Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 15,800 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
(*
    Authors:      Jose Divasón
                  Sebastiaan Joosten
                  René Thiemann
                  Akihisa Yamada
*)
subsection \<open>Finding a Suitable Prime\<close>

text \<open>The Berlekamp-Zassenhaus algorithm demands for an input polynomial $f$ to determine
  a prime $p$ such that $f$ is square-free mod $p$ and such that $p$ and the leading coefficient
  of $f$ are coprime. To this end, we first prove that such a prime always exists, provided that 
  $f$ is square-free over the integers. Second, we provide a generic algorithm which searches for 
  primes have a certain property $P$. Combining both results gives us the suitable prime for
  the Berlekamp-Zassenhaus algorithm.\<close>

theory Suitable_Prime
imports 
  Poly_Mod
  Finite_Field_Record_Based
  "HOL-Types_To_Sets.Types_To_Sets"
  Poly_Mod_Finite_Field_Record_Based
  Polynomial_Record_Based
  Square_Free_Int_To_Square_Free_GFp
begin

lemma square_free_separable_GFp: fixes f :: "'a :: prime_card mod_ring poly"
  assumes card: "CARD('a) > degree f"
  and sf: "square_free f" 
  shows "separable f"
proof (rule ccontr)
  assume "\<not> separable f" 
  with square_free_separable_main[OF sf]
  obtain g k where *: "f = g * k" "degree g \<noteq> 0" and g0: "pderiv g = 0" by auto
  from assms have f: "f \<noteq> 0" unfolding square_free_def by auto
  have "degree f = degree g + degree k" using f unfolding *(1)
    by (subst degree_mult_eq, auto)
  with card have card: "degree g < CARD('a)" by auto
  from *(2) obtain n where deg: "degree g = Suc n" by (cases "degree g", auto)
  from *(2) have cg: "coeff g (degree g) \<noteq> 0" by auto
  from g0 have "coeff (pderiv g) n = 0" by auto
  from this[unfolded coeff_pderiv, folded deg] cg
  have "of_nat (degree g) = (0 :: 'a mod_ring)" by auto
  from of_nat_0_mod_ring_dvd[OF this] have "CARD('a) dvd degree g" .
  with card show False by (simp add: deg nat_dvd_not_less)
qed
  
lemma square_free_iff_separable_GFp: assumes "degree f < CARD('a)" 
  shows "square_free (f :: 'a :: prime_card mod_ring poly) = separable f"
  using separable_imp_square_free[of f] square_free_separable_GFp[OF assms] by auto

definition separable_impl_main :: "int \<Rightarrow> 'i arith_ops_record \<Rightarrow> int poly \<Rightarrow> bool" where
  "separable_impl_main p ff_ops f = separable_i ff_ops (of_int_poly_i ff_ops (poly_mod.Mp p f))" 

lemma (in prime_field_gen) separable_impl: 
  shows "separable_impl_main p ff_ops f \<Longrightarrow> square_free_m f" 
  "p > degree_m f \<Longrightarrow> p > separable_bound f \<Longrightarrow> square_free f 
   \<Longrightarrow> separable_impl_main p ff_ops f" unfolding separable_impl_main_def
proof -
  define F where F: "(F :: 'a mod_ring poly) = of_int_poly (Mp f)"
  let ?f' = "of_int_poly_i ff_ops (Mp f)" 
  define f'' where "f'' \<equiv> of_int_poly (Mp f) :: 'a mod_ring poly"
  have rel_f[transfer_rule]: "poly_rel ?f' f''" 
    by (rule poly_rel_of_int_poly[OF refl], simp add: f''_def)
  have "separable_i ff_ops ?f' \<longleftrightarrow> gcd f'' (pderiv f'') = 1"
    unfolding separable_i_def by transfer_prover
  also have "\<dots> \<longleftrightarrow> coprime f'' (pderiv f'')"
    by (auto simp add: gcd_eq_1_imp_coprime)
  finally have id: "separable_i ff_ops ?f' \<longleftrightarrow> separable f''" unfolding separable_def coprime_iff_coprime .
  have Mprel [transfer_rule]: "MP_Rel (Mp f) F" unfolding F MP_Rel_def
    by (simp add: Mp_f_representative)
  have "square_free f'' = square_free F" unfolding f''_def F by simp
  also have "\<dots> = square_free_m (Mp f)"
    by (transfer, simp)
  also have "\<dots> = square_free_m f" by simp
  finally have id2: "square_free f'' = square_free_m f" .
  from separable_imp_square_free[of f'']
  show "separable_i ff_ops ?f' \<Longrightarrow> square_free_m f"
    unfolding id id2 by auto
  let ?m = "map_poly (of_int :: int \<Rightarrow> 'a mod_ring)" 
  let ?f = "?m f" 
  assume "p > degree_m f" and bnd: "p > separable_bound f" and sf: "square_free f"
  with rel_funD[OF degree_MP_Rel Mprel, folded p]
  have "p > degree F" by simp
  hence "CARD('a) > degree f''" unfolding f''_def F p by simp
  from square_free_iff_separable_GFp[OF this]
  have "separable_i ff_ops ?f' = square_free f''" unfolding id id2 by simp
  also have "\<dots> = square_free F" unfolding f''_def F by simp
  also have "F = ?f" unfolding F
    by (rule poly_eqI, (subst coeff_map_poly, force)+, unfold Mp_coeff, 
    auto simp: M_def, transfer, auto simp: p)
  also have "square_free ?f" using square_free_int_imp_square_free_mod_ring[where 'a = 'a, OF sf] bnd m by auto
  finally
  show "separable_i ff_ops ?f'" .
qed

context poly_mod_prime begin

lemmas separable_impl_integer = prime_field_gen.separable_impl
  [OF prime_field.prime_field_finite_field_ops_integer, unfolded prime_field_def mod_ring_locale_def,
  unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise,cancel_type_definition, OF non_empty]

lemmas separable_impl_uint32 = prime_field_gen.separable_impl
  [OF prime_field.prime_field_finite_field_ops32, unfolded prime_field_def mod_ring_locale_def,
  unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise,cancel_type_definition, OF non_empty]

lemmas separable_impl_uint64 = prime_field_gen.separable_impl
  [OF prime_field.prime_field_finite_field_ops64, unfolded prime_field_def mod_ring_locale_def,
  unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise,cancel_type_definition, OF non_empty]

end

definition separable_impl :: "int \<Rightarrow> int poly \<Rightarrow> bool" where
  "separable_impl p = ( 
    if p \<le> 65535 
    then separable_impl_main p (finite_field_ops32 (uint32_of_int p))
    else if p \<le> 4294967295
    then separable_impl_main p (finite_field_ops64 (uint64_of_int p))
    else separable_impl_main p (finite_field_ops_integer (integer_of_int p)))" 

lemma square_free_mod_imp_square_free: assumes 
  p: "prime p" and sf: "poly_mod.square_free_m p f"
  and cop: "coprime (lead_coeff f) p" 
  shows "square_free f"
proof -
  interpret poly_mod p .
  from sf[unfolded square_free_m_def] have f0: "Mp f \<noteq> 0" and ndvd: "\<And> g. degree_m g > 0 \<Longrightarrow> \<not> (g * g) dvdm f" 
    by auto
  from f0 have ff0: "f \<noteq> 0" by auto
  show "square_free f" unfolding square_free_def
  proof (intro conjI[OF ff0] allI impI notI)
    fix g
    assume deg: "degree g > 0" and dvd: "g * g dvd f" 
    then obtain h where f: "f = g * g * h" unfolding dvd_def by auto
    from arg_cong[OF this, of Mp] have "(g * g) dvdm f" unfolding dvdm_def by auto
    with ndvd[of g] have deg0: "degree_m g = 0" by auto
    hence g0: "M (lead_coeff g) = 0" unfolding Mp_def using deg
      by (metis M_def deg0 p poly_mod.degree_m_eq prime_gt_1_int neq0_conv)
    from p have p0: "p \<noteq> 0" by auto
    from arg_cong[OF f, of lead_coeff] have "lead_coeff f = lead_coeff g * lead_coeff g * lead_coeff h" 
      by (auto simp: lead_coeff_mult)
    hence "lead_coeff g dvd lead_coeff f" by auto
    with cop have cop: "coprime (lead_coeff g) p"
      by (auto elim: coprime_imp_coprime intro: dvd_trans)
    with p0 have "coprime (lead_coeff g mod p) p" by simp
    also have "lead_coeff g mod p = 0"
      using M_def g0 by simp
    finally show False using p
      unfolding prime_int_iff
      by (simp add: prime_int_iff)
  qed
qed

lemma(in poly_mod_prime) separable_impl: 
  shows "separable_impl p f \<Longrightarrow> square_free_m f"
    "nat p > degree_m f \<Longrightarrow> nat p > separable_bound f \<Longrightarrow> square_free f 
    \<Longrightarrow> separable_impl p f" 
  using
    separable_impl_integer[of f] 
    separable_impl_uint32[of f]
    separable_impl_uint64[of f]
  unfolding separable_impl_def by (auto split: if_splits)

lemma coprime_lead_coeff_large_prime: assumes prime: "prime (p :: int)" 
  and large: "p > abs (lead_coeff f)" 
  and f: "f \<noteq> 0" 
  shows "coprime (lead_coeff f) p"
proof -
  {
    fix lc 
    assume "0 < lc" "lc < p" 
    then have "\<not> p dvd lc"
      by (simp add: zdvd_not_zless)
    with \<open>prime p\<close> have "coprime p lc"
      by (auto intro: prime_imp_coprime)
    then have "coprime lc p"
      by (simp add: ac_simps)
  } note main = this
  define lc where "lc = lead_coeff f" 
  from f have lc0: "lc \<noteq> 0" unfolding lc_def by auto
  from large have large: "p > abs lc" unfolding lc_def by auto
  have "coprime lc p" 
  proof (cases "lc > 0")
    case True
    from large have "p > lc" by auto
    from main[OF True this] show ?thesis .
  next
    case False
    let ?mlc = "- lc" 
    from large False lc0 have "?mlc > 0" "p > ?mlc" by auto
    from main[OF this] show ?thesis by simp
  qed
  thus ?thesis unfolding lc_def by auto
qed

lemma prime_for_berlekamp_zassenhaus_exists: assumes sf: "square_free f" 
  shows "\<exists> p. prime p \<and> (coprime (lead_coeff f) p \<and> separable_impl p f)"
proof (rule ccontr)
  from assms have f0: "f \<noteq> 0" unfolding square_free_def by auto
  define n where "n = max (max (abs (lead_coeff f)) (degree f)) (separable_bound f)" 
  assume contr: "\<not> ?thesis"
  {
    fix p :: int
    assume prime: "prime p" and n: "p > n" 
    then interpret poly_mod_prime p by unfold_locales
    from n have large: "p > abs (lead_coeff f)" "nat p > degree f" "nat p > separable_bound f" 
      unfolding n_def by auto
    from coprime_lead_coeff_large_prime[OF prime large(1) f0]
    have cop: "coprime (lead_coeff f) p" by auto
    with prime contr have nsf: "\<not> separable_impl p f" by auto
    from large(2) have "nat p > degree_m f" using degree_m_le[of f] by auto
    from separable_impl(2)[OF this large(3) sf] nsf have False by auto
  }
  hence no_large_prime: "\<And> p. prime p \<Longrightarrow> p > n \<Longrightarrow> False" by auto
  from bigger_prime[of "nat n"] obtain p where *: "prime p" "p > nat n" by auto
  define q where "q \<equiv> int p" 
  from * have "prime q" "q > n" unfolding q_def by auto
  from no_large_prime[OF this]
  show False .
qed

definition next_primes :: "nat \<Rightarrow> nat \<times> nat list" where
  "next_primes n = (if n = 0 then next_candidates 0 else 
    let (m,ps) = next_candidates n in (m,filter prime ps))"

partial_function (tailrec) find_prime_main :: 
  "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat" where
  [code]: "find_prime_main f np ps = (case ps of [] \<Rightarrow> 
    let (np',ps') = next_primes np
      in find_prime_main f np' ps'
    | (p # ps) \<Rightarrow> if f p then p else find_prime_main f np ps)" 
  
definition find_prime :: "(nat \<Rightarrow> bool) \<Rightarrow> nat" where
  "find_prime f = find_prime_main f 0 []"
  

lemma next_primes: assumes res: "next_primes n = (m,ps)"
  and n: "candidate_invariant n"
  shows "candidate_invariant m" "sorted ps" "distinct ps" "n < m" 
  "set ps = {i. prime i \<and> n \<le> i \<and> i < m}" 
proof -
  have "candidate_invariant m \<and> sorted ps \<and> distinct ps \<and> n < m \<and>
    set ps = {i. prime i \<and> n \<le> i \<and> i < m}"
  proof (cases "n = 0")
    case True    
    with res[unfolded next_primes_def] have nc: "next_candidates 0 = (m,ps)" by auto
    from this[unfolded next_candidates_def] have ps: "ps = primes_1000" and m: "m = 1001" by auto
    have ps: "set ps = {i. prime i \<and> n \<le> i \<and> i < m}" unfolding m True ps 
      by (auto simp: primes_1000)
    with next_candidates[OF nc n[unfolded True]] True
    show ?thesis by simp
  next
    case False
    with res[unfolded next_primes_def Let_def] obtain qs where nc: "next_candidates n = (m, qs)"
      and ps: "ps = filter prime qs" by (cases "next_candidates n", auto)
    have "sorted qs \<Longrightarrow> sorted ps" unfolding ps using sorted_filter[of id qs prime] by auto
    with next_candidates[OF nc n] show ?thesis unfolding ps by auto
  qed
  thus "candidate_invariant m" "sorted ps" "distinct ps" "n < m" 
    "set ps = {i. prime i \<and> n \<le> i \<and> i < m}" by auto
qed

lemma find_prime: assumes "\<exists> n. prime n \<and> f n"
  shows "prime (find_prime f) \<and> f (find_prime f)" 
proof -
  from assms obtain n where fn: "prime n" "f n" by auto
  {
    fix i ps m
    assume "candidate_invariant i" 
      and "n \<in> set ps \<or> n \<ge> i"
      and "m = (Suc n - i, length ps)"
      and "\<And> p. p \<in> set ps \<Longrightarrow> prime p" 
    hence "prime (find_prime_main f i ps) \<and> f (find_prime_main f i ps)"
    proof (induct m arbitrary: i ps rule: wf_induct[OF wf_measures[of "[fst, snd]"]])
      case (1 m i ps)
      note IH = 1(1)[rule_format]
      note can = 1(2)
      note n = 1(3)
      note m = 1(4)
      note ps = 1(5)
      note simps [simp] = find_prime_main.simps[of f i ps]
      show ?case 
      proof (cases ps)
        case Nil
        with n have i_n: "i \<le> n" by auto
        obtain j qs where np: "next_primes i = (j,qs)" by force
        note j = next_primes[OF np can]
        from j(4) i_n m have meas: "((Suc n - j, length qs), m) \<in> measures [fst, snd]" by auto 
        have n: "n \<in> set qs \<or> j \<le> n" unfolding j(5) using i_n fn by auto
        show ?thesis unfolding simps using IH[OF meas j(1) n refl] j(5) by (simp add: Nil np)
      next
        case (Cons p qs)
        show ?thesis
        proof (cases "f p")
          case True
          thus ?thesis unfolding simps using ps unfolding Cons by simp
        next
          case False
          have m: "((Suc n - i, length qs), m) \<in> measures [fst, snd]" using m unfolding Cons by simp
          have n: "n \<in> set qs \<or> i \<le> n" using False n fn by (auto simp: Cons)
          from IH[OF m can n refl ps]
          show ?thesis unfolding simps using Cons False by simp
        qed
      qed
    qed
  } note main = this
  have "candidate_invariant 0" by (simp add: candidate_invariant_def)
  from main[OF this _ refl, of Nil] show ?thesis unfolding find_prime_def by auto
qed 

definition suitable_prime_bz :: "int poly \<Rightarrow> int" where
  "suitable_prime_bz f \<equiv> let lc = lead_coeff f in int (find_prime (\<lambda> n. let p = int n in 
       coprime lc p \<and> separable_impl p f))"
  
lemma suitable_prime_bz: assumes sf: "square_free f" and p: "p = suitable_prime_bz f" 
  shows "prime p" "coprime (lead_coeff f) p" "poly_mod.square_free_m p f"
proof -
  let ?lc = "lead_coeff f" 
  from prime_for_berlekamp_zassenhaus_exists[OF sf, unfolded Let_def]
  obtain P where *: "prime P \<and> coprime ?lc P \<and> separable_impl P f" 
    by auto
  hence "prime (nat P)" using prime_int_nat_transfer by blast
  with * have "\<exists> p. prime p \<and> coprime ?lc (int p) \<and> separable_impl p f"
    by (intro exI [of _ "nat P"]) (auto dest: prime_gt_0_int)
  from find_prime[OF this]
  have prime: "prime p" and cop: "coprime ?lc p" and sf: "separable_impl p f" 
    unfolding p suitable_prime_bz_def Let_def by auto
  then interpret poly_mod_prime p by unfold_locales
  from prime cop separable_impl(1)[OF sf]
  show "prime p" "coprime ?lc p" "square_free_m f" by auto
qed

definition square_free_heuristic :: "int poly \<Rightarrow> int option" where
  "square_free_heuristic f = (let lc = lead_coeff f in 
    find (\<lambda> p. coprime lc p \<and> separable_impl p f) [2, 3, 5, 7, 11, 13, 17, 19, 23])" 

lemma find_Some_D: "find f xs = Some y \<Longrightarrow> y \<in> set xs \<and> f y" unfolding find_Some_iff by auto
  
lemma square_free_heuristic: assumes "square_free_heuristic f = Some p" 
  shows "coprime (lead_coeff f) p \<and> separable_impl p f \<and> prime p" 
proof -
  from find_Some_D[OF assms[unfolded square_free_heuristic_def Let_def]]
  show ?thesis by auto
qed
 
end