Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,758 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
subsection \<open>Chinese Remainder Theorem for Polynomials\<close>
text \<open>We prove the Chinese Remainder Theorem, and strengthen it by showing uniqueness\<close>
theory Chinese_Remainder_Poly
imports
"HOL-Number_Theory.Residues"
Polynomial_Factorization.Polynomial_Divisibility
Polynomial_Interpolation.Missing_Polynomial
begin
lemma cong_add_poly:
"[(a::'b::{field_gcd} poly) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
by (fact cong_add)
lemma cong_mult_poly:
"[(a::'b::{field_gcd} poly) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
by (fact cong_mult)
lemma cong_mult_self_poly: "[(a::'b::{field_gcd} poly) * m = 0] (mod m)"
by (fact cong_mult_self_right)
lemma cong_scalar2_poly: "[(a::'b::{field_gcd} poly)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
by (fact cong_scalar_left)
lemma cong_sum_poly:
"(\<And>x. x \<in> A \<Longrightarrow> [((f x)::'b::{field_gcd} poly) = g x] (mod m)) \<Longrightarrow>
[(\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. g x)] (mod m)"
by (rule cong_sum)
lemma cong_iff_lin_poly: "([(a::'b::{field_gcd} poly) = b] (mod m)) = (\<exists>k. b = a + m * k)"
using cong_diff_iff_cong_0 [of b a m] by (auto simp add: cong_0_iff dvd_def algebra_simps dest: cong_sym)
lemma cong_solve_poly: "(a::'b::{field_gcd} poly) \<noteq> 0 \<Longrightarrow> \<exists>x. [a * x = gcd a n] (mod n)"
proof (cases "n = 0")
case True
note n0=True
show ?thesis
proof (cases "monic a")
case True
have n: "normalize a = a" by (rule normalize_monic[OF True])
show ?thesis
by (rule exI[of _ 1], auto simp add: n0 n cong_def)
next
case False
show ?thesis
by (auto simp add: True cong_def normalize_poly_old_def map_div_is_smult_inverse)
(metis mult.right_neutral mult_smult_right)
qed
next
case False
note n_not_0 = False
show ?thesis
using bezout_coefficients_fst_snd [of a n, symmetric]
by (auto simp add: cong_iff_lin_poly mult.commute [of a] mult.commute [of n])
qed
lemma cong_solve_coprime_poly:
assumes coprime_an:"coprime (a::'b::{field_gcd} poly) n"
shows "\<exists>x. [a * x = 1] (mod n)"
proof (cases "a = 0")
case True
show ?thesis unfolding cong_def
using True coprime_an by auto
next
case False
show ?thesis
using coprime_an cong_solve_poly[OF False, of n]
unfolding cong_def
by presburger
qed
lemma cong_dvd_modulus_poly:
"[x = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> [x = y] (mod n)" for x y :: "'b::{field_gcd} poly"
by (auto simp add: cong_iff_lin_poly elim!: dvdE)
lemma chinese_remainder_aux_poly:
fixes A :: "'a set"
and m :: "'a \<Rightarrow> 'b::{field_gcd} poly"
assumes fin: "finite A"
and cop: "\<forall>i \<in> A. (\<forall>j \<in> A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
shows "\<exists>b. (\<forall>i \<in> A. [b i = 1] (mod m i) \<and> [b i = 0] (mod (\<Prod>j \<in> A - {i}. m j)))"
proof (rule finite_set_choice, rule fin, rule ballI)
fix i
assume "i : A"
with cop have "coprime (\<Prod>j \<in> A - {i}. m j) (m i)"
by (auto intro: prod_coprime_left)
then have "\<exists>x. [(\<Prod>j \<in> A - {i}. m j) * x = 1] (mod m i)"
by (elim cong_solve_coprime_poly)
then obtain x where "[(\<Prod>j \<in> A - {i}. m j) * x = 1] (mod m i)"
by auto
moreover have "[(\<Prod>j \<in> A - {i}. m j) * x = 0]
(mod (\<Prod>j \<in> A - {i}. m j))"
by (subst mult.commute, rule cong_mult_self_poly)
ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0]
(mod prod m (A - {i}))"
by blast
qed
(*The Chinese Remainder Theorem for polynomials: *)
lemma chinese_remainder_poly:
fixes A :: "'a set"
and m :: "'a \<Rightarrow> 'b::{field_gcd} poly"
and u :: "'a \<Rightarrow> 'b poly"
assumes fin: "finite A"
and cop: "\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
shows "\<exists>x. (\<forall>i\<in>A. [x = u i] (mod m i))"
proof -
from chinese_remainder_aux_poly [OF fin cop] obtain b where
bprop: "\<forall>i\<in>A. [b i = 1] (mod m i) \<and>
[b i = 0] (mod (\<Prod>j \<in> A - {i}. m j))"
by blast
let ?x = "\<Sum>i\<in>A. (u i) * (b i)"
show "?thesis"
proof (rule exI, clarify)
fix i
assume a: "i : A"
show "[?x = u i] (mod m i)"
proof -
from fin a have "?x = (\<Sum>j \<in> {i}. u j * b j) +
(\<Sum>j \<in> A - {i}. u j * b j)"
by (subst sum.union_disjoint [symmetric], auto intro: sum.cong)
then have "[?x = u i * b i + (\<Sum>j \<in> A - {i}. u j * b j)] (mod m i)"
unfolding cong_def
by auto
also have "[u i * b i + (\<Sum>j \<in> A - {i}. u j * b j) =
u i * 1 + (\<Sum>j \<in> A - {i}. u j * 0)] (mod m i)"
apply (rule cong_add_poly)
apply (rule cong_scalar2_poly)
using bprop a apply blast
apply (rule cong_sum)
apply (rule cong_scalar2_poly)
using bprop apply auto
apply (rule cong_dvd_modulus_poly)
apply (drule (1) bspec)
apply (erule conjE)
apply assumption
apply rule
using fin a apply auto
done
thus ?thesis
by (metis (no_types, lifting) a add.right_neutral fin mult_cancel_left1 mult_cancel_right1
sum.not_neutral_contains_not_neutral sum.remove)
qed
qed
qed
(*********************** Now we try to prove the uniqueness **********************)
lemma cong_trans_poly:
"[(a::'b::{field_gcd} poly) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
by (fact cong_trans)
lemma cong_mod_poly: "(n::'b::{field_gcd} poly) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)"
by auto
lemma cong_sym_poly: "[(a::'b::{field_gcd} poly) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
by (fact cong_sym)
lemma cong_1_poly: "[(a::'b::{field_gcd} poly) = b] (mod 1)"
by (fact cong_1)
lemma coprime_cong_mult_poly:
assumes "[(a::'b::{field_gcd} poly) = b] (mod m)" and "[a = b] (mod n)" and "coprime m n"
shows "[a = b] (mod m * n)"
using divides_mult assms
by (metis (no_types, opaque_lifting) cong_dvd_modulus_poly cong_iff_lin_poly dvd_mult2 dvd_refl minus_add_cancel mult.right_neutral)
lemma coprime_cong_prod_poly:
"(\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<Longrightarrow>
(\<forall>i\<in>A. [(x::'b::{field_gcd} poly) = y] (mod m i)) \<Longrightarrow>
[x = y] (mod (\<Prod>i\<in>A. m i))"
apply (induct A rule: infinite_finite_induct)
apply auto
apply (metis coprime_cong_mult_poly prod_coprime_right)
done
lemma cong_less_modulus_unique_poly:
"[(x::'b::{field_gcd} poly) = y] (mod m) \<Longrightarrow> degree x < degree m \<Longrightarrow> degree y < degree m \<Longrightarrow> x = y"
by (simp add: cong_def mod_poly_less)
lemma chinese_remainder_unique_poly:
fixes A :: "'a set"
and m :: "'a \<Rightarrow> 'b::{field_gcd} poly"
and u :: "'a \<Rightarrow> 'b poly"
assumes nz: "\<forall>i\<in>A. (m i) \<noteq> 0"
and cop: "\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
(*The following assumption should not be necessary, but I need it since in Isabelle
degree 0 is 0 instead of -\<infinity>*)
and not_constant: "0 < degree (prod m A)"
shows "\<exists>!x. degree x < (\<Sum>i\<in>A. degree (m i)) \<and> (\<forall>i\<in>A. [x = u i] (mod m i))"
proof -
from not_constant have fin: "finite A"
by (metis degree_1 gr_implies_not0 prod.infinite)
from chinese_remainder_poly [OF fin cop]
obtain y where one: "(\<forall>i\<in>A. [y = u i] (mod m i))"
by blast
let ?x = "y mod (\<Prod>i\<in>A. m i)"
have degree_prod_sum: "degree (prod m A) = (\<Sum>i\<in>A. degree (m i))"
by (rule degree_prod_eq_sum_degree[OF nz])
from fin nz have prodnz: "(\<Prod>i\<in>A. (m i)) \<noteq> 0"
by auto
(*This would hold without the premise not_constant if degree 0 = -\<infinity>*)
have less: "degree ?x < (\<Sum>i\<in>A. degree (m i))"
unfolding degree_prod_sum[symmetric]
using degree_mod_less[OF prodnz, of y]
using not_constant
by auto
have cong: "\<forall>i\<in>A. [?x = u i] (mod m i)"
apply auto
apply (rule cong_trans_poly)
prefer 2
using one apply auto
apply (rule cong_dvd_modulus_poly)
apply (rule cong_mod_poly)
using prodnz apply auto
apply rule
apply (rule fin)
apply assumption
done
have unique: "\<forall>z. degree z < (\<Sum>i\<in>A. degree (m i)) \<and>
(\<forall>i\<in>A. [z = u i] (mod m i)) \<longrightarrow> z = ?x"
proof (clarify)
fix z::"'b poly"
assume zless: "degree z < (\<Sum>i\<in>A. degree (m i))"
assume zcong: "(\<forall>i\<in>A. [z = u i] (mod m i))"
have deg1: "degree z < degree (prod m A)"
using degree_prod_sum zless by simp
have deg2: "degree ?x < degree (prod m A)"
by (metis deg1 degree_0 degree_mod_less gr0I gr_implies_not0)
have "\<forall>i\<in>A. [?x = z] (mod m i)"
apply clarify
apply (rule cong_trans_poly)
using cong apply (erule bspec)
apply (rule cong_sym_poly)
using zcong by auto
with fin cop have "[?x = z] (mod (\<Prod>i\<in>A. m i))"
by (intro coprime_cong_prod_poly) auto
with zless show "z = ?x"
apply (intro cong_less_modulus_unique_poly)
apply (erule cong_sym_poly)
apply (auto simp add: deg1 deg2)
done
qed
from less cong unique show ?thesis by blast
qed
end
|