Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 42,114 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
(*
    Authors:      Jose Divasón
                  Sebastiaan Joosten
                  René Thiemann
                  Akihisa Yamada
*)
subsection \<open>Mahler Measure\<close>

text \<open>This part contains a definition of the Mahler measure, it contains Landau's inequality and
  the Graeffe-transformation. We also assemble a heuristic to approximate the Mahler's measure.\<close>

theory Mahler_Measure
imports
  Sqrt_Babylonian.Sqrt_Babylonian
  Poly_Mod_Finite_Field_Record_Based (* stuff about polynomials *)
  Polynomial_Factorization.Fundamental_Theorem_Algebra_Factorized
  Polynomial_Factorization.Missing_Multiset
begin

context comm_monoid_list begin
  lemma induct_gen_abs:
    assumes "\<And> a r. a\<in>set lst \<Longrightarrow> P (f (h a) r) (f (g a) r)"
            "\<And> x y z. P x y \<Longrightarrow> P y z \<Longrightarrow> P x z"
            "P (F (map g lst)) (F (map g lst))"
    shows "P (F (map h lst)) (F (map g lst)) "
  using assms proof(induct lst arbitrary:P)
    case (Cons a as P)
    have inl:"a\<in>set (a#as)" by auto
    let ?uf = "\<lambda> v w. P (f (g a) v) (f (g a) w)"
    have p_suc:"?uf (F (map g as)) (F (map g as))"
      using Cons.prems(3) by auto
    { fix r aa assume "aa \<in> set as" hence ins:"aa \<in> set (a#as)" by auto
      have "P (f (g a) (f (h aa) r)) (f (g a) (f (g aa) r))"
        using Cons.prems(1)[of aa "f r (g a)",OF ins]
        by (auto simp: assoc commute left_commute)
    } note h = this
    from Cons.hyps(1)[of ?uf, OF h Cons.prems(2)[simplified] p_suc]
    have e1:"P (f (g a) (F (map h as))) (f (g a) (F (map g as)))" by simp
    have e2:"P (f (h a) (F (map h as))) (f (g a) (F (map h as)))"
      using Cons.prems(1)[OF inl] by blast
    from Cons(3)[OF e2 e1] show ?case by auto next
  qed auto
end

lemma prod_induct_gen:
  assumes "\<And> a r. f (h a * r :: 'a :: {comm_monoid_mult}) = f (g a * r)"
  shows "f (\<Prod>v\<leftarrow>lst. h v) = f (\<Prod>v\<leftarrow>lst. g v)"
proof - let "?P x y" = "f x = f y"
  show ?thesis using comm_monoid_mult_class.prod_list.induct_gen_abs[of _ ?P,OF assms] by auto
qed

abbreviation complex_of_int::"int \<Rightarrow> complex" where
  "complex_of_int \<equiv> of_int"

definition l2norm_list :: "int list \<Rightarrow> int" where
  "l2norm_list lst = \<lfloor>sqrt (sum_list (map (\<lambda> a. a * a) lst))\<rfloor>"

abbreviation l2norm :: "int poly \<Rightarrow> int" where
  "l2norm p \<equiv> l2norm_list (coeffs p)"

abbreviation "norm2 p \<equiv> \<Sum>a\<leftarrow>coeffs p. (cmod a)\<^sup>2" (* the square of the Euclidean/l2-norm *)

abbreviation l2norm_complex where
  "l2norm_complex p \<equiv> sqrt (norm2 p)"

abbreviation height :: "int poly \<Rightarrow> int" where
  "height p \<equiv> max_list (map (nat \<circ> abs) (coeffs p))"

definition complex_roots_complex where
  "complex_roots_complex (p::complex poly) = (SOME as. smult (coeff p (degree p)) (\<Prod>a\<leftarrow>as. [:- a, 1:]) = p \<and> length as = degree p)"

lemma complex_roots:
  "smult (lead_coeff p) (\<Prod>a\<leftarrow>complex_roots_complex p. [:- a, 1:]) = p"
  "length (complex_roots_complex p) = degree p"
  using someI_ex[OF fundamental_theorem_algebra_factorized]
  unfolding complex_roots_complex_def by simp_all

lemma complex_roots_c [simp]:
  "complex_roots_complex [:c:] = []"
  using complex_roots(2) [of "[:c:]"] by simp

declare complex_roots(2)[simp]
    
lemma complex_roots_1 [simp]:
  "complex_roots_complex 1 = []"
  using complex_roots_c [of 1] by (simp add: pCons_one)

lemma linear_term_irreducible\<^sub>d[simp]: "irreducible\<^sub>d [: a, 1:]" 
  by (rule linear_irreducible\<^sub>d, simp)

definition complex_roots_int where
  "complex_roots_int (p::int poly) = complex_roots_complex (map_poly of_int p)"

lemma complex_roots_int:
  "smult (lead_coeff p) (\<Prod>a\<leftarrow>complex_roots_int p. [:- a, 1:]) = map_poly of_int p"
  "length (complex_roots_int p) = degree p"
proof -
  show "smult (lead_coeff p) (\<Prod>a\<leftarrow>complex_roots_int p. [:- a, 1:]) = map_poly of_int p"
  "length (complex_roots_int p) = degree p"
  using complex_roots[of "map_poly of_int p"] unfolding complex_roots_int_def by auto
qed

text \<open>The measure for polynomials, after K. Mahler\<close>

definition mahler_measure_poly where
  "mahler_measure_poly p = cmod (lead_coeff p) * (\<Prod>a\<leftarrow>complex_roots_complex p. (max 1 (cmod a)))"

definition mahler_measure where
  "mahler_measure p = mahler_measure_poly (map_poly complex_of_int p)"

definition mahler_measure_monic where
  "mahler_measure_monic p = (\<Prod>a\<leftarrow>complex_roots_complex p. (max 1 (cmod a)))"

lemma mahler_measure_poly_via_monic :
  "mahler_measure_poly p = cmod (lead_coeff p) * mahler_measure_monic p"
  unfolding mahler_measure_poly_def mahler_measure_monic_def by simp

lemma smult_inj[simp]: assumes "(a::'a::idom) \<noteq> 0" shows "inj (smult a)"
proof-
  interpret map_poly_inj_zero_hom "(*) a" using assms by (unfold_locales, auto)
  show ?thesis unfolding smult_as_map_poly by (rule inj_f)
qed

definition reconstruct_poly::"'a::idom \<Rightarrow> 'a list \<Rightarrow> 'a poly" where
  "reconstruct_poly c roots = smult c (\<Prod>a\<leftarrow>roots. [:- a, 1:])"

lemma reconstruct_is_original_poly:
  "reconstruct_poly (lead_coeff p) (complex_roots_complex p) = p"
  using complex_roots(1) by (simp add: reconstruct_poly_def)

lemma reconstruct_with_type_conversion:
  "smult (lead_coeff (map_poly of_int f)) (prod_list (map (\<lambda> a. [:- a, 1:]) (complex_roots_int f)))
   = map_poly of_int f"
unfolding complex_roots_int_def complex_roots(1) by simp

lemma reconstruct_prod:
  shows "reconstruct_poly (a::complex) as * reconstruct_poly b bs
        = reconstruct_poly (a * b) (as @ bs)"
unfolding reconstruct_poly_def by auto

lemma linear_term_inj[simplified,simp]: "inj (\<lambda> a. [:- a, 1::'a::idom:])"
  unfolding inj_on_def by simp

lemma reconstruct_poly_monic_defines_mset:
  assumes "(\<Prod>a\<leftarrow>as. [:- a, 1:]) = (\<Prod>a\<leftarrow>bs. [:- a, 1::'a::field:])"
  shows "mset as = mset bs"
proof -
  let ?as = "mset (map (\<lambda> a. [:- a, 1:]) as)"
  let ?bs = "mset (map (\<lambda> a. [:- a, 1:]) bs)"
  have eq_smult:"prod_mset ?as = prod_mset ?bs" using assms by (metis prod_mset_prod_list)
  have irr:"\<And> as::'a list. set_mset (mset (map (\<lambda> a. [:- a, 1:]) as)) \<subseteq> {q. irreducible q \<and> monic q}"
    by (auto intro!: linear_term_irreducible\<^sub>d[of "-_::'a", simplified])
  from monic_factorization_unique_mset[OF eq_smult irr irr]
  show ?thesis apply (subst inj_eq[OF multiset.inj_map,symmetric]) by auto
qed

lemma reconstruct_poly_defines_mset_of_argument:
  assumes "(a::'a::field) \<noteq> 0"
          "reconstruct_poly a as = reconstruct_poly a bs"
  shows "mset as = mset bs"
proof -
  have eq_smult:"smult a (\<Prod>a\<leftarrow>as. [:- a, 1:]) = smult a (\<Prod>a\<leftarrow>bs. [:- a, 1:])"
     using assms(2) by (auto simp:reconstruct_poly_def)
  from reconstruct_poly_monic_defines_mset[OF Fun.injD[OF smult_inj[OF assms(1)] eq_smult]]
  show ?thesis by simp
qed

lemma complex_roots_complex_prod [simp]:
  assumes "f \<noteq> 0" "g \<noteq> 0"
  shows  "mset (complex_roots_complex (f * g))
        = mset (complex_roots_complex f) + mset (complex_roots_complex g)"
proof -
  let ?p = "f * g"
  let "?lc v" = "(lead_coeff (v:: complex poly))"
  have nonzero_prod:"?lc ?p \<noteq> 0" using assms by auto
  from reconstruct_prod[of "?lc f" "complex_roots_complex f" "?lc g" "complex_roots_complex g"]
  have "reconstruct_poly (?lc ?p) (complex_roots_complex ?p)
       = reconstruct_poly (?lc ?p) (complex_roots_complex f @ complex_roots_complex g)"
    unfolding lead_coeff_mult[symmetric] reconstruct_is_original_poly by auto
  from reconstruct_poly_defines_mset_of_argument[OF nonzero_prod this]
  show ?thesis by simp
qed

lemma mset_mult_add:
  assumes "mset (a::'a::field list) = mset b + mset c"
  shows "prod_list a = prod_list b * prod_list c"
  unfolding prod_mset_prod_list[symmetric]
  using prod_mset_Un[of "mset b" "mset c",unfolded assms[symmetric]].

lemma mset_mult_add_2:
  assumes "mset a = mset b + mset c"
  shows "prod_list (map i a::'b::field list) = prod_list (map i b) * prod_list (map i c)"
proof -
  have r:"mset (map i a) = mset (map i b) + mset (map i c) " using assms 
    by (metis map_append mset_append mset_map)
  show ?thesis using mset_mult_add[OF r] by auto
qed

lemma measure_mono_eq_prod:
  assumes "f \<noteq> 0" "g \<noteq> 0"
  shows "mahler_measure_monic (f * g) = mahler_measure_monic f * mahler_measure_monic g"
  unfolding mahler_measure_monic_def
  using mset_mult_add_2[OF complex_roots_complex_prod[OF assms],of "\<lambda> a. max 1 (cmod a)"] by simp

lemma mahler_measure_poly_0[simp]: "mahler_measure_poly 0 = 0" unfolding mahler_measure_poly_via_monic by auto

lemma measure_eq_prod: (* Remark 10.2 *)
  "mahler_measure_poly (f * g) = mahler_measure_poly f * mahler_measure_poly g"
proof -
  consider "f = 0" | "g = 0" | (both) "f \<noteq> 0" "g \<noteq> 0" by auto
  thus ?thesis proof(cases)
    case both show ?thesis unfolding mahler_measure_poly_via_monic norm_mult lead_coeff_mult
      by (auto simp: measure_mono_eq_prod[OF both])
  qed (simp_all)
qed

lemma prod_cmod[simp]:
  "cmod (\<Prod>a\<leftarrow>lst. f a) = (\<Prod>a\<leftarrow>lst. cmod (f a))"
  by(induct lst,auto simp:real_normed_div_algebra_class.norm_mult)

lemma lead_coeff_of_prod[simp]:
  "lead_coeff (\<Prod>a\<leftarrow>lst. f a::'a::idom poly) = (\<Prod>a\<leftarrow>lst. lead_coeff (f a))"
by(induct lst,auto simp:lead_coeff_mult)

lemma ineq_about_squares:assumes "x \<le> (y::real)" shows "x \<le> c^2 + y" using assms
  by (simp add: add.commute add_increasing2)

lemma first_coeff_le_tail:"(cmod (lead_coeff g))^2 \<le> (\<Sum>a\<leftarrow>coeffs g. (cmod a)^2)"
proof(induct g)
  case (pCons a p)
    thus ?case proof(cases "p = 0") case False
      show ?thesis using pCons unfolding lead_coeff_pCons(1)[OF False]
        by(cases "a = 0",simp_all add:ineq_about_squares)
    qed simp
qed simp


lemma square_prod_cmod[simp]:
  "(cmod (a * b))^2 = cmod a ^ 2 * cmod b ^ 2"
by (simp add: norm_mult power_mult_distrib)

lemma sum_coeffs_smult_cmod:
  "(\<Sum>a\<leftarrow>coeffs (smult v p). (cmod a)^2) = (cmod v)^2 * (\<Sum>a\<leftarrow>coeffs p. (cmod a)^2)" 
  (is "?l = ?r")
proof - 
  have "?l = (\<Sum>a\<leftarrow>coeffs p. (cmod v)^2 * (cmod a)^2)" by(cases "v=0";induct p,auto)
  thus ?thesis by (auto simp:sum_list_const_mult)
qed

abbreviation "linH a \<equiv> if (cmod a > 1) then [:- 1,cnj a:] else [:- a,1:]"

lemma coeffs_cong_1[simp]: "cCons a v = cCons b v \<longleftrightarrow> a = b" unfolding cCons_def by auto

lemma strip_while_singleton[simp]:
  "strip_while ((=) 0) [v * a] = cCons (v * a) []" unfolding cCons_def strip_while_def by auto

lemma coeffs_times_linterm:
  shows "coeffs (pCons 0 (smult a p) + smult b p) = strip_while (HOL.eq (0::'a::{comm_ring_1}))
     (map (\<lambda>(c,d).b*d+c*a) (zip (0 # coeffs p) (coeffs p @ [0])))" proof -
{fix v
have "coeffs (smult b p + pCons (a* v) (smult a p)) = strip_while (HOL.eq 0) (map (\<lambda>(c,d).b*d+c*a) (zip ([v] @ coeffs p) (coeffs p @ [0])))"
proof(induct p arbitrary:v) case (pCons pa ps) thus ?case by auto qed auto (* just putting ;auto does not work *)
}
from this[of 0] show ?thesis by (simp add: add.commute)
qed

lemma filter_distr_rev[simp]:
  shows "filter f (rev lst) = rev (filter f lst)"
by(induct lst;auto)

lemma strip_while_filter:
  shows "filter ((\<noteq>) 0) (strip_while ((=) 0) (lst::'a::zero list)) = filter ((\<noteq>) 0) lst"
proof - {fix lst::"'a list"
  have "filter ((\<noteq>) 0) (dropWhile ((=) 0) lst) = filter ((\<noteq>) 0) lst" by (induct lst;auto)
  hence "(filter ((\<noteq>) 0) (strip_while ((=) 0) (rev lst))) = filter ((\<noteq>) 0) (rev lst)"
  unfolding strip_while_def by(simp)}
  from this[of "rev lst"] show ?thesis by simp
qed

lemma sum_stripwhile[simp]:
  assumes "f 0 = 0"
  shows "(\<Sum>a\<leftarrow>strip_while ((=) 0) lst. f a) = (\<Sum>a\<leftarrow>lst. f a)"
proof -
  {fix lst
    have "(\<Sum>a\<leftarrow>filter ((\<noteq>) 0) lst. f a) = (\<Sum>a\<leftarrow>lst. f a)" by(induct lst,auto simp:assms)}
  note f=this
  have "sum_list (map f (filter ((\<noteq>) 0) (strip_while ((=) 0) lst)))
       = sum_list (map f (filter ((\<noteq>) 0) lst))"
  using strip_while_filter[of lst] by(simp)
  thus ?thesis unfolding f.
qed

lemma complex_split : "Complex a b = c \<longleftrightarrow> (a = Re c \<and> b = Im c)"
  using complex_surj by auto

lemma norm_times_const:"(\<Sum>y\<leftarrow>lst. (cmod (a * y))\<^sup>2) = (cmod a)\<^sup>2 * (\<Sum>y\<leftarrow>lst. (cmod y)\<^sup>2)"
by(induct lst,auto simp:ring_distribs)

fun bisumTail where (* Used for Landau's lemma *)
  "bisumTail f (Cons a (Cons b bs)) = f a b + bisumTail f (Cons b bs)" |
  "bisumTail f (Cons a Nil) = f a 0" |
  "bisumTail f Nil = f 1 0" (* never called, not used in proofs *)
fun bisum where
  "bisum f (Cons a as) = f 0 a + bisumTail f (Cons a as)" |
  "bisum f Nil = f 0 0"

lemma bisumTail_is_map_zip:
  "(\<Sum>x\<leftarrow>zip (v # l1) (l1 @ [0]). f x) = bisumTail (\<lambda>x y .f (x,y))  (v#l1)"
by(induct l1 arbitrary:v,auto)
(* converting to and from bisum *)
lemma bisum_is_map_zip:
  "(\<Sum>x\<leftarrow>zip (0 # l1) (l1 @ [0]). f x) = bisum (\<lambda>x y. f (x,y)) l1"
using bisumTail_is_map_zip[of f "hd l1" "tl l1"] by(cases l1,auto)
lemma map_zip_is_bisum:
  "bisum f l1 = (\<Sum>(x,y)\<leftarrow>zip (0 # l1) (l1 @ [0]). f x y)"
using bisum_is_map_zip[of "\<lambda>(x,y). f x y"] by auto

lemma bisum_outside :
  "(bisum (\<lambda> x y. f1 x - f2 x y + f3 y) lst :: 'a :: field)
  = sum_list (map f1 lst) + f1 0 - bisum f2 lst + sum_list (map f3 lst) + f3 0"
proof(cases lst)
  case (Cons a lst) show ?thesis unfolding map_zip_is_bisum Cons by(induct lst arbitrary:a,auto)
qed auto

lemma Landau_lemma:
  "(\<Sum>a\<leftarrow>coeffs (\<Prod>a\<leftarrow>lst. [:- a, 1:]). (cmod a)\<^sup>2) = (\<Sum>a\<leftarrow>coeffs (\<Prod>a\<leftarrow>lst. linH a). (cmod a)\<^sup>2)"
  (is "norm2 ?l = norm2 ?r")
proof -
  have a:"\<And> a. (cmod a)\<^sup>2 = Re (a * cnj a) " using complex_norm_square
    unfolding complex_split complex_of_real_def by simp
  have b:"\<And> x a y. (cmod (x - a * y))^2
               = (cmod x)\<^sup>2 - Re (a * y * cnj x + x * cnj (a * y)) + (cmod (a * y))^2"
     unfolding left_diff_distrib right_diff_distrib a complex_cnj_diff by simp
  have c:"\<And> y a x. (cmod (cnj a * x - y))\<^sup>2
               = (cmod (a * x))\<^sup>2 - Re (a * y * cnj x + x * cnj (a * y)) + (cmod y)^2"
     unfolding left_diff_distrib right_diff_distrib a complex_cnj_diff
     by (simp add: mult.assoc mult.left_commute)
  { fix f1 a
    have "norm2 ([:- a, 1 :] * f1) = bisum (\<lambda>x y. cmod (x - a * y)^2) (coeffs f1)"
      by(simp add: bisum_is_map_zip[of _ "coeffs f1"] coeffs_times_linterm[of 1 _ "-a",simplified])
    also have "\<dots> = norm2 f1 + cmod a^2*norm2 f1
                  - bisum (\<lambda>x y. Re (a * y * cnj x + x * cnj (a * y))) (coeffs f1)"
      unfolding b bisum_outside norm_times_const by simp
    also have "\<dots> = bisum (\<lambda>x y. cmod (cnj a * x - y)^2) (coeffs f1)"
      unfolding c bisum_outside norm_times_const by auto
    also have "\<dots> = norm2 ([:- 1, cnj a :] * f1)"
      using coeffs_times_linterm[of "cnj a" _ "-1"]
      by(simp add: bisum_is_map_zip[of _ "coeffs f1"] mult.commute)
    finally have "norm2 ([:- a, 1 :] * f1) = \<dots>".}
  hence h:"\<And> a f1. norm2 ([:- a, 1 :] * f1) = norm2 (linH a * f1)" by auto
  show ?thesis by(rule prod_induct_gen[OF h])
qed

lemma Landau_inequality:
  "mahler_measure_poly f \<le> l2norm_complex f"
proof -
  let ?f = "reconstruct_poly (lead_coeff f) (complex_roots_complex f)"
  let ?roots = "(complex_roots_complex f)"
  let ?g = "\<Prod>a\<leftarrow>?roots. linH a"
  (* g is chosen such that lead_coeff_g holds, and its l2 norm is equal to f's l2 norm *)
  have max:"\<And>a. cmod (if 1 < cmod a then cnj a else 1) = max 1 (cmod a)"
    by simp
  have "\<And>a. 1 < cmod a \<Longrightarrow> a \<noteq> 0" by auto
  hence "\<And>a. lead_coeff (linH a) = (if (cmod a > 1) then cnj a else 1)" by(auto simp:if_split)
  hence lead_coeff_g:"cmod (lead_coeff ?g) = (\<Prod>a\<leftarrow>?roots. max 1 (cmod a))" by(auto simp:max)
  
  have "norm2 f = (\<Sum>a\<leftarrow>coeffs ?f. (cmod a)^2)" unfolding reconstruct_is_original_poly..
  also have "\<dots> = cmod (lead_coeff f)^2 * (\<Sum>a\<leftarrow>coeffs (\<Prod>a\<leftarrow>?roots. [:- a, 1:]). (cmod a)\<^sup>2)" 
    unfolding reconstruct_poly_def using sum_coeffs_smult_cmod.
  finally have fg_norm:"norm2 f = cmod (lead_coeff f)^2 * (\<Sum>a\<leftarrow>coeffs ?g. (cmod a)^2)"
    unfolding Landau_lemma by auto

  have "(cmod (lead_coeff ?g))^2 \<le> (\<Sum>a\<leftarrow>coeffs ?g. (cmod a)^2)"
    using first_coeff_le_tail by blast
  from ordered_comm_semiring_class.comm_mult_left_mono[OF this]
  have "(cmod (lead_coeff f) * cmod (lead_coeff ?g))^2 \<le> (\<Sum>a\<leftarrow>coeffs f. (cmod a)^2)"
    unfolding fg_norm by (simp add:power_mult_distrib)
  hence "cmod (lead_coeff f) * (\<Prod>a\<leftarrow>?roots. max 1 (cmod a)) \<le> sqrt (norm2 f)"
    using NthRoot.real_le_rsqrt lead_coeff_g by auto
  thus "mahler_measure_poly f \<le> sqrt (norm2 f)"
    using reconstruct_with_type_conversion[unfolded complex_roots_int_def]
    by (simp add: mahler_measure_poly_via_monic mahler_measure_monic_def complex_roots_int_def)
qed

lemma prod_list_ge1:
  assumes "Ball (set x) (\<lambda> (a::real). a \<ge> 1)"
  shows "prod_list x \<ge> 1"
using assms proof(induct x)
  case (Cons a as)
    have "\<forall>a\<in>set as. 1 \<le> a" "1 \<le> a" using Cons(2) by auto
    thus ?case using Cons.hyps mult_mono' by fastforce
qed auto

lemma mahler_measure_monic_ge_1: "mahler_measure_monic p \<ge> 1"
  unfolding mahler_measure_monic_def by(rule prod_list_ge1,simp)

lemma mahler_measure_monic_ge_0: "mahler_measure_monic p \<ge> 0"
  using mahler_measure_monic_ge_1 le_numeral_extra(1) order_trans by blast

lemma mahler_measure_ge_0: "0 \<le> mahler_measure h" unfolding mahler_measure_def mahler_measure_poly_via_monic
  by (simp add: mahler_measure_monic_ge_0)

lemma mahler_measure_constant[simp]: "mahler_measure_poly [:c:] = cmod c" 
proof -
  have main: "complex_roots_complex [:c:] = []" unfolding complex_roots_complex_def
    by (rule some_equality, auto)
  show ?thesis unfolding mahler_measure_poly_def main by auto
qed
  
lemma mahler_measure_factor[simplified,simp]: "mahler_measure_poly [:- a, 1:] = max 1 (cmod a)" 
proof -
  have main: "complex_roots_complex [:- a, 1:] = [a]" unfolding complex_roots_complex_def
  proof (rule some_equality, auto, goal_cases)
    case (1 as)
    thus ?case by (cases as, auto)
  qed
  show ?thesis unfolding mahler_measure_poly_def main by auto
qed

lemma mahler_measure_poly_explicit: "mahler_measure_poly (smult c (\<Prod>a\<leftarrow>as. [:- a, 1:]))
  = cmod c * (\<Prod>a\<leftarrow>as. (max 1 (cmod a)))" 
proof (cases "c = 0")
  case True
  thus ?thesis by auto
next
  case False note c = this
  show ?thesis
  proof (induct as)
    case (Cons a as)
    have "mahler_measure_poly (smult c (\<Prod>a\<leftarrow>a # as. [:- a, 1:]))
      = mahler_measure_poly (smult c (\<Prod>a\<leftarrow>as. [:- a, 1:]) * [: -a, 1 :])"
      by (rule arg_cong[of _ _ mahler_measure_poly], unfold list.simps prod_list.Cons mult_smult_left, simp)
    also have "\<dots> = mahler_measure_poly (smult c (\<Prod>a\<leftarrow>as. [:- a, 1:])) * mahler_measure_poly ([:- a, 1:])" 
      (is "_ = ?l * ?r") by (rule measure_eq_prod)
    also have "?l = cmod c * (\<Prod>a\<leftarrow>as. max 1 (cmod a))" unfolding Cons by simp
    also have "?r = max 1 (cmod a)" by simp
    finally show ?case by simp
  next
    case Nil
    show ?case by simp
  qed
qed

lemma mahler_measure_poly_ge_1:
  assumes "h \<noteq> 0"
  shows "(1::real) \<le> mahler_measure h"
proof -
  have rc: "\<bar>real_of_int i\<bar> = of_int \<bar>i\<bar>" for i by simp
  from assms have "cmod (lead_coeff (map_poly complex_of_int h)) > 0" by simp
  hence "cmod (lead_coeff (map_poly complex_of_int h)) \<ge> 1"
    by(cases "lead_coeff h = 0", auto simp del: leading_coeff_0_iff)
  from mult_mono[OF this mahler_measure_monic_ge_1 norm_ge_zero]
  show ?thesis unfolding mahler_measure_def mahler_measure_poly_via_monic
    by auto
qed

lemma mahler_measure_dvd: assumes "f \<noteq> 0" and "h dvd f" 
  shows "mahler_measure h \<le> mahler_measure f" 
proof -
  from assms obtain g where f: "f = g * h" unfolding dvd_def by auto
  from f assms have g0: "g \<noteq> 0" by auto
  hence mg: "mahler_measure g \<ge> 1" by (rule mahler_measure_poly_ge_1)
  have "1 * mahler_measure h \<le> mahler_measure f" 
    unfolding mahler_measure_def f measure_eq_prod
      of_int_poly_hom.hom_mult unfolding mahler_measure_def[symmetric]
    by (rule mult_right_mono[OF mg mahler_measure_ge_0])    
  thus ?thesis by simp
qed


definition graeffe_poly :: "'a \<Rightarrow> 'a :: comm_ring_1 list \<Rightarrow> nat \<Rightarrow> 'a poly" where
  "graeffe_poly c as m = smult (c ^ (2^m)) (\<Prod>a\<leftarrow>as. [:- (a ^ (2^m)), 1:])" 
  

context
  fixes f :: "complex poly" and c as
  assumes f: "f = smult c (\<Prod>a\<leftarrow>as. [:- a, 1:])"
begin
lemma mahler_graeffe: "mahler_measure_poly (graeffe_poly c as m) = (mahler_measure_poly f)^(2^m)"
proof -
  have graeffe: "graeffe_poly c as m = smult (c ^ 2 ^ m) (\<Prod>a\<leftarrow>(map (\<lambda> a. a ^ 2 ^ m) as). [:- a, 1:])" 
    unfolding graeffe_poly_def
    by (rule arg_cong[of _ _ "smult (c ^ 2 ^ m)"], induct as, auto)
  {
    fix n :: nat
    assume n: "n > 0" 
    have id: "max 1 (cmod a ^ n) = max 1 (cmod a) ^ n" for a
    proof (cases "cmod a \<le> 1")
      case True 
      hence "cmod a ^ n \<le> 1" by (simp add: power_le_one)
      with True show ?thesis by (simp add: max_def)
    qed (auto simp: max_def)
    have "(\<Prod>x\<leftarrow>as. max 1 (cmod x ^ n)) = (\<Prod>a\<leftarrow>as. max 1 (cmod a)) ^ n"  
      by (induct as, auto simp: field_simps n id)
  }
  thus ?thesis unfolding f mahler_measure_poly_explicit graeffe 
    by (auto simp: o_def field_simps norm_power)
qed
end

fun drop_half :: "'a list \<Rightarrow> 'a list" where
  "drop_half (x # y # ys) = x # drop_half ys" 
| "drop_half xs = xs" 

fun alternate :: "'a list \<Rightarrow> 'a list \<times> 'a list" where
  "alternate (x # y # ys) = (case alternate ys of (evn, od) \<Rightarrow> (x # evn, y # od))" 
| "alternate xs = (xs,[])" 
  
definition poly_square_subst :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly" where
  "poly_square_subst f = poly_of_list (drop_half (coeffs f))" 
  
definition poly_even_odd :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly \<times> 'a poly" where
  "poly_even_odd f = (case alternate (coeffs f) of (evn,od) \<Rightarrow> (poly_of_list evn, poly_of_list od))" 

  
lemma poly_square_subst_coeff: "coeff (poly_square_subst f) i = coeff f (2 * i)" 
proof -
  have id: "coeff f (2 * i) = coeff (Poly (coeffs f)) (2 * i)" by simp
  obtain xs where xs: "coeffs f = xs" by auto
  show ?thesis unfolding poly_square_subst_def poly_of_list_def coeff_Poly_eq id xs
  proof (induct xs arbitrary: i rule: drop_half.induct)
    case (1 x y ys i) thus ?case by (cases i, auto)
  next
    case ("2_2" x i) thus ?case by (cases i, auto)
  qed auto
qed

lemma poly_even_odd_coeff: assumes "poly_even_odd f = (ev,od)"
  shows "coeff ev i = coeff f (2 * i)" "coeff od i = coeff f (2 * i + 1)" 
proof -
  have id: "\<And> i. coeff f i = coeff (Poly (coeffs f)) i" by simp
  obtain xs where xs: "coeffs f = xs" by auto
  from assms[unfolded poly_even_odd_def] 
  have ev_od: "ev = Poly (fst (alternate xs))" "od = Poly (snd (alternate xs))" 
    by (auto simp: xs split: prod.splits)
  have "coeff ev i = coeff f (2 * i) \<and> coeff od i = coeff f (2 * i + 1)" 
    unfolding poly_of_list_def coeff_Poly_eq id xs ev_od
  proof (induct xs arbitrary: i rule: alternate.induct)
    case (1 x y ys i) thus ?case by (cases "alternate ys"; cases i, auto)
  next
    case ("2_2" x i) thus ?case by (cases i, auto)
  qed auto
  thus "coeff ev i = coeff f (2 * i)" "coeff od i = coeff f (2 * i + 1)" by auto
qed

lemma poly_square_subst: "poly_square_subst (f \<circ>\<^sub>p (monom 1 2)) = f" 
  by (rule poly_eqI, unfold poly_square_subst_coeff, subst coeff_pcompose_x_pow_n, auto)

lemma poly_even_odd: assumes "poly_even_odd f = (g,h)" 
  shows "f = g \<circ>\<^sub>p monom 1 2 + monom 1 1 * (h \<circ>\<^sub>p monom 1 2)" 
proof -
  note id = poly_even_odd_coeff[OF assms]
  show ?thesis
  proof (rule poly_eqI, unfold coeff_add coeff_monom_mult)
    fix n :: nat
    obtain m i where mi: "m = n div 2" "i = n mod 2" by auto
    have nmi: "n = 2 * m + i" "i < 2" "0 < (2 :: nat)" "1 < (2 :: nat)" unfolding mi by auto
    have "(2 :: nat) \<noteq> 0" by auto
    show "coeff f n = coeff (g \<circ>\<^sub>p monom 1 2) n + (if 1 \<le> n then 1 * coeff (h \<circ>\<^sub>p monom 1 2) (n - 1) else 0)" 
    proof (cases "i = 1")
      case True
      hence id1: "2 * m + i - 1 = 2 * m + 0" by auto
      show ?thesis unfolding nmi id id1 coeff_pcompose_monom[OF nmi(2)] coeff_pcompose_monom[OF nmi(3)]
        unfolding True by auto
    next
      case False
      with nmi have i0: "i = 0" by auto
      show ?thesis 
      proof (cases m)
        case (Suc k)
        hence id1: "2 * m + i - 1 = 2 * k + 1" using i0 by auto
        show ?thesis unfolding nmi id coeff_pcompose_monom[OF nmi(2)] 
          coeff_pcompose_monom[OF nmi(4)] id1 unfolding Suc i0 by auto
      next
        case 0
        show ?thesis unfolding nmi id coeff_pcompose_monom[OF nmi(2)] unfolding i0 0 by auto
      qed
    qed
  qed
qed

context
  fixes f :: "'a :: idom poly" 
begin

lemma graeffe_0: "f = smult c (\<Prod>a\<leftarrow>as. [:- a, 1:]) \<Longrightarrow> graeffe_poly c as 0 = f" 
  unfolding graeffe_poly_def by auto

lemma graeffe_recursion: assumes "graeffe_poly c as m = f"
  shows "graeffe_poly c as (Suc m) = smult ((-1)^(degree f)) (poly_square_subst (f * f \<circ>\<^sub>p [:0,-1:]))"  
proof -
  let ?g = "graeffe_poly c as m" 
  have "f * f \<circ>\<^sub>p [:0,-1:] = ?g * ?g \<circ>\<^sub>p [:0,-1:]" unfolding assms by simp
  also have "?g \<circ>\<^sub>p [:0,-1:] = smult ((- 1) ^ length as) (smult (c ^ 2 ^ m) (\<Prod>a\<leftarrow>as. [:a ^ 2 ^ m, 1:]))" 
    unfolding graeffe_poly_def
  proof (induct as)
    case (Cons a as)
    have "?case = ((smult (c ^ 2 ^ m) ([:- (a ^ 2 ^ m), 1:] \<circ>\<^sub>p [:0, - 1:] * (\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ m), 1:]) \<circ>\<^sub>p [:0, - 1:]) =
     smult (-1 * (- 1) ^ length as)
      (smult (c ^ 2 ^ m) ([: a ^ 2 ^ m, 1:] * (\<Prod>a\<leftarrow>as. [:a ^ 2 ^ m, 1:])))))" 
      unfolding list.simps prod_list.Cons pcompose_smult pcompose_mult  by simp
    also have "smult (c ^ 2 ^ m) ([:- (a ^ 2 ^ m), 1:] \<circ>\<^sub>p [:0, - 1:] * (\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ m), 1:]) \<circ>\<^sub>p [:0, - 1:])
      = smult (c ^ 2 ^ m) ((\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ m), 1:]) \<circ>\<^sub>p [:0, - 1:]) * [:- (a ^ 2 ^ m), 1:] \<circ>\<^sub>p [:0, - 1:]" 
      unfolding mult_smult_left by simp
    also have "smult (c ^ 2 ^ m) ((\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ m), 1:]) \<circ>\<^sub>p [:0, - 1:]) = 
      smult ((- 1) ^ length as) (smult (c ^ 2 ^ m) (\<Prod>a\<leftarrow>as. [:a ^ 2 ^ m, 1:]))"
      unfolding pcompose_smult[symmetric] Cons ..
    also have "[:- (a ^ 2 ^ m), 1:] \<circ>\<^sub>p [:0, - 1:] = smult (-1) [: a^2^m, 1:]" by simp
    finally have id: "?case = (smult ((- 1) ^ length as) (smult (c ^ 2 ^ m) (\<Prod>a\<leftarrow>as. [:a ^ 2 ^ m, 1:])) * smult (- 1) [:a ^ 2 ^ m, 1:] =
      smult (- 1 * (- 1) ^ length as) (smult (c ^ 2 ^ m) ([:a ^ 2 ^ m, 1:] * (\<Prod>a\<leftarrow>as. [:a ^ 2 ^ m, 1:]))))" by simp
    obtain c d where id': "(\<Prod>a\<leftarrow>as. [:a ^ 2 ^ m, 1:]) = c" "[:a ^ 2 ^ m, 1:] = d" by auto
    show ?case unfolding id unfolding id' by (simp add: ac_simps)
  qed simp
  finally have "f * f \<circ>\<^sub>p [:0, - 1:] =
    smult ((- 1) ^ length as * (c ^ 2 ^ m * c ^ 2 ^ m)) 
    ((\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ m), 1:]) * (\<Prod>a\<leftarrow>as. [:a ^ 2 ^ m, 1:]))" 
    unfolding graeffe_poly_def by (simp add: ac_simps)
  also have "c ^ 2 ^ m * c ^ 2 ^ m = c ^ 2 ^ (Suc m)" by (simp add: semiring_normalization_rules(36))
  also have "(\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ m), 1:]) * (\<Prod>a\<leftarrow>as. [:a ^ 2 ^ m, 1:]) = 
    (\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ (Suc m)), 1:]) \<circ>\<^sub>p monom 1 2" 
  proof (induct as)
    case (Cons a as)
    have id: "(monom 1 2 :: 'a poly) = [:0,0,1:]" 
      by (metis monom_altdef pCons_0_as_mult power2_eq_square smult_1_left)
    have "(\<Prod>a\<leftarrow>a # as. [:- (a ^ 2 ^ m), 1:]) * (\<Prod>a\<leftarrow>a # as. [:a ^ 2 ^ m, 1:])
      = ([:- (a ^ 2 ^ m), 1:] * [: a ^ 2 ^ m, 1:]) * ((\<Prod>a\<leftarrow> as. [:- (a ^ 2 ^ m), 1:]) * (\<Prod>a\<leftarrow> as. [:a ^ 2 ^ m, 1:]))" 
        (is "_ = ?a * ?b")
      unfolding list.simps prod_list.Cons by (simp only: ac_simps)
    also have "?b = (\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ Suc m), 1:]) \<circ>\<^sub>p monom 1 2" unfolding Cons by simp
    also have "?a = [: - (a ^ 2 ^ (Suc m)), 0 , 1:]" by (simp add: semiring_normalization_rules(36))
    also have "\<dots> = [: - (a ^ 2 ^ (Suc m)), 1:] \<circ>\<^sub>p monom 1 2" by (simp add: id)
    also have "[: - (a ^ 2 ^ (Suc m)), 1:] \<circ>\<^sub>p monom 1 2 * (\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ Suc m), 1:]) \<circ>\<^sub>p monom 1 2 =
      (\<Prod>a\<leftarrow>a # as. [:- (a ^ 2 ^ Suc m), 1:]) \<circ>\<^sub>p monom 1 2" unfolding pcompose_mult[symmetric] by simp
    finally show ?case .
  qed simp
  finally have "f * f \<circ>\<^sub>p [:0, - 1:] = (smult ((- 1) ^ length as) (graeffe_poly c as (Suc m)) \<circ>\<^sub>p monom 1 2)" 
    unfolding graeffe_poly_def pcompose_smult by simp
  from arg_cong[OF this, of "\<lambda> f. smult ((- 1) ^ length as) (poly_square_subst f)", unfolded poly_square_subst]
  have "graeffe_poly c as (Suc m) = smult ((- 1) ^ length as) (poly_square_subst (f * f \<circ>\<^sub>p [:0, - 1:]))" by simp
  also have "\<dots> = smult ((- 1) ^ degree f) (poly_square_subst (f * f \<circ>\<^sub>p [:0, - 1:]))" 
  proof (cases "f = 0")
    case True
    thus ?thesis by (auto simp: poly_square_subst_def)
  next
    case False
    with assms have c0: "c \<noteq> 0" unfolding graeffe_poly_def by auto
    from arg_cong[OF assms, of degree] 
    have "degree f = degree (smult (c ^ 2 ^ m) (\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ m), 1:]))" unfolding graeffe_poly_def by auto
    also have "\<dots> = degree (\<Prod>a\<leftarrow>as. [:- (a ^ 2 ^ m), 1:])" unfolding degree_smult_eq using c0 by auto
    also have "\<dots> = length as" unfolding degree_linear_factors by simp
    finally show ?thesis by simp
  qed
  finally show ?thesis .
qed
end

definition graeffe_one_step :: "'a \<Rightarrow> 'a :: idom poly \<Rightarrow> 'a poly" where 
  "graeffe_one_step c f = smult c (poly_square_subst (f * f \<circ>\<^sub>p [:0,-1:]))" 
  
lemma graeffe_one_step_code[code]: fixes c :: "'a :: idom" 
  shows "graeffe_one_step c f = (case poly_even_odd f of (g,h)
  \<Rightarrow> smult c (g * g - monom 1 1 * h * h))" 
proof -
  obtain g h where eo: "poly_even_odd f = (g,h)" by force
  from poly_even_odd[OF eo] have fgh: "f = g \<circ>\<^sub>p monom 1 2 + monom 1 1 * h \<circ>\<^sub>p monom 1 2 " by auto 
  have m2: "monom (1 :: 'a) 2 = [:0,0,1:]" "monom (1 :: 'a) 1 = [:0,1:]" 
    unfolding coeffs_eq_iff coeffs_monom
    by (auto simp add: numeral_2_eq_2)
  show ?thesis unfolding eo split graeffe_one_step_def
  proof (rule arg_cong[of _ _ "smult c"])
    let ?g = "g \<circ>\<^sub>p monom 1 2" 
    let ?h = "h \<circ>\<^sub>p monom 1 2" 
    let ?x = "monom (1 :: 'a) 1"
    have 2: "2 = Suc (Suc 0)" by simp
    have "f * f \<circ>\<^sub>p [:0, - 1:] = (g \<circ>\<^sub>p monom 1 2 + monom 1 1 * h \<circ>\<^sub>p monom 1 2) * 
      (g \<circ>\<^sub>p monom 1 2 + monom 1 1 * h \<circ>\<^sub>p monom 1 2) \<circ>\<^sub>p [:0, - 1:]" unfolding fgh by simp
    also have "(g \<circ>\<^sub>p monom 1 2 + monom 1 1 * h \<circ>\<^sub>p monom 1 2) \<circ>\<^sub>p [:0, - 1:]
      = g \<circ>\<^sub>p (monom 1 2 \<circ>\<^sub>p [:0, - 1:]) + monom 1 1 \<circ>\<^sub>p [:0, - 1:] * h \<circ>\<^sub>p (monom 1 2 \<circ>\<^sub>p [:0, - 1:])" 
      unfolding pcompose_add pcompose_mult pcompose_assoc by simp
    also have "monom (1 :: 'a) 2 \<circ>\<^sub>p [:0, - 1:] = monom 1 2" unfolding m2 by auto
    also have "?x \<circ>\<^sub>p [:0, - 1:] = [:0, -1:]" unfolding m2 by auto
    also have "[:0, - 1:] * h \<circ>\<^sub>p monom 1 2 = (-?x) * ?h" unfolding m2 by simp
    also have "(?g + ?x * ?h) * (?g + (- ?x) * ?h) = (?g * ?g - (?x * ?x) * ?h * ?h)"       
      by (auto simp: field_simps)
    also have "?x * ?x = ?x \<circ>\<^sub>p monom 1 2" unfolding mult_monom by (insert m2, simp add: 2)
    also have "(?g * ?g - \<dots> * ?h * ?h) = (g * g - ?x * h * h) \<circ>\<^sub>p monom 1 2" 
      unfolding pcompose_diff pcompose_mult by auto
    finally have "poly_square_subst (f * f \<circ>\<^sub>p [:0, - 1:]) 
      = poly_square_subst ((g * g - ?x * h * h) \<circ>\<^sub>p monom 1 2)" by simp
    also have "\<dots> = g * g - ?x * h * h" unfolding poly_square_subst by simp
    finally show "poly_square_subst (f * f \<circ>\<^sub>p [:0, - 1:]) = g * g - ?x * h * h" .
  qed
qed

fun graeffe_poly_impl_main :: "'a \<Rightarrow> 'a :: idom poly \<Rightarrow> nat \<Rightarrow> 'a poly" where
  "graeffe_poly_impl_main c f 0 = f" 
| "graeffe_poly_impl_main c f (Suc m) = graeffe_one_step c (graeffe_poly_impl_main c f m)" 
  
lemma graeffe_poly_impl_main: assumes "f = smult c (\<Prod>a\<leftarrow>as. [:- a, 1:])"
  shows "graeffe_poly_impl_main ((-1)^degree f) f m = graeffe_poly c as m"
proof (induct m)
  case 0
  show ?case using graeffe_0[OF assms] by simp
next
  case (Suc m)
  have [simp]: "degree (graeffe_poly c as m) = degree f" unfolding graeffe_poly_def degree_smult_eq assms
    degree_linear_factors by auto    
  from arg_cong[OF Suc, of degree]  
  show ?case unfolding graeffe_recursion[OF Suc[symmetric]]
    by (simp add: graeffe_one_step_def)
qed

definition graeffe_poly_impl :: "'a :: idom poly \<Rightarrow> nat \<Rightarrow> 'a poly" where
  "graeffe_poly_impl f = graeffe_poly_impl_main ((-1)^(degree f)) f" 

lemma graeffe_poly_impl: assumes "f = smult c (\<Prod>a\<leftarrow>as. [:- a, 1:])"
  shows "graeffe_poly_impl f m = graeffe_poly c as m"
  using graeffe_poly_impl_main[OF assms] unfolding graeffe_poly_impl_def .

lemma drop_half_map: "drop_half (map f xs) = map f (drop_half xs)" 
  by (induct xs rule: drop_half.induct, auto)

lemma (in inj_comm_ring_hom) map_poly_poly_square_subst: 
  "map_poly hom (poly_square_subst f) = poly_square_subst (map_poly hom f)" 
  unfolding poly_square_subst_def coeffs_map_poly_hom drop_half_map poly_of_list_def
  by (rule poly_eqI, auto simp: nth_default_map_eq)

context inj_idom_hom
begin

lemma graeffe_poly_impl_hom:
  "map_poly hom (graeffe_poly_impl f m) = graeffe_poly_impl (map_poly hom f) m"
proof -
  interpret mh: map_poly_inj_idom_hom..
  obtain c where c: "(((- 1) ^ degree f) :: 'a) = c" by auto
  have c': "(((- 1) ^ degree f) :: 'b) = hom c" unfolding c[symmetric] by (simp add:hom_distribs)
  show ?thesis unfolding graeffe_poly_impl_def degree_map_poly_hom c c'
  apply (induct m arbitrary: f; simp)
  by (unfold graeffe_one_step_def hom_distribs map_poly_poly_square_subst map_poly_pcompose,simp)
qed
end

lemma graeffe_poly_impl_mahler: "mahler_measure (graeffe_poly_impl f m) = mahler_measure f ^ 2 ^ m" 
proof -
  let ?c = "complex_of_int" 
  let ?cc = "map_poly ?c" 
  let ?f = "?cc f" 
  note eq = complex_roots(1)[of ?f]
  interpret inj_idom_hom complex_of_int by (standard, auto)
  show ?thesis  
    unfolding mahler_measure_def mahler_graeffe[OF eq[symmetric], symmetric]
     graeffe_poly_impl[OF eq[symmetric], symmetric] by (simp add: of_int_hom.graeffe_poly_impl_hom)
qed

definition mahler_landau_graeffe_approximation :: "nat \<Rightarrow> nat \<Rightarrow> int poly \<Rightarrow> int" where
  "mahler_landau_graeffe_approximation kk dd f = (let 
     no = sum_list (map (\<lambda> a. a * a) (coeffs f))
    in root_int_floor kk (dd * no))" 

lemma mahler_landau_graeffe_approximation_core: 
  assumes g: "g = graeffe_poly_impl f k" 
  shows "mahler_measure f \<le> root (2 ^ Suc k) (real_of_int (\<Sum>a\<leftarrow>coeffs g. a * a))" 
proof -
  have "mahler_measure f = root (2^k) (mahler_measure f ^ (2^k))" 
    by (simp add: real_root_power_cancel mahler_measure_ge_0) 
  also have "\<dots> = root (2^k) (mahler_measure g)" 
    unfolding graeffe_poly_impl_mahler g by simp
  also have "\<dots> = root (2^k) (root 2 (((mahler_measure g)^2)))" 
    by (simp add: real_root_power_cancel mahler_measure_ge_0) 
  also have "\<dots> = root (2^Suc k) (((mahler_measure g)^2))"
    by (metis power_Suc2 real_root_mult_exp)
  also have "\<dots> \<le> root (2 ^ Suc k) (real_of_int (\<Sum>a\<leftarrow>coeffs g. a * a))" 
  proof (rule real_root_le_mono, force)
    have square_mono: "0 \<le> (x :: real) \<Longrightarrow> x \<le> y \<Longrightarrow> x * x \<le> y * y" for x y
      by (simp add: mult_mono')
    obtain gs where gs: "coeffs g = gs" by auto
    have "(mahler_measure g)\<^sup>2 \<le> real_of_int \<bar>\<Sum>a\<leftarrow>coeffs g. a * a\<bar>" 
      using square_mono[OF mahler_measure_ge_0 Landau_inequality[of "of_int_poly g", folded mahler_measure_def]]
      by (auto simp: power2_eq_square coeffs_map_poly o_def of_int_hom.hom_sum_list)
    also have "\<bar>\<Sum>a\<leftarrow>coeffs g. a * a\<bar> = (\<Sum>a\<leftarrow>coeffs g. a * a)" unfolding gs
      by (induct gs, auto)
    finally show "(mahler_measure g)\<^sup>2 \<le> real_of_int (\<Sum>a\<leftarrow>coeffs g. a * a)" .
  qed
  finally show "mahler_measure f \<le> root (2 ^ Suc k) (real_of_int (\<Sum>a\<leftarrow>coeffs g. a * a))" .
qed

lemma Landau_inequality_mahler_measure: "mahler_measure f \<le> sqrt (real_of_int (\<Sum>a\<leftarrow>coeffs f. a * a))"
  by (rule order.trans[OF mahler_landau_graeffe_approximation_core[OF refl, of _ 0]],
  auto simp: graeffe_poly_impl_def sqrt_def)

lemma mahler_landau_graeffe_approximation:
  assumes g: "g = graeffe_poly_impl f k" "dd = d^(2^(Suc k))" "kk = 2^(Suc k)" 
  shows "\<lfloor>real d * mahler_measure f\<rfloor> \<le> mahler_landau_graeffe_approximation kk dd g"
proof -
  have id1: "real_of_int (int (d ^ 2 ^ Suc k)) = (real d) ^ 2 ^ Suc k" by simp
  have id2: "root (2 ^ Suc k) (real d ^ 2 ^ Suc k) = real d" 
    by (simp add: real_root_power_cancel)
  show ?thesis unfolding mahler_landau_graeffe_approximation_def Let_def root_int_floor of_int_mult g(2-3)
    by (rule floor_mono, unfold real_root_mult id1 id2, rule mult_left_mono, 
    rule mahler_landau_graeffe_approximation_core[OF g(1)], auto)
qed

context 
  fixes bnd :: nat
begin
(* "dd = d^(2^(Suc k))" "kk = 2^(Suc k)" *)
function mahler_approximation_main :: "nat \<Rightarrow> int \<Rightarrow> int poly \<Rightarrow> int \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> int" where
  "mahler_approximation_main dd c g mm k kk = (let mmm = mahler_landau_graeffe_approximation kk dd g;
     new_mm = (if k = 0 then mmm else min mm mmm)
     in (if k \<ge> bnd then new_mm else 
     \<comment> \<open>abort after \<open>bnd\<close> iterations of Graeffe transformation\<close>
      mahler_approximation_main (dd * dd) c (graeffe_one_step c g) new_mm (Suc k) (2 * kk)))" 
  by pat_completeness auto

termination by (relation "measure (\<lambda> (dd,c,f,mm,k,kk). Suc bnd - k)", auto)
declare mahler_approximation_main.simps[simp del]

lemma mahler_approximation_main: assumes "k \<noteq> 0 \<Longrightarrow> \<lfloor>real d * mahler_measure f\<rfloor> \<le> mm"
    and "c = (-1)^(degree f)" 
    and "g = graeffe_poly_impl_main c f k" "dd = d^(2^(Suc k))" "kk = 2^(Suc k)"
  shows "\<lfloor>real d * mahler_measure f\<rfloor> \<le> mahler_approximation_main dd c g mm k kk" 
  using assms
proof (induct c g mm k kk rule: mahler_approximation_main.induct)
  case (1 dd c g mm k kk)
  let ?df = "\<lfloor>real d * mahler_measure f\<rfloor>" 
  note dd = 1(5)
  note kk = 1(6)
  note g = 1(4)
  note c = 1(3)
  note mm = 1(2)
  note IH = 1(1)  
  note mahl = mahler_approximation_main.simps[of dd c g mm k kk]
  define mmm where "mmm = mahler_landau_graeffe_approximation kk dd g" 
  define new_mm where "new_mm = (if k = 0 then mmm else min mm mmm)" 
  let ?cond = "bnd \<le> k" 
  have id: "mahler_approximation_main dd c g mm k kk = (if ?cond then new_mm
        else mahler_approximation_main (dd * dd) c (graeffe_one_step c g) new_mm (Suc k) (2 * kk))" 
    unfolding mahl mmm_def[symmetric] Let_def new_mm_def[symmetric] by simp
  have gg: "g = (graeffe_poly_impl f k)" unfolding g graeffe_poly_impl_def c ..
  from mahler_landau_graeffe_approximation[OF gg dd kk, folded mmm_def]
  have mmm: "?df \<le> mmm" .
  with mm have new_mm: "?df \<le> new_mm" unfolding new_mm_def by auto
  show ?case
  proof (cases ?cond)
    case True
    show ?thesis unfolding id using True new_mm by auto
  next
    case False
    hence id: "mahler_approximation_main dd c g mm k kk = 
      mahler_approximation_main (dd * dd) c (graeffe_one_step c g) new_mm (Suc k) (2 * kk)" 
      unfolding id by auto
    have id': "graeffe_one_step c g = graeffe_poly_impl_main c f (Suc k)" 
      unfolding g by simp
    have "dd * dd = d ^ 2 ^ Suc (Suc k)" "2 * kk = 2 ^ Suc (Suc k)" unfolding dd kk
      semiring_normalization_rules(26) by auto
    from IH[OF mmm_def new_mm_def False new_mm c id' this]
    show ?thesis unfolding id .
  qed
qed 

definition mahler_approximation :: "nat \<Rightarrow> int poly \<Rightarrow> int" where
  "mahler_approximation d f = mahler_approximation_main (d * d) ((-1)^(degree f)) f (-1) 0 2" 

lemma mahler_approximation: "\<lfloor>real d * mahler_measure f\<rfloor> \<le> mahler_approximation d f"
  unfolding mahler_approximation_def
  by (rule mahler_approximation_main, auto simp: semiring_normalization_rules(29)) 
end

end