>p :: 'a :: comm_ring_1 poly poly. x_y * p"
proof (unfold_locales)
fix p :: "'a poly poly"
assume "x_y * p = 0"
then show "p = 0" apply (simp add: x_y_def)
by (metis eq_neg_iff_add_eq_0 minus_equation_iff minus_pCons synthetic_div_unique_lemma)
qed
lemma x_y_nonzero[simp]: "x_y \<noteq> 0" by (simp add: x_y_def)
lemma degree_x_y[simp]: "degree x_y = 1" by (simp add: x_y_def)
interpretation x_y_mult_hom: inj_comm_monoid_add_hom "\<lambda>p :: 'a :: idom poly poly. x_y * p"
proof (unfold_locales)
show "x_y * p = x_y * q \<Longrightarrow> p = q" for p q :: "'a poly poly"
proof (induct p arbitrary:q)
case 0
then show ?case by simp
next
case p: (pCons a p)
from p(3)[unfolded mult_pCons_right]
have "x_y * (monom a 0 + pCons 0 1 * p) = x_y * q"
apply (subst(asm) pCons_0_as_mult)
apply (subst(asm) smult_prod) by (simp only: field_simps distrib_left)
then have "monom a 0 + pCons 0 1 * p = q" by simp
then show "pCons a p = q" using pCons_as_add by (simp add: monom_0 monom_Suc)
qed
qed
interpretation poly_x_minus_y_hom: inj_idom_hom poly_x_minus_y
proof
fix p :: "'a poly"
assume 0: "poly_x_minus_y p = 0"
then have "poly_lift p \<circ>\<^sub>p x_y = 0" by (simp add: poly_x_minus_y_def)
then show "p = 0"
proof (induct p)
case 0
then show ?case by simp
next
case (pCons a p)
note p = this[unfolded poly_lift_pCons pcompose_pCons]
show ?case
proof (cases "a=0")
case a0: True
with p have "x_y * poly_lift p \<circ>\<^sub>p x_y = 0" by simp
then have "poly_lift p \<circ>\<^sub>p x_y = 0" by simp
then show ?thesis using p by simp
next
case a0: False
with p have p0: "p \<noteq> 0" by auto
from p have "[:[:a:]:] = - x_y * poly_lift p \<circ>\<^sub>p x_y" by (simp add: eq_neg_iff_add_eq_0)
then have "degree [:[:a:]:] = degree (x_y * poly_lift p \<circ>\<^sub>p x_y)" by simp
also have "... = degree (x_y::'a poly poly) + degree (poly_lift p \<circ>\<^sub>p x_y)"
apply (subst degree_mult_eq)
apply simp
apply (subst pcompose_eq_0)
apply (simp add: x_y_def)
apply (simp add: p0)
apply simp
done
finally have False by simp
then show ?thesis..
qed
qed
qed
lemma poly_add:
fixes p q :: "'a ::comm_ring_1 poly"
assumes q0: "q \<noteq> 0" and x: "poly p x = 0" and y: "poly q y = 0"
shows "poly (poly_add p q) (x+y) = 0"
proof (unfold poly_add_def, rule poly_resultant_zero[OF disjI2])
have "degree q > 0" using poly_zero q0 y by auto
thus degq: "degree (poly_lift q) > 0" by auto
qed (insert x y, simp_all)
subsubsection \<open>@{const poly_add} is nonzero\<close>
text \<open>
We first prove that @{const poly_lift} preserves factorization. The result will be essential
also in the next section for division of algebraic numbers.
\<close>
interpretation poly_lift_hom:
unit_preserving_hom "poly_lift :: 'a :: {comm_semiring_1,semiring_no_zero_divisors} poly \<Rightarrow> _"
proof
fix x :: "'a poly"
assume "poly_lift x dvd 1"
then have "poly_y_x (poly_lift x) dvd poly_y_x 1"
by simp
then show "x dvd 1"
by (auto simp add: poly_y_x_poly_lift)
qed
interpretation poly_lift_hom:
factor_preserving_hom "poly_lift::'a::idom poly \<Rightarrow> 'a poly poly"
proof unfold_locales
fix p :: "'a poly"
assume p: "irreducible p"
show "irreducible (poly_lift p)"
proof(rule ccontr)
from p have p0: "p \<noteq> 0" and "\<not> p dvd 1" by (auto dest: irreducible_not_unit)
with poly_lift_hom.hom_dvd[of p 1] have p1: "\<not> poly_lift p dvd 1" by auto
assume "\<not> irreducible (poly_lift p)"
from this[unfolded irreducible_altdef,simplified] p0 p1
obtain q where "q dvd poly_lift p" and pq: "\<not> poly_lift p dvd q" and q: "\<not> q dvd 1" by auto
then obtain r where "q * r = poly_lift p" by (elim dvdE, auto)
then have "poly_y_x (q * r) = poly_y_x (poly_lift p)" by auto
also have "... = [:p:]" by (auto simp: poly_y_x_poly_lift monom_0)
also have "poly_y_x (q * r) = poly_y_x q * poly_y_x r" by (auto simp: hom_distribs)
finally have "... = [:p:]" by auto
then have qp: "poly_y_x q dvd [:p:]" by (metis dvdI)
from dvd_const[OF this] p0 have "degree (poly_y_x q) = 0" by auto
from degree_0_id[OF this,symmetric] obtain s
where qs: "poly_y_x q = [:s:]" by auto
have "poly_lift s = poly_y_x (poly_y_x (poly_lift s))" by auto
also have "... = poly_y_x [:s:]" by (auto simp: poly_y_x_poly_lift monom_0)
also have "... = q" by (auto simp: qs[symmetric])
finally have sq: "poly_lift s = q" by auto
from qp[unfolded qs] have sp: "s dvd p" by (auto simp: const_poly_dvd)
from irreducibleD'[OF p this] sq q pq show False by auto
qed
qed
text \<open>
We now show that @{const poly_x_minus_y} is a factor-preserving homomorphism. This is
essential for this section. This is easy since @{const poly_x_minus_y} can be represented
as the composition of two factor-preserving homomorphisms.
\<close>
lemma poly_x_minus_y_as_comp: "poly_x_minus_y = (\<lambda>p. p \<circ>\<^sub>p x_y) \<circ> poly_lift"
by (intro ext, unfold poly_x_minus_y_def, auto)
context idom_isom begin
sublocale comm_semiring_isom..
end
interpretation poly_x_minus_y_hom:
factor_preserving_hom "poly_x_minus_y :: 'a :: idom poly \<Rightarrow> 'a poly poly"
proof -
have \<open>p \<circ>\<^sub>p x_y \<circ>\<^sub>p x_y = p\<close> for p :: \<open>'a poly poly\<close>
proof (induction p)
case 0
show ?case
by simp
next
case (pCons a p)
then show ?case
by (unfold x_y_def hom_distribs pcompose_pCons) simp
qed
then interpret x_y_hom: bijective "\<lambda>p :: 'a poly poly. p \<circ>\<^sub>p x_y"
by (unfold bijective_eq_bij) (rule involuntory_imp_bij)
interpret x_y_hom: idom_isom "\<lambda>p :: 'a poly poly. p \<circ>\<^sub>p x_y"
by standard simp_all
have \<open>factor_preserving_hom (\<lambda>p :: 'a poly poly. p \<circ>\<^sub>p x_y)\<close>
and \<open>factor_preserving_hom (poly_lift :: 'a poly \<Rightarrow> 'a poly poly)\<close>
..
then show "factor_preserving_hom (poly_x_minus_y :: 'a poly \<Rightarrow> _)"
by (unfold poly_x_minus_y_as_comp) (rule factor_preserving_hom_comp)
qed
text \<open>
Now we show that results of @{const poly_x_minus_y} and @{const poly_lift} are coprime.
\<close>
lemma poly_y_x_const[simp]: "poly_y_x [:[:a:]:] = [:[:a:]:]" by (simp add: poly_y_x_def monom_0)
context begin
private abbreviation "y_x == [: [: 0, -1 :], 1 :]"
lemma poly_y_x_x_y[simp]: "poly_y_x x_y = y_x" by (simp add: x_y_def poly_y_x_def monom_Suc monom_0)
private lemma y_x[simp]: fixes x :: "'a :: comm_ring_1" shows "poly2 y_x x y = y - x"
unfolding poly2_def by simp
private definition "poly_y_minus_x p \<equiv> poly_lift p \<circ>\<^sub>p y_x"
private lemma poly_y_minus_x_0[simp]: "poly_y_minus_x 0 = 0" by (simp add: poly_y_minus_x_def)
private lemma poly_y_minus_x_pCons[simp]:
"poly_y_minus_x (pCons a p) = [:[: a :]:] + poly_y_minus_x p * y_x" by (simp add: poly_y_minus_x_def)
private lemma poly_y_x_poly_x_minus_y:
fixes p :: "'a :: idom poly"
shows "poly_y_x (poly_x_minus_y p) = poly_y_minus_x p"
apply (induct p, simp)
apply (unfold poly_x_minus_y_pCons hom_distribs) by simp
lemma degree_poly_y_minus_x[simp]:
fixes p :: "'a :: idom poly"
shows "degree (poly_y_x (poly_x_minus_y p)) = degree p"
by (simp add: poly_y_minus_x_def poly_y_x_poly_x_minus_y)
end
lemma dvd_all_coeffs_iff:
fixes x :: "'a :: comm_semiring_1" (* No addition needed! *)
shows "(\<forall>pi \<in> set (coeffs p). x dvd pi) \<longleftrightarrow> (\<forall>i. x dvd coeff p i)" (is "?l = ?r")
proof-
have "?r = (\<forall>i\<in>{..degree p} \<union> {Suc (degree p)..}. x dvd coeff p i)" by auto
also have "... = (\<forall>i\<le>degree p. x dvd coeff p i)" by (auto simp add: ball_Un coeff_eq_0)
also have "... = ?l" by (auto simp: coeffs_def)
finally show ?thesis..
qed
lemma primitive_imp_no_constant_factor:
fixes p :: "'a :: {comm_semiring_1, semiring_no_zero_divisors} poly"
assumes pr: "primitive p" and F: "mset_factors F p" and fF: "f \<in># F"
shows "degree f \<noteq> 0"
proof
from F fF have irr: "irreducible f" and fp: "f dvd p" by (auto dest: mset_factors_imp_dvd)
assume deg: "degree f = 0"
then obtain f0 where f0: "f = [:f0:]" by (auto dest: degree0_coeffs)
with fp have "[:f0:] dvd p" by simp
then have "f0 dvd coeff p i" for i by (simp add: const_poly_dvd_iff)
with primitiveD[OF pr] dvd_all_coeffs_iff have "f0 dvd 1" by (auto simp: coeffs_def)
with f0 irr show False by auto
qed
lemma coprime_poly_x_minus_y_poly_lift:
fixes p q :: "'a :: ufd poly"
assumes degp: "degree p > 0" and degq: "degree q > 0"
and pr: "primitive p"
shows "coprime (poly_x_minus_y p) (poly_lift q)"
proof(rule ccontr)
from degp have p: "\<not> p dvd 1" by (auto simp: dvd_const)
from degp have p0: "p \<noteq> 0" by auto
from mset_factors_exist[of p, OF p0 p]
obtain F where F: "mset_factors F p" by auto
with poly_x_minus_y_hom.hom_mset_factors
have pF: "mset_factors (image_mset poly_x_minus_y F) (poly_x_minus_y p)" by auto
from degq have q: "\<not> q dvd 1" by (auto simp: dvd_const)
from degq have q0: "q \<noteq> 0" by auto
from mset_factors_exist[OF q0 q]
obtain G where G: "mset_factors G q" by auto
with poly_lift_hom.hom_mset_factors
have pG: "mset_factors (image_mset poly_lift G) (poly_lift q)" by auto
assume "\<not> coprime (poly_x_minus_y p) (poly_lift q)"
from this[unfolded not_coprime_iff_common_factor]
obtain r
where rp: "r dvd (poly_x_minus_y p)"
and rq: "r dvd (poly_lift q)"
and rU: "\<not> r dvd 1" by auto note poly_lift_hom.hom_dvd
from rp p0 have r0: "r \<noteq> 0" by auto
from mset_factors_exist[OF r0 rU]
obtain H where H: "mset_factors H r" by auto
then have "H \<noteq> {#}" by auto
then obtain h where hH: "h \<in># H" by fastforce
with H mset_factors_imp_dvd have hr: "h dvd r" and h: "irreducible h" by auto
from irreducible_not_unit[OF h] have hU: "\<not> h dvd 1" by auto
from hr rp have "h dvd (poly_x_minus_y p)" by (rule dvd_trans)
from irreducible_dvd_imp_factor[OF this h pF] p0
obtain f where f: "f \<in># F" and fh: "poly_x_minus_y f ddvd h" by auto
from hr rq have "h dvd (poly_lift q)" by (rule dvd_trans)
from irreducible_dvd_imp_factor[OF this h pG] q0
obtain g where g: "g \<in># G" and gh: "poly_lift g ddvd h" by auto
from fh gh have "poly_x_minus_y f ddvd poly_lift g" using ddvd_trans by auto
then have "poly_y_x (poly_x_minus_y f) ddvd poly_y_x (poly_lift g)" by simp
also have "poly_y_x (poly_lift g) = [:g:]" unfolding poly_y_x_poly_lift monom_0 by auto
finally have ddvd: "poly_y_x (poly_x_minus_y f) ddvd [:g:]" by auto
then have "degree (poly_y_x (poly_x_minus_y f)) = 0" by (metis degree_pCons_0 dvd_0_left_iff dvd_const)
then have "degree f = 0" by simp
with primitive_imp_no_constant_factor[OF pr F f] show False by auto
qed
lemma poly_add_nonzero:
fixes p q :: "'a :: ufd poly"
assumes p0: "p \<noteq> 0" and q0: "q \<noteq> 0" and x: "poly p x = 0" and y: "poly q y = 0"
and pr: "primitive p"
shows "poly_add p q \<noteq> 0"
proof
have degp: "degree p > 0" using le_0_eq order_degree order_root p0 x by (metis gr0I)
have degq: "degree q > 0" using le_0_eq order_degree order_root q0 y by (metis gr0I)
assume 0: "poly_add p q = 0"
from resultant_zero_imp_common_factor[OF _ this[unfolded poly_add_def]] degp
and coprime_poly_x_minus_y_poly_lift[OF degp degq pr]
show False by auto
qed
subsubsection \<open>Summary for addition\<close>
text \<open>Now we lift the results to one that uses @{const ipoly}, by showing some homomorphism lemmas.\<close>
lemma (in comm_ring_hom) map_poly_x_minus_y:
"map_poly (map_poly hom) (poly_x_minus_y p) = poly_x_minus_y (map_poly hom p)"
proof-
interpret mp: map_poly_comm_ring_hom hom..
interpret mmp: map_poly_comm_ring_hom "map_poly hom"..
show ?thesis
apply (induct p, simp)
apply(unfold x_y_def hom_distribs poly_x_minus_y_pCons, simp) done
qed
lemma (in comm_ring_hom) hom_poly_lift[simp]:
"map_poly (map_poly hom) (poly_lift q) = poly_lift (map_poly hom q)"
proof -
show ?thesis
unfolding poly_lift_def
unfolding map_poly_map_poly[of coeff_lift,OF coeff_lift_hom.hom_zero]
unfolding map_poly_coeff_lift_hom by simp
qed
lemma lead_coeff_poly_x_minus_y:
fixes p :: "'a::idom poly"
shows "lead_coeff (poly_x_minus_y p) = [:lead_coeff p * ((- 1) ^ degree p):]" (is "?l = ?r")
proof-
have "?l = Polynomial.smult (lead_coeff p) ((- 1) ^ degree p)"
by (unfold poly_x_minus_y_def, subst lead_coeff_comp; simp add: x_y_def)
also have "... = ?r" by (unfold hom_distribs, simp add: smult_as_map_poly[symmetric])
finally show ?thesis.
qed
lemma degree_coeff_poly_x_minus_y:
fixes p q :: "'a :: {idom, semiring_char_0} poly"
shows "degree (coeff (poly_x_minus_y p) i) = degree p - i"
proof -
consider "i = degree p" | "i > degree p" | "i < degree p"
by force
thus ?thesis
proof cases
assume "i > degree p"
thus ?thesis by (subst coeff_eq_0) auto
next
assume "i = degree p"
thus ?thesis using lead_coeff_poly_x_minus_y[of p]
by (simp add: lead_coeff_poly_x_minus_y)
next
assume "i < degree p"
define n where "n = degree p"
have "degree (coeff (poly_x_minus_y p) i) =
degree (\<Sum>j\<le>n. [:coeff p j:] * coeff (x_y ^ j) i)" (is "_ = degree (sum ?f _)")
by (simp add: poly_x_minus_y_def pcompose_conv_poly poly_altdef coeff_sum n_def)
also have "{..n} = insert n {..<n}"
by auto
also have "sum ?f \<dots> = ?f n + sum ?f {..<n}"
by (subst sum.insert) auto
also have "degree \<dots> = n - i"
proof -
have "degree (?f n) = n - i"
using \<open>i < degree p\<close> by (simp add: n_def coeff_xy_power degree_monom_eq)
moreover have "degree (sum ?f {..<n}) < n - i"
proof (intro degree_sum_smaller)
fix j assume "j \<in> {..<n}"
have "degree ([:coeff p j:] * coeff (x_y ^ j) i) \<le> j - i"
proof (cases "i \<le> j")
case True
thus ?thesis
by (auto simp: n_def coeff_xy_power degree_monom_eq)
next
case False
hence "coeff (x_y ^ j :: 'a poly poly) i = 0"
by (subst coeff_eq_0) (auto simp: degree_power_eq)
thus ?thesis by simp
qed
also have "\<dots> < n - i"
using \<open>j \<in> {..<n}\<close> \<open>i < degree p\<close> by (auto simp: n_def)
finally show "degree ([:coeff p j:] * coeff (x_y ^ j) i) < n - i" .
qed (use \<open>i < degree p\<close> in \<open>auto simp: n_def\<close>)
ultimately show ?thesis
by (subst degree_add_eq_left) auto
qed
finally show ?thesis
by (simp add: n_def)
qed
qed
lemma coeff_0_poly_x_minus_y [simp]: "coeff (poly_x_minus_y p) 0 = p"
by (induction p) (auto simp: poly_x_minus_y_def x_y_def)
lemma (in idom_hom) poly_add_hom:
assumes p0: "hom (lead_coeff p) \<noteq> 0" and q0: "hom (lead_coeff q) \<noteq> 0"
shows "map_poly hom (poly_add p q) = poly_add (map_poly hom p) (map_poly hom q)"
proof -
interpret mh: map_poly_idom_hom..
show ?thesis unfolding poly_add_def
apply (subst mh.resultant_map_poly(1)[symmetric])
apply (subst degree_map_poly_2)
apply (unfold lead_coeff_poly_x_minus_y, unfold hom_distribs, simp add: p0)
apply simp
apply (subst degree_map_poly_2)
apply (simp_all add: q0 map_poly_x_minus_y)
done
qed
lemma(in zero_hom) hom_lead_coeff_nonzero_imp_map_poly_hom:
assumes "hom (lead_coeff p) \<noteq> 0"
shows "map_poly hom p \<noteq> 0"
proof
assume "map_poly hom p = 0"
then have "coeff (map_poly hom p) (degree p) = 0" by simp
with assms show False by simp
qed
lemma ipoly_poly_add:
fixes x y :: "'a :: idom"
assumes p0: "(of_int (lead_coeff p) :: 'a) \<noteq> 0" and q0: "(of_int (lead_coeff q) :: 'a) \<noteq> 0"
and x: "ipoly p x = 0" and y: "ipoly q y = 0"
shows "ipoly (poly_add p q) (x+y) = 0"
using assms of_int_hom.hom_lead_coeff_nonzero_imp_map_poly_hom[OF q0]
by (auto intro: poly_add simp: of_int_hom.poly_add_hom[OF p0 q0])
lemma (in comm_monoid_gcd) gcd_list_eq_0_iff[simp]: "listgcd xs = 0 \<longleftrightarrow> (\<forall>x \<in> set xs. x = 0)"
by (induct xs, auto)
lemma primitive_field_poly[simp]: "primitive (p :: 'a :: field poly) \<longleftrightarrow> p \<noteq> 0"
by (unfold primitive_iff_some_content_dvd_1,auto simp: dvd_field_iff coeffs_def)
lemma ipoly_poly_add_nonzero:
fixes x y :: "'a :: field"
assumes "p \<noteq> 0" and "q \<noteq> 0" and "ipoly p x = 0" and "ipoly q y = 0"
and "(of_int (lead_coeff p) :: 'a) \<noteq> 0" and "(of_int (lead_coeff q) :: 'a) \<noteq> 0"
shows "poly_add p q \<noteq> 0"
proof-
from assms have "(of_int_poly (poly_add p q) :: 'a poly) \<noteq> 0"
apply (subst of_int_hom.poly_add_hom,simp,simp)
by (rule poly_add_nonzero, auto dest:of_int_hom.hom_lead_coeff_nonzero_imp_map_poly_hom)
then show ?thesis by auto
qed
lemma represents_add:
assumes x: "p represents x" and y: "q represents y"
shows "(poly_add p q) represents (x + y)"
using assms by (intro representsI ipoly_poly_add ipoly_poly_add_nonzero, auto)
subsection \<open>Division of Algebraic Numbers\<close>
definition poly_x_mult_y where
[code del]: "poly_x_mult_y p \<equiv> (\<Sum> i \<le> degree p. monom (monom (coeff p i) i) i)"
lemma coeff_poly_x_mult_y:
shows "coeff (poly_x_mult_y p) i = monom (coeff p i) i" (is "?l = ?r")
proof(cases "degree p < i")
case i: False
have "?l = sum (\<lambda>j. if j = i then (monom (coeff p j) j) else 0) {..degree p}"
(is "_ = sum ?f ?A") by (simp add: poly_x_mult_y_def coeff_sum)
also have "... = sum ?f {i}" using i by (intro sum.mono_neutral_right, auto)
also have "... = ?f i" by simp
also have "... = ?r" by auto
finally show ?thesis.
next
case True then show ?thesis by (auto simp: poly_x_mult_y_def coeff_eq_0 coeff_sum)
qed
lemma poly_x_mult_y_code[code]: "poly_x_mult_y p = (let cs = coeffs p
in poly_of_list (map (\<lambda> (i, ai). monom ai i) (zip [0 ..< length cs] cs)))"
unfolding Let_def poly_of_list_def
proof (rule poly_eqI, unfold coeff_poly_x_mult_y)
fix n
let ?xs = "zip [0..<length (coeffs p)] (coeffs p)"
let ?f = "(\<lambda>(i, ai). monom ai i)"
show "monom (coeff p n) n = coeff (Poly (map ?f ?xs)) n"
proof (cases "n < length (coeffs p)")
case True
hence n: "n < length (map ?f ?xs)" and nn: "n < length ?xs"
unfolding degree_eq_length_coeffs by auto
show ?thesis unfolding coeff_Poly nth_default_nth[OF n] nth_map[OF nn]
using True by (simp add: nth_coeffs_coeff)
next
case False
hence id: "coeff (Poly (map ?f ?xs)) n = 0" unfolding coeff_Poly
by (subst nth_default_beyond, auto)
from False have "n > degree p \<or> p = 0" unfolding degree_eq_length_coeffs by (cases n, auto)
hence "monom (coeff p n) n = 0" using coeff_eq_0[of p n] by auto
thus ?thesis unfolding id by simp
qed
qed
definition poly_div :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
"poly_div p q = resultant (poly_x_mult_y p) (poly_lift q)"
text \<open>@{const poly_div} has desired roots.\<close>
lemma poly2_poly_x_mult_y:
fixes p :: "'a :: comm_ring_1 poly"
shows "poly2 (poly_x_mult_y p) x y = poly p (x * y)"
apply (subst(3) poly_as_sum_of_monoms[symmetric])
apply (unfold poly_x_mult_y_def hom_distribs)
by (auto simp: poly2_monom poly_monom power_mult_distrib ac_simps)
lemma poly_div:
fixes p q :: "'a ::field poly"
assumes q0: "q \<noteq> 0" and x: "poly p x = 0" and y: "poly q y = 0" and y0: "y \<noteq> 0"
shows "poly (poly_div p q) (x/y) = 0"
proof (unfold poly_div_def, rule poly_resultant_zero[OF disjI2])
have "degree q > 0" using poly_zero q0 y by auto
thus degq: "degree (poly_lift q) > 0" by auto
qed (insert x y y0, simp_all add: poly2_poly_x_mult_y)
text \<open>@{const poly_div} is nonzero.\<close>
interpretation poly_x_mult_y_hom: ring_hom "poly_x_mult_y :: 'a :: {idom,ring_char_0} poly \<Rightarrow> _"
by (unfold_locales, auto intro: poly2_ext simp: poly2_poly_x_mult_y hom_distribs)
interpretation poly_x_mult_y_hom: inj_ring_hom "poly_x_mult_y :: 'a :: {idom,ring_char_0} poly \<Rightarrow> _"
proof
let ?h = poly_x_mult_y
fix f :: "'a poly"
assume "?h f = 0"
then have "poly2 (?h f) x 1 = 0" for x by simp
from this[unfolded poly2_poly_x_mult_y]
show "f = 0" by auto
qed
lemma degree_poly_x_mult_y[simp]:
fixes p :: "'a :: {idom, ring_char_0} poly"
shows "degree (poly_x_mult_y p) = degree p" (is "?l = ?r")
proof(rule antisym)
show "?r \<le> ?l" by (cases "p=0", auto intro: le_degree simp: coeff_poly_x_mult_y)
show "?l \<le> ?r" unfolding poly_x_mult_y_def
by (auto intro: degree_sum_le le_trans[OF degree_monom_le])
qed
interpretation poly_x_mult_y_hom: unit_preserving_hom "poly_x_mult_y :: 'a :: field_char_0 poly \<Rightarrow> _"
proof(unfold_locales)
let ?h = "poly_x_mult_y :: 'a poly \<Rightarrow> _"
fix f :: "'a poly"
assume unit: "?h f dvd 1"
then have "degree (?h f) = 0" and "coeff (?h f) 0 dvd 1" unfolding poly_dvd_1 by auto
then have deg: "degree f = 0" by (auto simp add: degree_monom_eq)
with unit show "f dvd 1" by(cases "f = 0", auto)
qed
lemmas poly_y_x_o_poly_lift = o_def[of poly_y_x poly_lift, unfolded poly_y_x_poly_lift]
lemma irreducible_dvd_degree: assumes "(f::'a::field poly) dvd g"
"irreducible g"
"degree f > 0"
shows "degree f = degree g"
using assms
by (metis irreducible_altdef degree_0 dvd_refl is_unit_field_poly linorder_neqE_nat poly_divides_conv0)
lemma coprime_poly_x_mult_y_poly_lift:
fixes p q :: "'a :: field_char_0 poly"
assumes degp: "degree p > 0" and degq: "degree q > 0"
and nz: "poly p 0 \<noteq> 0 \<or> poly q 0 \<noteq> 0"
shows "coprime (poly_x_mult_y p) (poly_lift q)"
proof(rule ccontr)
from degp have p: "\<not> p dvd 1" by (auto simp: dvd_const)
from degp have p0: "p \<noteq> 0" by auto
from mset_factors_exist[of p, OF p0 p]
obtain F where F: "mset_factors F p" by auto
then have pF: "prod_mset (image_mset poly_x_mult_y F) = poly_x_mult_y p"
by (auto simp: hom_distribs)
from degq have q: "\<not> is_unit q" by (auto simp: dvd_const)
from degq have q0: "q \<noteq> 0" by auto
from mset_factors_exist[OF q0 q]
obtain G where G: "mset_factors G q" by auto
with poly_lift_hom.hom_mset_factors
have pG: "mset_factors (image_mset poly_lift G) (poly_lift q)" by auto
from poly_y_x_hom.hom_mset_factors[OF this]
have pG: "mset_factors (image_mset coeff_lift G) [:q:]"
by (auto simp: poly_y_x_poly_lift monom_0 image_mset.compositionality poly_y_x_o_poly_lift)
assume "\<not> coprime (poly_x_mult_y p) (poly_lift q)"
then have "\<not> coprime (poly_y_x (poly_x_mult_y p)) (poly_y_x (poly_lift q))"
by (simp del: coprime_iff_coprime)
from this[unfolded not_coprime_iff_common_factor]
obtain r
where rp: "r dvd poly_y_x (poly_x_mult_y p)"
and rq: "r dvd poly_y_x (poly_lift q)"
and rU: "\<not> r dvd 1" by auto
from rp p0 have r0: "r \<noteq> 0" by auto
from mset_factors_exist[OF r0 rU]
obtain H where H: "mset_factors H r" by auto
then have "H \<noteq> {#}" by auto
then obtain h where hH: "h \<in># H" by fastforce
with H mset_factors_imp_dvd have hr: "h dvd r" and h: "irreducible h" by auto
from irreducible_not_unit[OF h] have hU: "\<not> h dvd 1" by auto
from hr rp have "h dvd poly_y_x (poly_x_mult_y p)" by (rule dvd_trans)
note this[folded pF,unfolded poly_y_x_hom.hom_prod_mset image_mset.compositionality]
from prime_elem_dvd_prod_mset[OF h[folded prime_elem_iff_irreducible] this]
obtain f where f: "f \<in># F" and hf: "h dvd poly_y_x (poly_x_mult_y f)" by auto
have irrF: "irreducible f" using f F by blast
from dvd_trans[OF hr rq] have "h dvd [:q:]" by (simp add: poly_y_x_poly_lift monom_0)
from irreducible_dvd_imp_factor[OF this h pG] q0
obtain g where g: "g \<in># G" and gh: "[:g:] dvd h" by auto
from dvd_trans[OF gh hf] have *: "[:g:] dvd poly_y_x (poly_x_mult_y f)" using dvd_trans by auto
show False
proof (cases "poly f 0 = 0")
case f_0: False
from poly_hom.hom_dvd[OF *]
have "g dvd poly (poly_y_x (poly_x_mult_y f)) [:0:]" by simp
also have "... = [:poly f 0:]" by (intro poly_ext, fold poly2_def, simp add: poly2_poly_x_mult_y)
also have "... dvd 1" using f_0 by auto
finally have "g dvd 1".
with g G show False by (auto elim!: mset_factorsE dest!: irreducible_not_unit)
next
case True
hence "[:0,1:] dvd f" by (unfold dvd_iff_poly_eq_0, simp)
from irreducible_dvd_degree[OF this irrF]
have "degree f = 1" by auto
from degree1_coeffs[OF this] True obtain c where c: "c \<noteq> 0" and f: "f = [:0,c:]" by auto
from g G have irrG: "irreducible g" by auto
from poly_hom.hom_dvd[OF *]
have "g dvd poly (poly_y_x (poly_x_mult_y f)) 1" by simp
also have "\<dots> = f" by (auto simp: f poly_x_mult_y_code Let_def c poly_y_x_pCons map_poly_monom poly_monom poly_lift_def)
also have "\<dots> dvd [:0,1:]" unfolding f dvd_def using c
by (intro exI[of _ "[: inverse c :]"], auto)
finally have g01: "g dvd [:0,1:]" .
from divides_degree[OF this] irrG have "degree g = 1" by auto
from degree1_coeffs[OF this] obtain a b where g: "g = [:b,a:]" and a: "a \<noteq> 0" by auto
from g01[unfolded dvd_def] g obtain k where id: "[:0,1:] = g * k" by auto
from id have 0: "g \<noteq> 0" "k \<noteq> 0" by auto
from arg_cong[OF id, of degree] have "degree k = 0" unfolding degree_mult_eq[OF 0]
unfolding g using a by auto
from degree0_coeffs[OF this] obtain kk where k: "k = [:kk:]" by auto
from id[unfolded g k] a have "b = 0" by auto
hence "poly g 0 = 0" by (auto simp: g)
from True this nz \<open>f \<in># F\<close> \<open>g \<in># G\<close> F G
show False by (auto dest!:mset_factors_imp_dvd elim:dvdE)
qed
qed
lemma poly_div_nonzero:
fixes p q :: "'a :: field_char_0 poly"
assumes p0: "p \<noteq> 0" and q0: "q \<noteq> 0" and x: "poly p x = 0" and y: "poly q y = 0"
and p_0: "poly p 0 \<noteq> 0 \<or> poly q 0 \<noteq> 0"
shows "poly_div p q \<noteq> 0"
proof
have degp: "degree p > 0" using le_0_eq order_degree order_root p0 x by (metis gr0I)
have degq: "degree q > 0" using le_0_eq order_degree order_root q0 y by (metis gr0I)
assume 0: "poly_div p q = 0"
from resultant_zero_imp_common_factor[OF _ this[unfolded poly_div_def]] degp
and coprime_poly_x_mult_y_poly_lift[OF degp degq] p_0
show False by auto
qed
subsubsection \<open>Summary for division\<close>
text \<open>Now we lift the results to one that uses @{const ipoly}, by showing some homomorphism lemmas.\<close>
lemma (in inj_comm_ring_hom) poly_x_mult_y_hom:
"poly_x_mult_y (map_poly hom p) = map_poly (map_poly hom) (poly_x_mult_y p)"
proof -
interpret mh: map_poly_inj_comm_ring_hom..
interpret mmh: map_poly_inj_comm_ring_hom "map_poly hom"..
show ?thesis unfolding poly_x_mult_y_def by (simp add: hom_distribs)
qed
lemma (in inj_comm_ring_hom) poly_div_hom:
"map_poly hom (poly_div p q) = poly_div (map_poly hom p) (map_poly hom q)"
proof -
have zero: "\<forall>x. hom x = 0 \<longrightarrow> x = 0" by simp
interpret mh: map_poly_inj_comm_ring_hom..
show ?thesis unfolding poly_div_def mh.resultant_hom[symmetric]
by (simp add: poly_x_mult_y_hom)
qed
lemma ipoly_poly_div:
fixes x y :: "'a :: field_char_0"
assumes "q \<noteq> 0" and "ipoly p x = 0" and "ipoly q y = 0" and "y \<noteq> 0"
shows "ipoly (poly_div p q) (x/y) = 0"
by (unfold of_int_hom.poly_div_hom, rule poly_div, insert assms, auto)
lemma ipoly_poly_div_nonzero:
fixes x y :: "'a :: field_char_0"
assumes "p \<noteq> 0" and "q \<noteq> 0" and "ipoly p x = 0" and "ipoly q y = 0" and "poly p 0 \<noteq> 0 \<or> poly q 0 \<noteq> 0"
shows "poly_div p q \<noteq> 0"
proof-
from assms have "(of_int_poly (poly_div p q) :: 'a poly) \<noteq> 0" using of_int_hom.poly_map_poly[of p]
by (subst of_int_hom.poly_div_hom, subst poly_div_nonzero, auto)
then show ?thesis by auto
qed
lemma represents_div:
fixes x y :: "'a :: field_char_0"
assumes "p represents x" and "q represents y" and "poly q 0 \<noteq> 0"
shows "(poly_div p q) represents (x / y)"
using assms by (intro representsI ipoly_poly_div ipoly_poly_div_nonzero, auto)
subsection \<open>Multiplication of Algebraic Numbers\<close>
definition poly_mult where "poly_mult p q \<equiv> poly_div p (reflect_poly q)"
lemma represents_mult:
assumes px: "p represents x" and qy: "q represents y" and q_0: "poly q 0 \<noteq> 0"
shows "(poly_mult p q) represents (x * y)"
proof-
from q_0 qy have y0: "y \<noteq> 0" by auto
from represents_inverse[OF y0 qy] y0 px q_0
have "poly_mult p q represents x / (inverse y)"
unfolding poly_mult_def by (intro represents_div, auto)
with y0 show ?thesis by (simp add: field_simps)
qed
subsection \<open>Summary: Closure Properties of Algebraic Numbers\<close>
lemma algebraic_representsI: "p represents x \<Longrightarrow> algebraic x"
unfolding represents_def algebraic_altdef_ipoly by auto
lemma algebraic_of_rat: "algebraic (of_rat x)"
by (rule algebraic_representsI[OF poly_rat_represents_of_rat])
lemma algebraic_uminus: "algebraic x \<Longrightarrow> algebraic (-x)"
by (auto dest: algebraic_imp_represents_irreducible intro: algebraic_representsI represents_uminus)
lemma algebraic_inverse: "algebraic x \<Longrightarrow> algebraic (inverse x)"
using algebraic_of_rat[of 0]
by (cases "x = 0", auto dest: algebraic_imp_represents_irreducible intro: algebraic_representsI represents_inverse)
lemma algebraic_plus: "algebraic x \<Longrightarrow> algebraic y \<Longrightarrow> algebraic (x + y)"
by (auto dest!: algebraic_imp_represents_irreducible_cf_pos intro!: algebraic_representsI[OF represents_add])
lemma algebraic_div:
assumes x: "algebraic x" and y: "algebraic y" shows "algebraic (x/y)"
proof(cases "y = 0 \<or> x = 0")
case True
then show ?thesis using algebraic_of_rat[of 0] by auto
next
case False
then have x0: "x \<noteq> 0" and y0: "y \<noteq> 0" by auto
from x y obtain p q
where px: "p represents x" and irr: "irreducible q" and qy: "q represents y"
by (auto dest!: algebraic_imp_represents_irreducible)
show ?thesis
using False px represents_irr_non_0[OF irr qy]
by (auto intro!: algebraic_representsI[OF represents_div] qy)
qed
lemma algebraic_times: "algebraic x \<Longrightarrow> algebraic y \<Longrightarrow> algebraic (x * y)"
using algebraic_div[OF _ algebraic_inverse, of x y] by (simp add: field_simps)
lemma algebraic_root: "algebraic x \<Longrightarrow> algebraic (root n x)"
proof -
assume "algebraic x"
then obtain p where p: "p represents x" by (auto dest: algebraic_imp_represents_irreducible_cf_pos)
from
algebraic_representsI[OF represents_nth_root_neg_real[OF _ this, of n]]
algebraic_representsI[OF represents_nth_root_pos_real[OF _ this, of n]]
algebraic_of_rat[of 0]
show ?thesis by (cases "n = 0", force, cases "n > 0", force, cases "n < 0", auto)
qed
lemma algebraic_nth_root: "n \<noteq> 0 \<Longrightarrow> algebraic x \<Longrightarrow> y^n = x \<Longrightarrow> algebraic y"
by (auto dest: algebraic_imp_represents_irreducible_cf_pos intro: algebraic_representsI represents_nth_root)
subsection \<open>More on algebraic integers\<close>
(* TODO: this is actually equal to @{term "(-1)^(m*n)"}, but we need a bit more theory on
permutations to show this with a reasonable amount of effort. *)
definition poly_add_sign :: "nat \<Rightarrow> nat \<Rightarrow> 'a :: comm_ring_1" where
"poly_add_sign m n = signof (\<lambda>i. if i < n then m + i else if i < m + n then i - n else i)"
lemma lead_coeff_poly_add:
fixes p q :: "'a :: {idom, semiring_char_0} poly"
defines "m \<equiv> degree p" and "n \<equiv> degree q"
assumes "lead_coeff p = 1" "lead_coeff q = 1" "m > 0" "n > 0"
shows "lead_coeff (poly_add p q :: 'a poly) = poly_add_sign m n"
proof -
from assms have [simp]: "p \<noteq> 0" "q \<noteq> 0"
by auto
define M where "M = sylvester_mat (poly_x_minus_y p) (poly_lift q)"
define \<pi> :: "nat \<Rightarrow> nat" where
"\<pi> = (\<lambda>i. if i < n then m + i else if i < m + n then i - n else i)"
have \<pi>: "\<pi> permutes {0..<m+n}"
by (rule inj_on_nat_permutes) (auto simp: \<pi>_def inj_on_def)
have nz: "M $$ (i, \<pi> i) \<noteq> 0" if "i < m + n" for i
using that by (auto simp: M_def \<pi>_def sylvester_index_mat m_def n_def)
(*
have "{(i,j). i \<in> {..<m+n} \<and> j \<in> {..<m+n} \<and> i < j \<and> \<pi> i > \<pi> j} =
{..<n} \<times> {n..<m+n}" (is "?lhs = ?rhs")
proof (intro equalityI subsetI)
fix ij assume "ij \<in> ?lhs"
thus "ij \<in> ?rhs"
by (simp add: \<pi>_def split: prod.splits if_splits) auto
qed (auto simp: \<pi>_def)
hence "inversions_on {..<m+n} \<pi> = n * m"
by (simp add: inversions_on_def)
hence "signof \<pi> = (-1)^(m*n)"
using \<pi> by (simp add: signof_def sign_def evenperm_iff_even_inversions)
*)
have indices_eq: "{0..<m+n} = {..<n} \<union> (+) n ` {..<m}"
by (auto simp flip: atLeast0LessThan)
define f where "f = (\<lambda> \<sigma>. signof \<sigma> * (\<Prod>i=0..<m+n. M $$ (i, \<sigma> i)))"
have "degree (f \<pi>) = degree (\<Prod>i=0..<m + n. M $$ (i, \<pi> i))"
using nz by (auto simp: f_def degree_mult_eq sign_def)
also have "\<dots> = (\<Sum>i=0..<m+n. degree (M $$ (i, \<pi> i)))"
using nz by (subst degree_prod_eq_sum_degree) auto
also have "\<dots> = (\<Sum>i<n. degree (M $$ (i, \<pi> i))) + (\<Sum>i<m. degree (M $$ (n + i, \<pi> (n + i))))"
by (subst indices_eq, subst sum.union_disjoint) (auto simp: sum.reindex)
also have "(\<Sum>i<n. degree (M $$ (i, \<pi> i))) = (\<Sum>i<n. m)"
by (intro sum.cong) (auto simp: M_def sylvester_index_mat \<pi>_def m_def n_def)
also have "(\<Sum>i<m. degree (M $$ (n + i, \<pi> (n + i)))) = (\<Sum>i<m. 0)"
by (intro sum.cong) (auto simp: M_def sylvester_index_mat \<pi>_def m_def n_def)
finally have deg_f1: "degree (f \<pi>) = m * n"
by simp
have deg_f2: "degree (f \<sigma>) < m * n" if "\<sigma> permutes {0..<m+n}" "\<sigma> \<noteq> \<pi>" for \<sigma>
proof (cases "\<exists>i\<in>{0..<m+n}. M $$ (i, \<sigma> i) = 0")
case True
hence *: "(\<Prod>i = 0..<m + n. M $$ (i, \<sigma> i)) = 0"
by auto
show ?thesis using \<open>m > 0\<close> \<open>n > 0\<close>
by (simp add: f_def *)
next
case False
note nz = this
from that have \<sigma>_less: "\<sigma> i < m + n" if "i < m + n" for i
using permutes_in_image[OF \<open>\<sigma> permutes _\<close>] that by auto
have "degree (f \<sigma>) = degree (\<Prod>i=0..<m + n. M $$ (i, \<sigma> i))"
using nz by (auto simp: f_def degree_mult_eq sign_def)
also have "\<dots> = (\<Sum>i=0..<m+n. degree (M $$ (i, \<sigma> i)))"
using nz by (subst degree_prod_eq_sum_degree) auto
also have "\<dots> = (\<Sum>i<n. degree (M $$ (i, \<sigma> i))) + (\<Sum>i<m. degree (M $$ (n + i, \<sigma> (n + i))))"
by (subst indices_eq, subst sum.union_disjoint) (auto simp: sum.reindex)
also have "(\<Sum>i<m. degree (M $$ (n + i, \<sigma> (n + i)))) = (\<Sum>i<m. 0)"
using \<sigma>_less by (intro sum.cong) (auto simp: M_def sylvester_index_mat \<pi>_def m_def n_def)
also have "(\<Sum>i<n. degree (M $$ (i, \<sigma> i))) < (\<Sum>i<n. m)"
proof (rule sum_strict_mono_ex1)
show "\<forall>x\<in>{..<n}. degree (M $$ (x, \<sigma> x)) \<le> m" using \<sigma>_less
by (auto simp: M_def sylvester_index_mat \<pi>_def m_def n_def degree_coeff_poly_x_minus_y)
next
have "\<exists>i<n. \<sigma> i \<noteq> \<pi> i"
proof (rule ccontr)
assume nex: "~(\<exists>i<n. \<sigma> i \<noteq> \<pi> i)"
have "\<forall>i\<ge>m+n-k. \<sigma> i = \<pi> i" if "k \<le> m" for k
using that
proof (induction k)
case 0
thus ?case using \<open>\<pi> permutes _\<close> \<open>\<sigma> permutes _\<close>
by (fastforce simp: permutes_def)
next
case (Suc k)
have IH: "\<sigma> i = \<pi> i" if "i \<ge> m+n-k" for i
using Suc.prems Suc.IH that by auto
from nz have "M $$ (m + n - Suc k, \<sigma> (m + n - Suc k)) \<noteq> 0"
using Suc.prems by auto
moreover have "m + n - Suc k \<ge> n"
using Suc.prems by auto
ultimately have "\<sigma> (m+n-Suc k) \<ge> m-Suc k"
using assms \<sigma>_less[of "m+n-Suc k"] Suc.prems
by (auto simp: M_def sylvester_index_mat m_def n_def split: if_splits)
have "\<not>(\<sigma> (m+n-Suc k) > m - Suc k)"
proof
assume *: "\<sigma> (m+n-Suc k) > m - Suc k"
have less: "\<sigma> (m+n-Suc k) < m"
proof (rule ccontr)
assume *: "\<not>\<sigma> (m + n - Suc k) < m"
define j where "j = \<sigma> (m + n - Suc k) - m"
have "\<sigma> (m + n - Suc k) = m + j"
using * by (simp add: j_def)
moreover {
have "j < n"
using \<sigma>_less[of "m+n-Suc k"] \<open>m > 0\<close> \<open>n > 0\<close> by (simp add: j_def)
hence "\<sigma> j = \<pi> j"
using nex by auto
with \<open>j < n\<close> have "\<sigma> j = m + j"
by (auto simp: \<pi>_def)
}
ultimately have "\<sigma> (m + n - Suc k) = \<sigma> j"
by simp
hence "m + n - Suc k = j"
using permutes_inj[OF \<open>\<sigma> permutes _\<close>] unfolding inj_def by blast
thus False using \<open>n \<le> m + n - Suc k\<close> \<sigma>_less[of "m+n-Suc k"] \<open>n > 0\<close>
unfolding j_def by linarith
qed
define j where "j = \<sigma> (m+n-Suc k) - (m - Suc k)"
from * have j: "\<sigma> (m+n-Suc k) = m - Suc k + j" "j > 0"
by (auto simp: j_def)
have "\<sigma> (m+n-Suc k + j) = \<pi> (m+n - Suc k + j)"
using * by (intro IH) (auto simp: j_def)
also {
have "j < Suc k"
using less by (auto simp: j_def algebra_simps)
hence "m + n - Suc k + j < m + n"
using \<open>m > 0\<close> \<open>n > 0\<close> Suc.prems by linarith
hence "\<pi> (m +n - Suc k + j) = m - Suc k + j"
unfolding \<pi>_def using Suc.prems by (simp add: \<pi>_def)
}
finally have "\<sigma> (m + n - Suc k + j) = \<sigma> (m + n - Suc k)"
using j by simp
hence "m + n - Suc k + j = m + n - Suc k"
using permutes_inj[OF \<open>\<sigma> permutes _\<close>] unfolding inj_def by blast
thus False using \<open>j > 0\<close> by simp
qed
with \<open>\<sigma> (m+n-Suc k) \<ge> m-Suc k\<close> have eq: "\<sigma> (m+n-Suc k) = m - Suc k"
by linarith
show ?case
proof safe
fix i :: nat
assume i: "i \<ge> m + n - Suc k"
show "\<sigma> i = \<pi> i"
using eq Suc.prems \<open>m > 0\<close> IH i
proof (cases "i = m + n - Suc k")
case True
thus ?thesis using eq Suc.prems \<open>m > 0\<close>
by (auto simp: \<pi>_def)
qed (use IH i in auto)
qed
qed
from this[of m] and nex have "\<sigma> i = \<pi> i" for i
by (cases "i \<ge> n") auto
hence "\<sigma> = \<pi>" by force
thus False using \<open>\<sigma> \<noteq> \<pi>\<close> by contradiction
qed
then obtain i where i: "i < n" "\<sigma> i \<noteq> \<pi> i"
by auto
have "\<sigma> i < m + n"
using i by (intro \<sigma>_less) auto
moreover have "\<pi> i = m + i"
using i by (auto simp: \<pi>_def)
ultimately have "degree (M $$ (i, \<sigma> i)) < m" using i \<open>m > 0\<close>
by (auto simp: M_def m_def n_def sylvester_index_mat degree_coeff_poly_x_minus_y)
thus "\<exists>i\<in>{..<n}. degree (M $$ (i, \<sigma> i)) < m"
using i by blast
qed auto
finally show "degree (f \<sigma>) < m * n"
by (simp add: mult_ac)
qed
have "lead_coeff (f \<pi>) = poly_add_sign m n"
proof -
have "lead_coeff (f \<pi>) = signof \<pi> * (\<Prod>i=0..<m + n. lead_coeff (M $$ (i, \<pi> i)))"
by (simp add: f_def sign_def lead_coeff_prod)
also have "(\<Prod>i=0..<m + n. lead_coeff (M $$ (i, \<pi> i))) =
(\<Prod>i<n. lead_coeff (M $$ (i, \<pi> i))) * (\<Prod>i<m. lead_coeff (M $$ (n + i, \<pi> (n + i))))"
by (subst indices_eq, subst prod.union_disjoint) (auto simp: prod.reindex)
also have "(\<Prod>i<n. lead_coeff (M $$ (i, \<pi> i))) = (\<Prod>i<n. lead_coeff p)"
by (intro prod.cong) (auto simp: M_def m_def n_def \<pi>_def sylvester_index_mat)
also have "(\<Prod>i<m. lead_coeff (M $$ (n + i, \<pi> (n + i)))) = (\<Prod>i<m. lead_coeff q)"
by (intro prod.cong) (auto simp: M_def m_def n_def \<pi>_def sylvester_index_mat)
also have "signof \<pi> = poly_add_sign m n"
by (simp add: \<pi>_def poly_add_sign_def m_def n_def cong: if_cong)
finally show ?thesis
using assms by simp
qed
have "lead_coeff (poly_add p q) =
lead_coeff (det (sylvester_mat (poly_x_minus_y p) (poly_lift q)))"
by (simp add: poly_add_def resultant_def)
also have "det (sylvester_mat (poly_x_minus_y p) (poly_lift q)) =
(\<Sum>\<pi> | \<pi> permutes {0..<m+n}. f \<pi>)"
by (simp add: det_def m_def n_def M_def f_def)
also have "{\<pi>. \<pi> permutes {0..<m+n}} = insert \<pi> ({\<pi>. \<pi> permutes {0..<m+n}} - {\<pi>})"
using \<pi> by auto
also have "(\<Sum>\<sigma>\<in>\<dots>. f \<sigma>) = (\<Sum>\<sigma>\<in>{\<sigma>. \<sigma> permutes {0..<m+n}}-{\<pi>}. f \<sigma>) + f \<pi>"
by (subst sum.insert) (auto simp: finite_permutations)
also have "lead_coeff \<dots> = lead_coeff (f \<pi>)"
proof -
have "degree (\<Sum>\<sigma>\<in>{\<sigma>. \<sigma> permutes {0..<m+n}}-{\<pi>}. f \<sigma>) < m * n" using assms
by (intro degree_sum_smaller deg_f2) (auto simp: m_def n_def finite_permutations)
with deg_f1 show ?thesis
by (subst lead_coeff_add_le) auto
qed
finally show ?thesis
using \<open>lead_coeff (f \<pi>) = _\<close> by simp
qed
lemma lead_coeff_poly_mult:
fixes p q :: "'a :: {idom, ring_char_0} poly"
defines "m \<equiv> degree p" and "n \<equiv> degree q"
assumes "lead_coeff p = 1" "lead_coeff q = 1" "m > 0" "n > 0"
assumes "coeff q 0 \<noteq> 0"
shows "lead_coeff (poly_mult p q :: 'a poly) = 1"
proof -
from assms have [simp]: "p \<noteq> 0" "q \<noteq> 0"
by auto
have [simp]: "degree (reflect_poly q) = n"
using assms by (subst degree_reflect_poly_eq) (auto simp: n_def)
define M where "M = sylvester_mat (poly_x_mult_y p) (poly_lift (reflect_poly q))"
have nz: "M $$ (i, i) \<noteq> 0" if "i < m + n" for i
using that by (auto simp: M_def sylvester_index_mat m_def n_def coeff_poly_x_mult_y)
have indices_eq: "{0..<m+n} = {..<n} \<union> (+) n ` {..<m}"
by (auto simp flip: atLeast0LessThan)
define f where "f = (\<lambda> \<sigma>. signof \<sigma> * (\<Prod>i=0..<m+n. M $$ (i, \<sigma> i)))"
have "degree (f id) = degree (\<Prod>i=0..<m + n. M $$ (i, i))"
using nz by (auto simp: f_def degree_mult_eq sign_def)
also have "\<dots> = (\<Sum>i=0..<m+n. degree (M $$ (i, i)))"
using nz by (subst degree_prod_eq_sum_degree) auto
also have "\<dots> = (\<Sum>i<n. degree (M $$ (i, i))) + (\<Sum>i<m. degree (M $$ (n + i, n + i)))"
by (subst indices_eq, subst sum.union_disjoint) (auto simp: sum.reindex)
also have "(\<Sum>i<n. degree (M $$ (i, i))) = (\<Sum>i<n. m)"
by (intro sum.cong)
(auto simp: M_def sylvester_index_mat m_def n_def coeff_poly_x_mult_y degree_monom_eq)
also have "(\<Sum>i<m. degree (M $$ (n + i, n + i))) = (\<Sum>i<m. 0)"
by (intro sum.cong) (auto simp: M_def sylvester_index_mat m_def n_def)
finally have deg_f1: "degree (f id) = m * n"
by (simp add: mult_ac id_def)
have deg_f2: "degree (f \<sigma>) < m * n" if "\<sigma> permutes {0..<m+n}" "\<sigma> \<noteq> id" for \<sigma>
proof (cases "\<exists>i\<in>{0..<m+n}. M $$ (i, \<sigma> i) = 0")
case True
hence *: "(\<Prod>i = 0..<m + n. M $$ (i, \<sigma> i)) = 0"
by auto
show ?thesis using \<open>m > 0\<close> \<open>n > 0\<close>
by (simp add: f_def *)
next
case False
note nz = this
from that have \<sigma>_less: "\<sigma> i < m + n" if "i < m + n" for i
using permutes_in_image[OF \<open>\<sigma> permutes _\<close>] that by auto
have "degree (f \<sigma>) = degree (\<Prod>i=0..<m + n. M $$ (i, \<sigma> i))"
using nz by (auto simp: f_def degree_mult_eq sign_def)
also have "\<dots> = (\<Sum>i=0..<m+n. degree (M $$ (i, \<sigma> i)))"
using nz by (subst degree_prod_eq_sum_degree) auto
also have "\<dots> = (\<Sum>i<n. degree (M $$ (i, \<sigma> i))) + (\<Sum>i<m. degree (M $$ (n + i, \<sigma> (n + i))))"
by (subst indices_eq, subst sum.union_disjoint) (auto simp: sum.reindex)
also have "(\<Sum>i<m. degree (M $$ (n + i, \<sigma> (n + i)))) = (\<Sum>i<m. 0)"
using \<sigma>_less by (intro sum.cong) (auto simp: M_def sylvester_index_mat m_def n_def)
also have "(\<Sum>i<n. degree (M $$ (i, \<sigma> i))) < (\<Sum>i<n. m)"
proof (rule sum_strict_mono_ex1)
show "\<forall>x\<in>{..<n}. degree (M $$ (x, \<sigma> x)) \<le> m" using \<sigma>_less
by (auto simp: M_def sylvester_index_mat m_def n_def degree_coeff_poly_x_minus_y coeff_poly_x_mult_y
intro: order.trans[OF degree_monom_le])
next
have "\<exists>i<n. \<sigma> i \<noteq> i"
proof (rule ccontr)
assume nex: "\<not>(\<exists>i<n. \<sigma> i \<noteq> i)"
have "\<sigma> i = i" for i
using that
proof (induction i rule: less_induct)
case (less i)
consider "i < n" | "i \<in> {n..<m+n}" | "i \<ge> m + n"
by force
thus ?case
proof cases
assume "i < n"
thus ?thesis using nex by auto
next
assume "i \<ge> m + n"
thus ?thesis using \<open>\<sigma> permutes _\<close>
by (auto simp: permutes_def)
next
assume i: "i \<in> {n..<m+n}"
have IH: "\<sigma> j = j" if "j < i" for j
using that less.prems by (intro less.IH) auto
from nz have "M $$ (i, \<sigma> i) \<noteq> 0"
using i by auto
hence "\<sigma> i \<le> i"
using i \<sigma>_less[of i] by (auto simp: M_def sylvester_index_mat m_def n_def)
moreover have "\<sigma> i \<ge> i"
proof (rule ccontr)
assume *: "\<not>\<sigma> i \<ge> i"
from * have "\<sigma> (\<sigma> i) = \<sigma> i"
by (subst IH) auto
hence "\<sigma> i = i"
using permutes_inj[OF \<open>\<sigma> permutes _\<close>] unfolding inj_def by blast
with * show False by simp
qed
ultimately show ?case by simp
qed
qed
hence "\<sigma> = id"
by force
with \<open>\<sigma> \<noteq> id\<close> show False
by contradiction
qed
then obtain i where i: "i < n" "\<sigma> i \<noteq> i"
by auto
have "\<sigma> i < m + n"
using i by (intro \<sigma>_less) auto
hence "degree (M $$ (i, \<sigma> i)) < m" using i \<open>m > 0\<close>
by (auto simp: M_def m_def n_def sylvester_index_mat degree_coeff_poly_x_minus_y
coeff_poly_x_mult_y intro: le_less_trans[OF degree_monom_le])
thus "\<exists>i\<in>{..<n}. degree (M $$ (i, \<sigma> i)) < m"
using i by blast
qed auto
finally show "degree (f \<sigma>) < m * n"
by (simp add: mult_ac)
qed
have "lead_coeff (f id) = 1"
proof -
have "lead_coeff (f id) = (\<Prod>i=0..<m + n. lead_coeff (M $$ (i, i)))"
by (simp add: f_def lead_coeff_prod)
also have "(\<Prod>i=0..<m + n. lead_coeff (M $$ (i, i))) =
(\<Prod>i<n. lead_coeff (M $$ (i, i))) * (\<Prod>i<m. lead_coeff (M $$ (n + i, n + i)))"
by (subst indices_eq, subst prod.union_disjoint) (auto simp: prod.reindex)
also have "(\<Prod>i<n. lead_coeff (M $$ (i, i))) = (\<Prod>i<n. lead_coeff p)" using assms
by (intro prod.cong) (auto simp: M_def m_def n_def sylvester_index_mat
coeff_poly_x_mult_y degree_monom_eq)
also have "(\<Prod>i<m. lead_coeff (M $$ (n + i, n + i))) = (\<Prod>i<m. lead_coeff q)"
by (intro prod.cong) (auto simp: M_def m_def n_def sylvester_index_mat)
finally show ?thesis
using assms by (simp add: id_def)
qed
have "lead_coeff (poly_mult p q) = lead_coeff (det M)"
by (simp add: poly_mult_def resultant_def M_def poly_div_def)
also have "det M = (\<Sum>\<pi> | \<pi> permutes {0..<m+n}. f \<pi>)"
by (simp add: det_def m_def n_def M_def f_def)
also have "{\<pi>. \<pi> permutes {0..<m+n}} = insert id ({\<pi>. \<pi> permutes {0..<m+n}} - {id})"
by (auto simp: permutes_id)
also have "(\<Sum>\<sigma>\<in>\<dots>. f \<sigma>) = (\<Sum>\<sigma>\<in>{\<sigma>. \<sigma> permutes {0..<m+n}}-{id}. f \<sigma>) + f id"
by (subst sum.insert) (auto simp: finite_permutations)
also have "lead_coeff \<dots> = lead_coeff (f id)"
proof -
have "degree (\<Sum>\<sigma>\<in>{\<sigma>. \<sigma> permutes {0..<m+n}}-{id}. f \<sigma>) < m * n" using assms
by (intro degree_sum_smaller deg_f2) (auto simp: m_def n_def finite_permutations)
with deg_f1 show ?thesis
by (subst lead_coeff_add_le) auto
qed
finally show ?thesis
using \<open>lead_coeff (f id) = 1\<close> by simp
qed
lemma algebraic_int_plus [intro]:
fixes x y :: "'a :: field_char_0"
assumes "algebraic_int x" "algebraic_int y"
shows "algebraic_int (x + y)"
proof -
from assms(1) obtain p where p: "lead_coeff p = 1" "ipoly p x = 0"
by (auto simp: algebraic_int_altdef_ipoly)
from assms(2) obtain q where q: "lead_coeff q = 1" "ipoly q y = 0"
by (auto simp: algebraic_int_altdef_ipoly)
have deg_pos: "degree p > 0" "degree q > 0"
using p q by (auto intro!: Nat.gr0I elim!: degree_eq_zeroE)
define r where "r = poly_add_sign (degree p) (degree q) * poly_add p q"
have "lead_coeff r = 1" using p q deg_pos
by (simp add: r_def lead_coeff_mult poly_add_sign_def sign_def lead_coeff_poly_add)
moreover have "ipoly r (x + y) = 0"
using p q by (simp add: ipoly_poly_add r_def of_int_poly_hom.hom_mult)
ultimately show ?thesis
by (auto simp: algebraic_int_altdef_ipoly)
qed
lemma algebraic_int_times [intro]:
fixes x y :: "'a :: field_char_0"
assumes "algebraic_int x" "algebraic_int y"
shows "algebraic_int (x * y)"
proof (cases "y = 0")
case [simp]: False
from assms(1) obtain p where p: "lead_coeff p = 1" "ipoly p x = 0"
by (auto simp: algebraic_int_altdef_ipoly)
from assms(2) obtain q where q: "lead_coeff q = 1" "ipoly q y = 0"
by (auto simp: algebraic_int_altdef_ipoly)
have deg_pos: "degree p > 0" "degree q > 0"
using p q by (auto intro!: Nat.gr0I elim!: degree_eq_zeroE)
have [simp]: "q \<noteq> 0"
using q by auto
define n where "n = Polynomial.order 0 q"
have "monom 1 n dvd q"
by (simp add: n_def monom_1_dvd_iff)
then obtain q' where q_split: "q = q' * monom 1 n"
by auto
have "Polynomial.order 0 q = Polynomial.order 0 q' + n"
using \<open>q \<noteq> 0\<close> unfolding q_split by (subst order_mult) auto
hence "poly q' 0 \<noteq> 0"
unfolding n_def using \<open>q \<noteq> 0\<close> by (simp add: q_split order_root)
have q': "ipoly q' y = 0" "lead_coeff q' = 1" using q_split q
by (auto simp: of_int_poly_hom.hom_mult poly_monom lead_coeff_mult degree_monom_eq)
from this have deg_pos': "degree q' > 0"
by (intro Nat.gr0I) (auto elim!: degree_eq_zeroE)
from \<open>poly q' 0 \<noteq> 0\<close> have [simp]: "coeff q' 0 \<noteq> 0"
by (auto simp: monom_1_dvd_iff' poly_0_coeff_0)
have "p represents x" "q' represents y"
using p q' by (auto simp: represents_def)
hence "poly_mult p q' represents x * y"
by (rule represents_mult) (simp add: poly_0_coeff_0)
moreover have "lead_coeff (poly_mult p q') = 1" using p deg_pos q' deg_pos'
by (simp add: lead_coeff_mult lead_coeff_poly_mult)
ultimately show ?thesis
by (auto simp: algebraic_int_altdef_ipoly represents_def)
qed auto
lemma algebraic_int_power [intro]:
"algebraic_int (x :: 'a :: field_char_0) \<Longrightarrow> algebraic_int (x ^ n)"
by (induction n) auto
lemma algebraic_int_diff [intro]:
fixes x y :: "'a :: field_char_0"
assumes "algebraic_int x" "algebraic_int y"
shows "algebraic_int (x - y)"
using algebraic_int_plus[OF assms(1) algebraic_int_minus[OF assms(2)]] by simp
lemma algebraic_int_sum [intro]:
"(\<And>x. x \<in> A \<Longrightarrow> algebraic_int (f x :: 'a :: field_char_0))
\<Longrightarrow> algebraic_int (sum f A)"
by (induction A rule: infinite_finite_induct) auto
lemma algebraic_int_prod [intro]:
"(\<And>x. x \<in> A \<Longrightarrow> algebraic_int (f x :: 'a :: field_char_0))
\<Longrightarrow> algebraic_int (prod f A)"
by (induction A rule: infinite_finite_induct) auto
lemma algebraic_int_nth_root_real_iff:
"algebraic_int (root n x) \<longleftrightarrow> n = 0 \<or> algebraic_int x"
proof -
have "algebraic_int x" if "algebraic_int (root n x)" "n \<noteq> 0"
proof -
from that(1) have "algebraic_int (root n x ^ n)"
by auto
also have "root n x ^ n = (if even n then \<bar>x\<bar> else x)"
using sgn_power_root[of n x] that(2) by (auto simp: sgn_if split: if_splits)
finally show ?thesis
by (auto split: if_splits)
qed
thus ?thesis by auto
qed
lemma algebraic_int_power_iff:
"algebraic_int (x ^ n :: 'a :: field_char_0) \<longleftrightarrow> n = 0 \<or> algebraic_int x"
proof -
have "algebraic_int x" if "algebraic_int (x ^ n)" "n > 0"
proof (rule algebraic_int_root)
show "poly (monom 1 n) x = x ^ n"
by (auto simp: poly_monom)
qed (use that in \<open>auto simp: degree_monom_eq\<close>)
thus ?thesis by auto
qed
lemma algebraic_int_power_iff' [simp]:
"n > 0 \<Longrightarrow> algebraic_int (x ^ n :: 'a :: field_char_0) \<longleftrightarrow> algebraic_int x"
by (subst algebraic_int_power_iff) auto
lemma algebraic_int_sqrt_iff [simp]: "algebraic_int (sqrt x) \<longleftrightarrow> algebraic_int x"
by (simp add: sqrt_def algebraic_int_nth_root_real_iff)
lemma algebraic_int_csqrt_iff [simp]: "algebraic_int (csqrt x) \<longleftrightarrow> algebraic_int x"
proof
assume "algebraic_int (csqrt x)"
hence "algebraic_int (csqrt x ^ 2)"
by (rule algebraic_int_power)
thus "algebraic_int x"
by simp
qed auto
lemma algebraic_int_norm_complex [intro]:
assumes "algebraic_int (z :: complex)"
shows "algebraic_int (norm z)"
proof -
from assms have "algebraic_int (z * cnj z)"
by auto
also have "z * cnj z = of_real (norm z ^ 2)"
by (rule complex_norm_square [symmetric])
finally show ?thesis
by simp
qed
hide_const (open) x_y
end
|