Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 30,575 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
(*
  File:   Banach_Steinhaus.thy
  Author: Dominique Unruh, University of Tartu
  Author: Jose Manuel Rodriguez Caballero, University of Tartu
*)
section \<open>Banach-Steinhaus theorem\<close>

theory Banach_Steinhaus
  imports Banach_Steinhaus_Missing
begin

text \<open>
  We formalize Banach-Steinhaus theorem as theorem @{text banach_steinhaus}. This theorem was 
  originally proved in Banach-Steinhaus's paper~\cite{banach1927principe}. For the proof, we follow
  Sokal's approach~\cite{sokal2011really}. Furthermore, we prove as a corollary a result about
  pointwise convergent sequences of bounded operators whose domain is a Banach space.
\<close>

subsection \<open>Preliminaries for Sokal's proof of Banach-Steinhaus theorem\<close>

lemma linear_plus_norm:
  includes notation_norm
  assumes \<open>linear f\<close>
  shows \<open>\<parallel>f \<xi>\<parallel> \<le> max \<parallel>f (x + \<xi>)\<parallel> \<parallel>f (x - \<xi>)\<parallel>\<close>
  text \<open>
  Explanation: For arbitrary \<^term>\<open>x\<close> and a linear operator \<^term>\<open>f\<close>,
  \<^term>\<open>norm (f \<xi>)\<close> is upper bounded by the maximum of the norms
  of the shifts of \<^term>\<open>f\<close> (i.e., \<^term>\<open>f (x + \<xi>)\<close> and \<^term>\<open>f (x - \<xi>)\<close>).
\<close>
proof-
  have \<open>norm (f \<xi>) = norm ( (inverse (of_nat 2)) *\<^sub>R (f (x + \<xi>) - f (x - \<xi>)) )\<close>
    by (smt add_diff_cancel_left' assms diff_add_cancel diff_diff_add linear_diff midpoint_def 
        midpoint_plus_self of_nat_1 of_nat_add one_add_one scaleR_half_double)
  also have \<open>\<dots> = inverse (of_nat 2) * norm (f (x + \<xi>) - f (x - \<xi>))\<close>
    using Real_Vector_Spaces.real_normed_vector_class.norm_scaleR by simp
  also have \<open>\<dots> \<le> inverse (of_nat 2) * (norm (f (x + \<xi>)) + norm (f (x - \<xi>)))\<close>
    by (simp add: norm_triangle_ineq4)
  also have \<open>\<dots> \<le>  max (norm (f (x + \<xi>))) (norm (f (x - \<xi>)))\<close>
    by auto
  finally show ?thesis by blast
qed

lemma onorm_Sup_on_ball:
  includes notation_norm
  assumes \<open>r > 0\<close>
  shows "\<parallel>f\<parallel> \<le> Sup ( (\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball x r) ) / r"
  text \<open>
  Explanation: Let \<^term>\<open>f\<close> be a bounded operator and let \<^term>\<open>x\<close> be a point. For any \<^term>\<open>r > 0\<close>, 
  the operator norm of \<^term>\<open>f\<close> is bounded above by the supremum of $f$ applied to the open ball of 
  radius \<^term>\<open>r\<close> around \<^term>\<open>x\<close>, divided by \<^term>\<open>r\<close>.
\<close>
proof-
  have bdd_above_3: \<open>bdd_above ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 r))\<close>
  proof -
    obtain M where \<open>\<And> \<xi>.  \<parallel>f *\<^sub>v \<xi>\<parallel> \<le> M * norm \<xi>\<close> and \<open>M \<ge> 0\<close>
      using norm_blinfun norm_ge_zero by blast      
    hence \<open>\<And> \<xi>. \<xi> \<in> ball 0 r \<Longrightarrow> \<parallel>f *\<^sub>v \<xi>\<parallel> \<le> M * r\<close>
      using \<open>r > 0\<close> by (smt mem_ball_0 mult_left_mono) 
    thus ?thesis by (meson bdd_aboveI2)     
  qed
  have bdd_above_2: \<open>bdd_above ((\<lambda> \<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` (ball 0 r))\<close>
  proof-
    have \<open>bdd_above ((\<lambda> \<xi>. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 r))\<close>
      by auto          
    moreover have \<open>bdd_above ((\<lambda> \<xi>. \<parallel>f *\<^sub>v \<xi>\<parallel>) ` (ball 0 r))\<close>
      using bdd_above_3 by blast
    ultimately have \<open>bdd_above ((\<lambda> \<xi>. \<parallel>f *\<^sub>v x\<parallel> + \<parallel>f *\<^sub>v \<xi>\<parallel>) ` (ball 0 r))\<close>
      by (rule bdd_above_plus)
    then obtain M where \<open>\<And> \<xi>. \<xi> \<in> ball 0 r \<Longrightarrow> \<parallel>f *\<^sub>v x\<parallel> + \<parallel>f *\<^sub>v \<xi>\<parallel> \<le> M\<close>
      unfolding bdd_above_def by (meson image_eqI)
    moreover have \<open>\<parallel>f *\<^sub>v (x + \<xi>)\<parallel> \<le> \<parallel>f *\<^sub>v x\<parallel> + \<parallel>f *\<^sub>v \<xi>\<parallel>\<close> for \<xi>
      by (simp add: blinfun.add_right norm_triangle_ineq)                
    ultimately have \<open>\<And> \<xi>. \<xi> \<in> ball 0 r \<Longrightarrow> \<parallel>f *\<^sub>v (x + \<xi>)\<parallel> \<le> M\<close>
      by (simp add: blinfun.add_right norm_triangle_le)
    thus ?thesis by (meson bdd_aboveI2)                          
  qed 
  have bdd_above_4: \<open>bdd_above ((\<lambda> \<xi>. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` (ball 0 r))\<close>
  proof-
    obtain K where K_def: \<open>\<And> \<xi>. \<xi> \<in> ball 0 r \<Longrightarrow> \<parallel>f *\<^sub>v (x + \<xi>)\<parallel> \<le> K\<close>
      using  \<open>bdd_above ((\<lambda> \<xi>. norm (f (x + \<xi>))) ` (ball 0 r))\<close> unfolding bdd_above_def 
      by (meson image_eqI)
    have \<open>\<xi> \<in> ball (0::'a) r \<Longrightarrow> -\<xi> \<in> ball 0 r\<close> for \<xi>
      by auto
    thus ?thesis by (metis K_def ab_group_add_class.ab_diff_conv_add_uminus bdd_aboveI2)
  qed
  have bdd_above_1: \<open>bdd_above ((\<lambda> \<xi>. max \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>  \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` (ball 0 r))\<close>
  proof-
    have \<open>bdd_above ((\<lambda> \<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` (ball 0 r))\<close>
      using bdd_above_2 by blast
    moreover have \<open>bdd_above ((\<lambda> \<xi>.  \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` (ball 0 r))\<close>
      using bdd_above_4 by blast
    ultimately show ?thesis
      unfolding max_def apply auto apply (meson bdd_above_Int1 bdd_above_mono image_Int_subset)
      by (meson bdd_above_Int1 bdd_above_mono image_Int_subset)   
  qed 
  have bdd_above_6: \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball x r)\<close>
  proof-
    have \<open>bounded (ball x r)\<close>
      by simp            
    hence \<open>bounded ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball x r)\<close>
      by (metis (no_types) add.left_neutral bdd_above_2 bdd_above_norm bounded_norm_comp 
          image_add_ball image_image)
    thus ?thesis
      by (simp add: bounded_imp_bdd_above)
  qed
  have norm_1: \<open>(\<lambda>\<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` ball 0 r = (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball x r\<close>
    by (metis add.right_neutral ball_translation image_image)   
  have bdd_above_5: \<open>bdd_above ((\<lambda>\<xi>. norm (f (x + \<xi>))) ` ball 0 r)\<close>
    by (simp add: bdd_above_2)   
  have norm_2: \<open>\<parallel>\<xi>\<parallel> < r \<Longrightarrow> \<parallel>f *\<^sub>v (x - \<xi>)\<parallel> \<in> (\<lambda>\<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` ball 0 r\<close> for \<xi>
  proof-
    assume \<open>\<parallel>\<xi>\<parallel> < r\<close>
    hence \<open>\<xi> \<in> ball (0::'a) r\<close>
      by auto
    hence \<open>-\<xi> \<in> ball (0::'a) r\<close>
      by auto
    thus ?thesis 
      by (metis (no_types, lifting) ab_group_add_class.ab_diff_conv_add_uminus image_iff) 
  qed
  have norm_2': \<open>\<parallel>\<xi>\<parallel> < r \<Longrightarrow> \<parallel>f *\<^sub>v (x + \<xi>)\<parallel> \<in> (\<lambda>\<xi>. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` ball 0 r\<close> for \<xi>
  proof-
    assume \<open>norm \<xi> < r\<close>
    hence \<open>\<xi> \<in> ball (0::'a) r\<close>
      by auto
    hence \<open>-\<xi> \<in> ball (0::'a) r\<close>
      by auto
    thus ?thesis 
      by (metis (no_types, lifting) diff_minus_eq_add image_iff)          
  qed
  have bdd_above_6: \<open>bdd_above ((\<lambda>\<xi>. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` ball 0 r)\<close>
    by (simp add: bdd_above_4)   
  have Sup_2: \<open>(SUP \<xi>\<in>ball 0 r. max \<parallel>f *\<^sub>v (x + \<xi>)\<parallel> \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) =
                 max (SUP \<xi>\<in>ball 0 r. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) (SUP \<xi>\<in>ball 0 r. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>)\<close>
  proof-
    have \<open>ball (0::'a) r \<noteq> {}\<close>
      using \<open>r > 0\<close> by auto
    moreover have \<open>bdd_above ((\<lambda>\<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` ball 0 r)\<close>
      using bdd_above_5 by blast
    moreover have \<open>bdd_above ((\<lambda>\<xi>. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` ball 0 r)\<close>
      using bdd_above_6 by blast
    ultimately show ?thesis
      using max_Sup
      by (metis (mono_tags, lifting) Banach_Steinhaus_Missing.pointwise_max_def image_cong) 
  qed 
  have Sup_3': \<open>\<parallel>\<xi>\<parallel> < r \<Longrightarrow> \<parallel>f *\<^sub>v (x + \<xi>)\<parallel> \<in> (\<lambda>\<xi>. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` ball 0 r\<close> for \<xi>::'a
    by (simp add: norm_2')
  have Sup_3'': \<open>\<parallel>\<xi>\<parallel> < r \<Longrightarrow> \<parallel>f *\<^sub>v (x - \<xi>)\<parallel> \<in> (\<lambda>\<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` ball 0 r\<close> for \<xi>::'a
    by (simp add: norm_2)  
  have Sup_3: \<open>max (SUP \<xi>\<in>ball 0 r. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) (SUP \<xi>\<in>ball 0 r.  \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) =
        (SUP \<xi>\<in>ball 0 r. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>)\<close>
  proof-
    have \<open>(\<lambda>\<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` (ball 0 r) = (\<lambda>\<xi>. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` (ball 0 r)\<close>
      apply auto using Sup_3' apply auto using Sup_3'' by blast
    hence \<open>Sup ((\<lambda>\<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` (ball 0 r))=Sup ((\<lambda>\<xi>. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` (ball 0 r))\<close>
      by simp
    thus ?thesis by simp
  qed
  have Sup_1: \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 r)) \<le> Sup ( (\<lambda>\<xi>. \<parallel>f *\<^sub>v \<xi>\<parallel>) ` (ball x r) )\<close> 
  proof-
    have \<open>(\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) \<xi> \<le> max \<parallel>f *\<^sub>v (x + \<xi>)\<parallel> \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>\<close> for \<xi>
      apply(rule linear_plus_norm) apply (rule bounded_linear.linear)
      by (simp add: blinfun.bounded_linear_right)
    moreover have \<open>bdd_above ((\<lambda> \<xi>. max \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>  \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` (ball 0 r))\<close> 
      using bdd_above_1 by blast
    moreover have \<open>ball (0::'a) r \<noteq> {}\<close>
      using \<open>r > 0\<close> by auto      
    ultimately have \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 r)) \<le>
                     Sup ((\<lambda>\<xi>. max \<parallel>f *\<^sub>v (x + \<xi>)\<parallel> \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` (ball 0 r))\<close>
      using cSUP_mono by smt 
    also have \<open>\<dots> = max (Sup ((\<lambda>\<xi>.  \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` (ball 0 r)))
                        (Sup ((\<lambda>\<xi>. \<parallel>f *\<^sub>v (x - \<xi>)\<parallel>) ` (ball 0 r)))\<close> 
      using Sup_2 by blast
    also have \<open>\<dots> = Sup ((\<lambda>\<xi>. \<parallel>f *\<^sub>v (x + \<xi>)\<parallel>) ` (ball 0 r))\<close>
      using Sup_3 by blast
    also have \<open>\<dots> = Sup ((\<lambda>\<xi>. \<parallel>f *\<^sub>v \<xi>\<parallel>) ` (ball x r))\<close>
      by (metis  add.right_neutral ball_translation image_image)      
    finally show ?thesis by blast
  qed
  have \<open>\<parallel>f\<parallel> = (SUP x\<in>ball 0 r. \<parallel>f *\<^sub>v x\<parallel>) / r\<close>
    using \<open>0 < r\<close> onorm_r by blast
  moreover have \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 r)) / r \<le> Sup ((\<lambda>\<xi>. \<parallel>f *\<^sub>v \<xi>\<parallel>) ` (ball x r)) / r\<close>
    using Sup_1 \<open>0 < r\<close> divide_right_mono by fastforce 
  ultimately have \<open>\<parallel>f\<parallel> \<le> Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball x r) / r\<close>
    by simp
  thus ?thesis by simp    
qed

lemma onorm_Sup_on_ball':
  includes notation_norm
  assumes \<open>r > 0\<close> and \<open>\<tau> < 1\<close>
  shows \<open>\<exists>\<xi>\<in>ball x r.  \<tau> * r * \<parallel>f\<parallel> \<le> \<parallel>f *\<^sub>v \<xi>\<parallel>\<close>
  text \<open>                 
  In the proof of Banach-Steinhaus theorem, we will use this variation of the 
  lemma @{text onorm_Sup_on_ball}.

  Explanation: Let \<^term>\<open>f\<close> be a bounded operator, let \<^term>\<open>x\<close> be a point and let \<^term>\<open>r\<close> be a 
  positive real number. For any real number \<^term>\<open>\<tau> < 1\<close>, there is a point \<^term>\<open>\<xi>\<close> in the open ball 
  of radius \<^term>\<open>r\<close> around \<^term>\<open>x\<close> such that \<^term>\<open>\<tau> * r * \<parallel>f\<parallel> \<le> \<parallel>f *\<^sub>v \<xi>\<parallel>\<close>.
\<close>
proof(cases  \<open>f = 0\<close>)
  case True
  thus ?thesis by (metis assms(1) centre_in_ball mult_zero_right norm_zero order_refl 
        zero_blinfun.rep_eq) 
next
  case False
  have bdd_above_1: \<open>bdd_above ((\<lambda>t. \<parallel>(*\<^sub>v) f t\<parallel>) ` ball x r)\<close> for f::\<open>'a \<Rightarrow>\<^sub>L 'b\<close>
    using assms(1) bounded_linear_image by (simp add: bounded_linear_image 
        blinfun.bounded_linear_right bounded_imp_bdd_above bounded_norm_comp) 
  have  \<open>norm f > 0\<close>
    using \<open>f \<noteq> 0\<close> by auto
  have \<open>norm f \<le>  Sup ( (\<lambda>\<xi>.  \<parallel>(*\<^sub>v) f \<xi>\<parallel>) ` (ball x r) ) / r\<close>
    using \<open>r > 0\<close> by (simp add: onorm_Sup_on_ball)  
  hence \<open>r * norm f \<le>  Sup ( (\<lambda>\<xi>.  \<parallel>(*\<^sub>v) f \<xi>\<parallel>) ` (ball x r) )\<close>
    using \<open>0 < r\<close> by (smt divide_strict_right_mono nonzero_mult_div_cancel_left) 
  moreover have \<open>\<tau> * r * norm f < r * norm f\<close>
    using  \<open>\<tau> < 1\<close> using \<open>0 < norm f\<close> \<open>0 < r\<close> by auto
  ultimately have \<open>\<tau> * r * norm f < Sup ( (norm \<circ> ((*\<^sub>v) f)) ` (ball x r) )\<close>
    by simp
  moreover have \<open>(norm \<circ> ( (*\<^sub>v) f)) ` (ball x r) \<noteq> {}\<close>
    using \<open>0 < r\<close> by auto    
  moreover have \<open>bdd_above ((norm \<circ> ( (*\<^sub>v) f)) ` (ball x r))\<close>
    using bdd_above_1 apply transfer by simp
  ultimately have \<open>\<exists>t \<in> (norm \<circ> ( (*\<^sub>v) f)) ` (ball x r). \<tau> * r * norm f < t\<close> 
    by (simp add: less_cSup_iff)    
  thus ?thesis by (smt comp_def image_iff) 
qed

subsection \<open>Banach-Steinhaus theorem\<close>

theorem banach_steinhaus:
  fixes f::\<open>'c \<Rightarrow> ('a::banach \<Rightarrow>\<^sub>L 'b::real_normed_vector)\<close>
  assumes \<open>\<And>x. bounded (range (\<lambda>n. (f n) *\<^sub>v x))\<close>
  shows  \<open>bounded (range f)\<close>
  text\<open>
  This is Banach-Steinhaus Theorem.

  Explanation: If a family of bounded operators on a Banach space
  is pointwise bounded, then it is uniformly bounded.
\<close>
proof(rule classical)
  assume \<open>\<not>(bounded (range f))\<close>
  have sum_1: \<open>\<exists>K. \<forall>n. sum (\<lambda>k. inverse (real_of_nat 3^k)) {0..n} \<le> K\<close>
  proof-
    have \<open>summable (\<lambda>n. inverse ((3::real) ^ n))\<close>
      by (simp flip: power_inverse)
    hence \<open>bounded (range (\<lambda>n. sum (\<lambda> k. inverse (real 3 ^ k)) {0..<n}))\<close>
      using summable_imp_sums_bounded[where f = "(\<lambda>n. inverse (real_of_nat 3^n))"]
        lessThan_atLeast0 by auto
    hence \<open>\<exists>M. \<forall>h\<in>(range (\<lambda>n. sum (\<lambda> k. inverse (real 3 ^ k)) {0..<n})). norm h \<le> M\<close>
      using bounded_iff by blast
    then obtain M where \<open>h\<in>range (\<lambda>n. sum (\<lambda> k. inverse (real 3 ^ k)) {0..<n}) \<Longrightarrow> norm h \<le> M\<close> 
      for h
      by blast      
    have sum_2: \<open>sum (\<lambda>k. inverse (real_of_nat 3^k)) {0..n} \<le> M\<close> for n
    proof-
      have  \<open>norm (sum (\<lambda> k. inverse (real 3 ^ k)) {0..< Suc n}) \<le> M\<close>
        using \<open>\<And>h. h\<in>(range (\<lambda>n. sum (\<lambda> k. inverse (real 3 ^ k)) {0..<n})) \<Longrightarrow> norm h \<le> M\<close> 
        by blast
      hence  \<open>norm (sum (\<lambda> k. inverse (real 3 ^ k)) {0..n}) \<le> M\<close>
        by (simp add: atLeastLessThanSuc_atLeastAtMost)        
      hence  \<open>(sum (\<lambda> k. inverse (real 3 ^ k)) {0..n}) \<le> M\<close>
        by auto
      thus ?thesis  by blast
    qed
    have \<open>sum (\<lambda>k. inverse (real_of_nat 3^k)) {0..n} \<le> M\<close> for n 
      using sum_2 by blast
    thus ?thesis  by blast
  qed
  have \<open>of_rat 2/3 < (1::real)\<close>
    by auto
  hence \<open>\<forall>g::'a \<Rightarrow>\<^sub>L 'b. \<forall>x. \<forall>r. \<exists>\<xi>. g \<noteq> 0 \<and> r > 0
               \<longrightarrow> (\<xi>\<in>ball x r \<and> (of_rat 2/3) * r * norm g \<le> norm ((*\<^sub>v) g \<xi>))\<close> 
    using onorm_Sup_on_ball' by blast
  hence \<open>\<exists>\<xi>. \<forall>g::'a \<Rightarrow>\<^sub>L 'b. \<forall>x. \<forall>r. g \<noteq> 0 \<and> r > 0
           \<longrightarrow> ((\<xi> g x r)\<in>ball x r \<and> (of_rat 2/3) * r * norm g \<le> norm ((*\<^sub>v) g (\<xi> g x r)))\<close> 
    by metis
  then obtain \<xi> where f1: \<open>\<lbrakk>g \<noteq> 0; r > 0\<rbrakk> \<Longrightarrow> 
        \<xi> g x r \<in> ball x r \<and>  (of_rat 2/3) * r * norm g \<le> norm ((*\<^sub>v) g (\<xi> g x r))\<close>
    for g::\<open>'a \<Rightarrow>\<^sub>L 'b\<close> and x and r
    by blast
  have \<open>\<forall>n. \<exists>k. norm (f k) \<ge> 4^n\<close>
    using \<open>\<not>(bounded (range f))\<close> by (metis (mono_tags, opaque_lifting) boundedI image_iff linear)
  hence  \<open>\<exists>k. \<forall>n. norm (f (k n)) \<ge> 4^n\<close>
    by metis
  hence  \<open>\<exists>k. \<forall>n. norm ((f \<circ> k) n) \<ge> 4^n\<close>
    by simp
  then obtain k where \<open>norm ((f \<circ> k) n) \<ge> 4^n\<close> for n
    by blast
  define T where \<open>T = f \<circ> k\<close>
  have \<open>T n \<in> range f\<close> for n
    unfolding T_def by simp        
  have \<open>norm (T n) \<ge> of_nat (4^n)\<close> for n
    unfolding T_def using \<open>\<And> n. norm ((f \<circ> k) n) \<ge> 4^n\<close> by auto
  hence \<open>T n \<noteq> 0\<close> for n
    by (smt T_def \<open>\<And>n. 4 ^ n \<le> norm ((f \<circ> k) n)\<close> norm_zero power_not_zero zero_le_power)
  have \<open>inverse (of_nat 3^n) > (0::real)\<close> for n
    by auto
  define y::\<open>nat \<Rightarrow> 'a\<close> where \<open>y = rec_nat 0 (\<lambda>n x. \<xi> (T n) x (inverse (of_nat 3^n)))\<close>
  have \<open>y (Suc n) \<in> ball (y n) (inverse (of_nat 3^n))\<close> for n
    using f1 \<open>\<And> n. T n \<noteq> 0\<close> \<open>\<And> n. inverse (of_nat 3^n) > 0\<close> unfolding y_def by auto
  hence \<open>norm (y (Suc n) - y n) \<le> inverse (of_nat 3^n)\<close> for n
    unfolding ball_def apply auto using dist_norm by (smt norm_minus_commute) 
  moreover have \<open>\<exists>K. \<forall>n. sum (\<lambda>k. inverse (real_of_nat 3^k)) {0..n} \<le> K\<close>
    using sum_1 by blast
  moreover have \<open>Cauchy y\<close>
    using convergent_series_Cauchy[where a = "\<lambda>n. inverse (of_nat 3^n)" and \<phi> = y] dist_norm
    by (metis calculation(1) calculation(2))
  hence \<open>\<exists> x. y \<longlonglongrightarrow> x\<close>
    by (simp add: convergent_eq_Cauchy)
  then obtain x where \<open>y \<longlonglongrightarrow> x\<close>
    by blast
  have norm_2: \<open>norm (x - y (Suc n)) \<le> (inverse (of_nat 2))*(inverse (of_nat 3^n))\<close> for n
  proof-
    have \<open>inverse (real_of_nat 3) < 1\<close>
      by simp        
    moreover have \<open>y 0 = 0\<close>
      using y_def by auto
    ultimately have \<open>norm (x - y (Suc n)) 
    \<le> (inverse (of_nat 3)) * inverse (1 - (inverse (of_nat 3))) * ((inverse (of_nat 3)) ^ n)\<close>
      using bound_Cauchy_to_lim[where c = "inverse (of_nat 3)" and y = y and x = x]
        power_inverse semiring_norm(77)  \<open>y \<longlonglongrightarrow> x\<close>
        \<open>\<And> n. norm (y (Suc n) - y n) \<le> inverse (of_nat 3^n)\<close> by (metis divide_inverse)
    moreover have \<open>inverse (real_of_nat 3) * inverse (1 - (inverse (of_nat 3)))
                   = inverse (of_nat 2)\<close>
      by auto
    ultimately show ?thesis 
      by (metis power_inverse) 
  qed
  have \<open>norm (x - y (Suc n)) \<le> (inverse (of_nat 2))*(inverse (of_nat 3^n))\<close> for n
    using norm_2 by blast
  have \<open>\<exists> M. \<forall> n. norm ((*\<^sub>v) (T n) x) \<le> M\<close>
    unfolding T_def apply auto
    by (metis \<open>\<And>x. bounded (range (\<lambda>n. (*\<^sub>v) (f n) x))\<close> bounded_iff rangeI)
  then obtain M where \<open>norm ((*\<^sub>v) (T n) x) \<le> M\<close> for n
    by blast
  have norm_1: \<open>norm (T n) * norm (y (Suc n) - x) + norm ((*\<^sub>v) (T n) x)
       \<le> inverse (real 2) * inverse (real 3 ^ n) * norm (T n) + norm ((*\<^sub>v) (T n) x)\<close> for n
  proof-   
    have \<open>norm (y (Suc n) - x) \<le> (inverse (of_nat 2))*(inverse (of_nat 3^n))\<close>
      using \<open>norm (x - y (Suc n)) \<le> (inverse (of_nat 2))*(inverse (of_nat 3^n))\<close> 
      by (simp add: norm_minus_commute)
    moreover have \<open>norm (T n) \<ge> 0\<close>
      by auto
    ultimately have \<open>norm (T n) * norm (y (Suc n) - x) 
                     \<le> (inverse (of_nat 2))*(inverse (of_nat 3^n))*norm (T n)\<close>
      by (simp add: \<open>\<And>n. T n \<noteq> 0\<close>)
    thus ?thesis by simp      
  qed 
  have inverse_2: \<open>(inverse (of_nat 6)) * inverse (real 3 ^ n) * norm (T n) 
                  \<le> norm ((*\<^sub>v) (T n) x)\<close> for n
  proof-
    have \<open>(of_rat 2/3)*(inverse (of_nat 3^n))*norm (T n) \<le> norm ((*\<^sub>v) (T n) (y (Suc n)))\<close> 
      using f1 \<open>\<And> n. T n \<noteq> 0\<close> \<open>\<And> n. inverse (of_nat 3^n) > 0\<close> unfolding y_def by auto
    also have \<open>\<dots> = norm ((*\<^sub>v) (T n) ((y (Suc n) - x) + x))\<close>
      by auto
    also have \<open>\<dots> = norm ((*\<^sub>v) (T n) (y (Suc n) - x) + (*\<^sub>v) (T n) x)\<close>
      apply transfer apply auto by (metis diff_add_cancel linear_simps(1))
    also have \<open>\<dots> \<le> norm ((*\<^sub>v) (T n) (y (Suc n) - x)) + norm ((*\<^sub>v) (T n) x)\<close>
      by (simp add: norm_triangle_ineq)
    also have \<open>\<dots> \<le> norm (T n) * norm (y (Suc n) - x) + norm ((*\<^sub>v) (T n) x)\<close>
      apply transfer apply auto using onorm by auto 
    also have \<open>\<dots> \<le> (inverse (of_nat 2))*(inverse (of_nat 3^n))*norm (T n) 
                + norm ((*\<^sub>v) (T n) x)\<close>
      using norm_1 by blast
    finally have \<open>(of_rat 2/3) * inverse (real 3 ^ n) * norm (T n)
                \<le> inverse (real 2) * inverse (real 3 ^ n) * norm (T n) 
                + norm ((*\<^sub>v) (T n) x)\<close>
      by blast
    hence \<open>(of_rat 2/3) * inverse (real 3 ^ n) * norm (T n) 
             - inverse (real 2) * inverse (real 3 ^ n) * norm (T n) \<le> norm ((*\<^sub>v) (T n) x)\<close>
      by linarith
    moreover have \<open>(of_rat 2/3) * inverse (real 3 ^ n) * norm (T n) 
             - inverse (real 2) * inverse (real 3 ^ n) * norm (T n)
             = (inverse (of_nat 6)) * inverse (real 3 ^ n) * norm (T n)\<close>
      by fastforce
    ultimately show \<open>(inverse (of_nat 6)) * inverse (real 3 ^ n) * norm (T n) \<le> norm ((*\<^sub>v) (T n) x)\<close>
      by linarith      
  qed
  have inverse_3: \<open>(inverse (of_nat 6)) * (of_rat (4/3)^n) 
                    \<le> (inverse (of_nat 6)) * inverse (real 3 ^ n) * norm (T n)\<close> for n
  proof-
    have \<open>of_rat (4/3)^n = inverse (real 3 ^ n) * (of_nat 4^n)\<close>
      apply auto by (metis divide_inverse_commute of_rat_divide power_divide of_rat_numeral_eq) 
    also have \<open>\<dots> \<le>  inverse (real 3 ^ n) * norm (T n)\<close>
      using \<open>\<And>n. norm (T n) \<ge> of_nat (4^n)\<close> by simp
    finally have \<open>of_rat (4/3)^n \<le> inverse (real 3 ^ n) * norm (T n)\<close>
      by blast
    moreover have \<open>inverse (of_nat 6) > (0::real)\<close>
      by auto
    ultimately show ?thesis by auto
  qed
  have inverse_1: \<open>(inverse (of_nat 6)) * (of_rat (4/3)^n) \<le> M\<close> for n
  proof-
    have \<open>(inverse (of_nat 6)) * (of_rat (4/3)^n) 
          \<le> (inverse (of_nat 6)) * inverse (real 3 ^ n) * norm (T n)\<close> 
      using inverse_3 by blast
    also have \<open>\<dots> \<le> norm ((*\<^sub>v) (T n) x)\<close> 
      using inverse_2 by blast
    finally have \<open>(inverse (of_nat 6)) * (of_rat (4/3)^n) \<le> norm ((*\<^sub>v) (T n) x)\<close>
      by auto
    thus ?thesis using \<open>\<And> n. norm ((*\<^sub>v) (T n) x) \<le> M\<close> by smt
  qed
  have \<open>\<exists>n. M < (inverse (of_nat 6)) * (of_rat (4/3)^n)\<close>
    using Real.real_arch_pow by auto
  moreover have \<open>(inverse (of_nat 6)) * (of_rat (4/3)^n) \<le> M\<close> for n
    using inverse_1 by blast                      
  ultimately show ?thesis by smt
qed

subsection \<open>A consequence of Banach-Steinhaus theorem\<close>

corollary bounded_linear_limit_bounded_linear:
  fixes f::\<open>nat \<Rightarrow> ('a::banach \<Rightarrow>\<^sub>L 'b::real_normed_vector)\<close>
  assumes \<open>\<And>x. convergent (\<lambda>n. (f n) *\<^sub>v x)\<close>
  shows  \<open>\<exists>g. (\<lambda>n. (*\<^sub>v) (f n)) \<midarrow>pointwise\<rightarrow> (*\<^sub>v) g\<close>
  text\<open>
  Explanation: If a sequence of bounded operators on a Banach space converges
  pointwise, then the limit is also a bounded operator.
\<close>
proof-
  have \<open>\<exists>l. (\<lambda>n. (*\<^sub>v) (f n) x) \<longlonglongrightarrow> l\<close> for x
    by (simp add:  \<open>\<And>x. convergent (\<lambda>n. (*\<^sub>v) (f n) x)\<close> convergentD)
  hence \<open>\<exists>F. (\<lambda>n. (*\<^sub>v) (f n)) \<midarrow>pointwise\<rightarrow> F\<close>
    unfolding pointwise_convergent_to_def by metis
  obtain F where \<open>(\<lambda>n. (*\<^sub>v) (f n)) \<midarrow>pointwise\<rightarrow> F\<close>
    using \<open>\<exists>F. (\<lambda>n. (*\<^sub>v) (f n)) \<midarrow>pointwise\<rightarrow> F\<close> by auto
  have \<open>\<And>x. (\<lambda> n. (*\<^sub>v) (f n) x) \<longlonglongrightarrow> F x\<close>
    using \<open>(\<lambda>n. (*\<^sub>v) (f n)) \<midarrow>pointwise\<rightarrow> F\<close> apply transfer
    by (simp add: pointwise_convergent_to_def)
  have \<open>bounded (range f)\<close>
    using \<open>\<And>x. convergent (\<lambda>n. (*\<^sub>v) (f n) x)\<close> banach_steinhaus
      \<open>\<And>x. \<exists>l. (\<lambda>n. (*\<^sub>v) (f n) x) \<longlonglongrightarrow> l\<close> convergent_imp_bounded by blast
  have norm_f_n: \<open>\<exists> M. \<forall> n. norm (f n) \<le> M\<close>
    unfolding bounded_def
    by (meson UNIV_I \<open>bounded (range f)\<close> bounded_iff image_eqI)
  have \<open>isCont (\<lambda> t::'b. norm t) y\<close> for y::'b
    using Limits.isCont_norm by simp
  hence \<open>(\<lambda> n. norm ((*\<^sub>v) (f n) x)) \<longlonglongrightarrow> (norm (F x))\<close> for x
    using \<open>\<And> x::'a. (\<lambda> n. (*\<^sub>v) (f n) x) \<longlonglongrightarrow> F x\<close> by (simp add: tendsto_norm)
  hence norm_f_n_x: \<open>\<exists> M. \<forall> n. norm ((*\<^sub>v) (f n) x) \<le> M\<close> for x
    using Elementary_Metric_Spaces.convergent_imp_bounded
    by (metis UNIV_I \<open>\<And> x::'a. (\<lambda> n. (*\<^sub>v) (f n) x) \<longlonglongrightarrow> F x\<close> bounded_iff image_eqI)
  have norm_f: \<open>\<exists>K. \<forall>n. \<forall>x. norm ((*\<^sub>v) (f n) x) \<le> norm x * K\<close>
  proof-
    have \<open>\<exists> M. \<forall> n. norm ((*\<^sub>v) (f n) x) \<le> M\<close> for x
      using norm_f_n_x  \<open>\<And>x. (\<lambda>n. (*\<^sub>v) (f n) x) \<longlonglongrightarrow> F x\<close> by blast
    hence \<open>\<exists> M. \<forall> n. norm (f n) \<le> M\<close>
      using norm_f_n by simp 
    then obtain M::real where \<open>\<exists> M. \<forall> n. norm (f n) \<le> M\<close>
      by blast
    have \<open>\<forall> n. \<forall>x. norm ((*\<^sub>v) (f n) x) \<le> norm x * norm (f n)\<close>
      apply transfer apply auto by (metis mult.commute onorm) 
    thus  ?thesis using \<open>\<exists> M. \<forall> n. norm (f n) \<le> M\<close>
      by (metis (no_types, opaque_lifting) dual_order.trans norm_eq_zero order_refl 
          mult_le_cancel_iff2 vector_space_over_itself.scale_zero_left zero_less_norm_iff)
  qed 
  have norm_F_x: \<open>\<exists>K. \<forall>x. norm (F x) \<le> norm x * K\<close>
  proof-
    have "\<exists>K. \<forall>n. \<forall>x. norm ((*\<^sub>v) (f n) x) \<le> norm x * K"
      using norm_f \<open>\<And>x. (\<lambda>n. (*\<^sub>v) (f n) x) \<longlonglongrightarrow> F x\<close> by auto
    thus ?thesis
      using  \<open>\<And> x::'a. (\<lambda> n. (*\<^sub>v) (f n)  x) \<longlonglongrightarrow> F x\<close> apply transfer 
      by (metis Lim_bounded tendsto_norm)   
  qed
  have \<open>linear F\<close>
  proof(rule linear_limit_linear)
    show \<open>linear ((*\<^sub>v) (f n))\<close> for n
      apply transfer apply auto by (simp add: bounded_linear.linear) 
    show \<open>f \<midarrow>pointwise\<rightarrow> F\<close>
      using \<open>(\<lambda>n. (*\<^sub>v) (f n)) \<midarrow>pointwise\<rightarrow> F\<close> by auto
  qed
  moreover have \<open>bounded_linear_axioms F\<close>
    using norm_F_x by (simp add: \<open>\<And>x. (\<lambda>n. (*\<^sub>v) (f n) x) \<longlonglongrightarrow> F x\<close> bounded_linear_axioms_def) 
  ultimately have \<open>bounded_linear F\<close> 
    unfolding bounded_linear_def by blast
  hence \<open>\<exists>g. (*\<^sub>v) g = F\<close>
    using bounded_linear_Blinfun_apply by auto
  thus ?thesis using \<open>(\<lambda>n. (*\<^sub>v) (f n)) \<midarrow>pointwise\<rightarrow> F\<close> apply transfer by auto
qed

end