Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,071 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
section \<open>The Polynomial Factorization Algorithm\<close>
subsection \<open>Factoring Square-Free Integer Polynomials\<close>
text \<open>We combine all previous results, i.e., Berlekamp's algorithm, Hensel-lifting, the reconstruction
of Zassenhaus, Mignotte-bounds, etc., to eventually assemble the factorization algorithm for
integer polynomials.\<close>
theory Berlekamp_Zassenhaus
imports
Berlekamp_Hensel
Polynomial_Factorization.Gauss_Lemma
Polynomial_Factorization.Dvd_Int_Poly
Reconstruction
Suitable_Prime
Degree_Bound
Code_Abort_Gcd
begin
context
begin
private partial_function (tailrec) find_exponent_main :: "int \<Rightarrow> int \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> nat" where
[code]: "find_exponent_main p pm m bnd = (if pm > bnd then m
else find_exponent_main p (pm * p) (Suc m) bnd)"
definition find_exponent :: "int \<Rightarrow> int \<Rightarrow> nat" where
"find_exponent p bnd = find_exponent_main p p 1 bnd"
lemma find_exponent: assumes p: "p > 1"
shows "p ^ find_exponent p bnd > bnd" "find_exponent p bnd \<noteq> 0"
proof -
{
fix m and n
assume "n = nat (1 + bnd - p^m)" and "m \<ge> 1"
hence "bnd < p ^ find_exponent_main p (p^m) m bnd \<and> find_exponent_main p (p^m) m bnd \<ge> 1"
proof (induct n arbitrary: m rule: less_induct)
case (less n m)
note simp = find_exponent_main.simps[of p "p^m"]
show ?case
proof (cases "bnd < p ^ m")
case True
thus ?thesis using less unfolding simp by simp
next
case False
hence id: "find_exponent_main p (p ^ m) m bnd = find_exponent_main p (p ^ Suc m) (Suc m) bnd"
unfolding simp by (simp add: ac_simps)
show ?thesis unfolding id
by (rule less(1)[OF _ refl], unfold less(2), insert False p, auto)
qed
qed
}
from this[OF refl, of 1]
show "p ^ find_exponent p bnd > bnd" "find_exponent p bnd \<noteq> 0"
unfolding find_exponent_def by auto
qed
end
definition berlekamp_zassenhaus_factorization :: "int poly \<Rightarrow> int poly list" where
"berlekamp_zassenhaus_factorization f = (let
\<comment> \<open>find suitable prime\<close>
p = suitable_prime_bz f;
\<comment> \<open>compute finite field factorization\<close>
(_, fs) = finite_field_factorization_int p f;
\<comment> \<open>determine maximal degree that we can build by multiplying at most half of the factors\<close>
max_deg = degree_bound fs;
\<comment> \<open>determine a number large enough to represent all coefficients of every\<close>
\<comment> \<open>factor of \<open>lc * f\<close> that has at most degree most \<open>max_deg\<close>\<close>
bnd = 2 * \<bar>lead_coeff f\<bar> * factor_bound f max_deg;
\<comment> \<open>determine \<open>k\<close> such that \<open>p^k > bnd\<close>\<close>
k = find_exponent p bnd;
\<comment> \<open>perform hensel lifting to lift factorization to mod \<open>p^k\<close>\<close>
vs = hensel_lifting p k f fs
\<comment> \<open>reconstruct integer factors\<close>
in zassenhaus_reconstruction vs p k f)"
theorem berlekamp_zassenhaus_factorization_irreducible\<^sub>d:
assumes res: "berlekamp_zassenhaus_factorization f = fs"
and sf: "square_free f"
and deg: "degree f > 0"
shows "f = prod_list fs \<and> (\<forall> fi \<in> set fs. irreducible\<^sub>d fi)"
proof -
let ?lc = "lead_coeff f"
define p where "p \<equiv> suitable_prime_bz f"
obtain c gs where berl: "finite_field_factorization_int p f = (c,gs)" by force
let ?degs = "map degree gs"
note res = res[unfolded berlekamp_zassenhaus_factorization_def Let_def, folded p_def,
unfolded berl split, folded]
from suitable_prime_bz[OF sf refl]
have prime: "prime p" and cop: "coprime ?lc p" and sf: "poly_mod.square_free_m p f"
unfolding p_def by auto
from prime interpret poly_mod_prime p by unfold_locales
define n where "n = find_exponent p (2 * abs ?lc * factor_bound f (degree_bound gs))"
note n = find_exponent[OF m1, of "2 * abs ?lc * factor_bound f (degree_bound gs)",
folded n_def]
note bh = berlekamp_and_hensel_separated[OF cop sf refl berl n(2)]
have db: "degree_bound (berlekamp_hensel p n f) = degree_bound gs" unfolding bh
degree_bound_def max_factor_degree_def by simp
note res = res[folded n_def bh(1)]
show ?thesis
by (rule zassenhaus_reconstruction_irreducible\<^sub>d[OF prime cop sf deg refl _ res], insert n db, auto)
qed
corollary berlekamp_zassenhaus_factorization_irreducible:
assumes res: "berlekamp_zassenhaus_factorization f = fs"
and sf: "square_free f"
and pr: "primitive f"
and deg: "degree f > 0"
shows "f = prod_list fs \<and> (\<forall> fi \<in> set fs. irreducible fi)"
using pr irreducible_primitive_connect[OF primitive_prod_list]
berlekamp_zassenhaus_factorization_irreducible\<^sub>d[OF res sf deg] by auto
end
|