Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,800 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
subsection \<open>Finding a Suitable Prime\<close>
text \<open>The Berlekamp-Zassenhaus algorithm demands for an input polynomial $f$ to determine
a prime $p$ such that $f$ is square-free mod $p$ and such that $p$ and the leading coefficient
of $f$ are coprime. To this end, we first prove that such a prime always exists, provided that
$f$ is square-free over the integers. Second, we provide a generic algorithm which searches for
primes have a certain property $P$. Combining both results gives us the suitable prime for
the Berlekamp-Zassenhaus algorithm.\<close>
theory Suitable_Prime
imports
Poly_Mod
Finite_Field_Record_Based
"HOL-Types_To_Sets.Types_To_Sets"
Poly_Mod_Finite_Field_Record_Based
Polynomial_Record_Based
Square_Free_Int_To_Square_Free_GFp
begin
lemma square_free_separable_GFp: fixes f :: "'a :: prime_card mod_ring poly"
assumes card: "CARD('a) > degree f"
and sf: "square_free f"
shows "separable f"
proof (rule ccontr)
assume "\<not> separable f"
with square_free_separable_main[OF sf]
obtain g k where *: "f = g * k" "degree g \<noteq> 0" and g0: "pderiv g = 0" by auto
from assms have f: "f \<noteq> 0" unfolding square_free_def by auto
have "degree f = degree g + degree k" using f unfolding *(1)
by (subst degree_mult_eq, auto)
with card have card: "degree g < CARD('a)" by auto
from *(2) obtain n where deg: "degree g = Suc n" by (cases "degree g", auto)
from *(2) have cg: "coeff g (degree g) \<noteq> 0" by auto
from g0 have "coeff (pderiv g) n = 0" by auto
from this[unfolded coeff_pderiv, folded deg] cg
have "of_nat (degree g) = (0 :: 'a mod_ring)" by auto
from of_nat_0_mod_ring_dvd[OF this] have "CARD('a) dvd degree g" .
with card show False by (simp add: deg nat_dvd_not_less)
qed
lemma square_free_iff_separable_GFp: assumes "degree f < CARD('a)"
shows "square_free (f :: 'a :: prime_card mod_ring poly) = separable f"
using separable_imp_square_free[of f] square_free_separable_GFp[OF assms] by auto
definition separable_impl_main :: "int \<Rightarrow> 'i arith_ops_record \<Rightarrow> int poly \<Rightarrow> bool" where
"separable_impl_main p ff_ops f = separable_i ff_ops (of_int_poly_i ff_ops (poly_mod.Mp p f))"
lemma (in prime_field_gen) separable_impl:
shows "separable_impl_main p ff_ops f \<Longrightarrow> square_free_m f"
"p > degree_m f \<Longrightarrow> p > separable_bound f \<Longrightarrow> square_free f
\<Longrightarrow> separable_impl_main p ff_ops f" unfolding separable_impl_main_def
proof -
define F where F: "(F :: 'a mod_ring poly) = of_int_poly (Mp f)"
let ?f' = "of_int_poly_i ff_ops (Mp f)"
define f'' where "f'' \<equiv> of_int_poly (Mp f) :: 'a mod_ring poly"
have rel_f[transfer_rule]: "poly_rel ?f' f''"
by (rule poly_rel_of_int_poly[OF refl], simp add: f''_def)
have "separable_i ff_ops ?f' \<longleftrightarrow> gcd f'' (pderiv f'') = 1"
unfolding separable_i_def by transfer_prover
also have "\<dots> \<longleftrightarrow> coprime f'' (pderiv f'')"
by (auto simp add: gcd_eq_1_imp_coprime)
finally have id: "separable_i ff_ops ?f' \<longleftrightarrow> separable f''" unfolding separable_def coprime_iff_coprime .
have Mprel [transfer_rule]: "MP_Rel (Mp f) F" unfolding F MP_Rel_def
by (simp add: Mp_f_representative)
have "square_free f'' = square_free F" unfolding f''_def F by simp
also have "\<dots> = square_free_m (Mp f)"
by (transfer, simp)
also have "\<dots> = square_free_m f" by simp
finally have id2: "square_free f'' = square_free_m f" .
from separable_imp_square_free[of f'']
show "separable_i ff_ops ?f' \<Longrightarrow> square_free_m f"
unfolding id id2 by auto
let ?m = "map_poly (of_int :: int \<Rightarrow> 'a mod_ring)"
let ?f = "?m f"
assume "p > degree_m f" and bnd: "p > separable_bound f" and sf: "square_free f"
with rel_funD[OF degree_MP_Rel Mprel, folded p]
have "p > degree F" by simp
hence "CARD('a) > degree f''" unfolding f''_def F p by simp
from square_free_iff_separable_GFp[OF this]
have "separable_i ff_ops ?f' = square_free f''" unfolding id id2 by simp
also have "\<dots> = square_free F" unfolding f''_def F by simp
also have "F = ?f" unfolding F
by (rule poly_eqI, (subst coeff_map_poly, force)+, unfold Mp_coeff,
auto simp: M_def, transfer, auto simp: p)
also have "square_free ?f" using square_free_int_imp_square_free_mod_ring[where 'a = 'a, OF sf] bnd m by auto
finally
show "separable_i ff_ops ?f'" .
qed
context poly_mod_prime begin
lemmas separable_impl_integer = prime_field_gen.separable_impl
[OF prime_field.prime_field_finite_field_ops_integer, unfolded prime_field_def mod_ring_locale_def,
unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise,cancel_type_definition, OF non_empty]
lemmas separable_impl_uint32 = prime_field_gen.separable_impl
[OF prime_field.prime_field_finite_field_ops32, unfolded prime_field_def mod_ring_locale_def,
unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise,cancel_type_definition, OF non_empty]
lemmas separable_impl_uint64 = prime_field_gen.separable_impl
[OF prime_field.prime_field_finite_field_ops64, unfolded prime_field_def mod_ring_locale_def,
unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise,cancel_type_definition, OF non_empty]
end
definition separable_impl :: "int \<Rightarrow> int poly \<Rightarrow> bool" where
"separable_impl p = (
if p \<le> 65535
then separable_impl_main p (finite_field_ops32 (uint32_of_int p))
else if p \<le> 4294967295
then separable_impl_main p (finite_field_ops64 (uint64_of_int p))
else separable_impl_main p (finite_field_ops_integer (integer_of_int p)))"
lemma square_free_mod_imp_square_free: assumes
p: "prime p" and sf: "poly_mod.square_free_m p f"
and cop: "coprime (lead_coeff f) p"
shows "square_free f"
proof -
interpret poly_mod p .
from sf[unfolded square_free_m_def] have f0: "Mp f \<noteq> 0" and ndvd: "\<And> g. degree_m g > 0 \<Longrightarrow> \<not> (g * g) dvdm f"
by auto
from f0 have ff0: "f \<noteq> 0" by auto
show "square_free f" unfolding square_free_def
proof (intro conjI[OF ff0] allI impI notI)
fix g
assume deg: "degree g > 0" and dvd: "g * g dvd f"
then obtain h where f: "f = g * g * h" unfolding dvd_def by auto
from arg_cong[OF this, of Mp] have "(g * g) dvdm f" unfolding dvdm_def by auto
with ndvd[of g] have deg0: "degree_m g = 0" by auto
hence g0: "M (lead_coeff g) = 0" unfolding Mp_def using deg
by (metis M_def deg0 p poly_mod.degree_m_eq prime_gt_1_int neq0_conv)
from p have p0: "p \<noteq> 0" by auto
from arg_cong[OF f, of lead_coeff] have "lead_coeff f = lead_coeff g * lead_coeff g * lead_coeff h"
by (auto simp: lead_coeff_mult)
hence "lead_coeff g dvd lead_coeff f" by auto
with cop have cop: "coprime (lead_coeff g) p"
by (auto elim: coprime_imp_coprime intro: dvd_trans)
with p0 have "coprime (lead_coeff g mod p) p" by simp
also have "lead_coeff g mod p = 0"
using M_def g0 by simp
finally show False using p
unfolding prime_int_iff
by (simp add: prime_int_iff)
qed
qed
lemma(in poly_mod_prime) separable_impl:
shows "separable_impl p f \<Longrightarrow> square_free_m f"
"nat p > degree_m f \<Longrightarrow> nat p > separable_bound f \<Longrightarrow> square_free f
\<Longrightarrow> separable_impl p f"
using
separable_impl_integer[of f]
separable_impl_uint32[of f]
separable_impl_uint64[of f]
unfolding separable_impl_def by (auto split: if_splits)
lemma coprime_lead_coeff_large_prime: assumes prime: "prime (p :: int)"
and large: "p > abs (lead_coeff f)"
and f: "f \<noteq> 0"
shows "coprime (lead_coeff f) p"
proof -
{
fix lc
assume "0 < lc" "lc < p"
then have "\<not> p dvd lc"
by (simp add: zdvd_not_zless)
with \<open>prime p\<close> have "coprime p lc"
by (auto intro: prime_imp_coprime)
then have "coprime lc p"
by (simp add: ac_simps)
} note main = this
define lc where "lc = lead_coeff f"
from f have lc0: "lc \<noteq> 0" unfolding lc_def by auto
from large have large: "p > abs lc" unfolding lc_def by auto
have "coprime lc p"
proof (cases "lc > 0")
case True
from large have "p > lc" by auto
from main[OF True this] show ?thesis .
next
case False
let ?mlc = "- lc"
from large False lc0 have "?mlc > 0" "p > ?mlc" by auto
from main[OF this] show ?thesis by simp
qed
thus ?thesis unfolding lc_def by auto
qed
lemma prime_for_berlekamp_zassenhaus_exists: assumes sf: "square_free f"
shows "\<exists> p. prime p \<and> (coprime (lead_coeff f) p \<and> separable_impl p f)"
proof (rule ccontr)
from assms have f0: "f \<noteq> 0" unfolding square_free_def by auto
define n where "n = max (max (abs (lead_coeff f)) (degree f)) (separable_bound f)"
assume contr: "\<not> ?thesis"
{
fix p :: int
assume prime: "prime p" and n: "p > n"
then interpret poly_mod_prime p by unfold_locales
from n have large: "p > abs (lead_coeff f)" "nat p > degree f" "nat p > separable_bound f"
unfolding n_def by auto
from coprime_lead_coeff_large_prime[OF prime large(1) f0]
have cop: "coprime (lead_coeff f) p" by auto
with prime contr have nsf: "\<not> separable_impl p f" by auto
from large(2) have "nat p > degree_m f" using degree_m_le[of f] by auto
from separable_impl(2)[OF this large(3) sf] nsf have False by auto
}
hence no_large_prime: "\<And> p. prime p \<Longrightarrow> p > n \<Longrightarrow> False" by auto
from bigger_prime[of "nat n"] obtain p where *: "prime p" "p > nat n" by auto
define q where "q \<equiv> int p"
from * have "prime q" "q > n" unfolding q_def by auto
from no_large_prime[OF this]
show False .
qed
definition next_primes :: "nat \<Rightarrow> nat \<times> nat list" where
"next_primes n = (if n = 0 then next_candidates 0 else
let (m,ps) = next_candidates n in (m,filter prime ps))"
partial_function (tailrec) find_prime_main ::
"(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat" where
[code]: "find_prime_main f np ps = (case ps of [] \<Rightarrow>
let (np',ps') = next_primes np
in find_prime_main f np' ps'
| (p # ps) \<Rightarrow> if f p then p else find_prime_main f np ps)"
definition find_prime :: "(nat \<Rightarrow> bool) \<Rightarrow> nat" where
"find_prime f = find_prime_main f 0 []"
lemma next_primes: assumes res: "next_primes n = (m,ps)"
and n: "candidate_invariant n"
shows "candidate_invariant m" "sorted ps" "distinct ps" "n < m"
"set ps = {i. prime i \<and> n \<le> i \<and> i < m}"
proof -
have "candidate_invariant m \<and> sorted ps \<and> distinct ps \<and> n < m \<and>
set ps = {i. prime i \<and> n \<le> i \<and> i < m}"
proof (cases "n = 0")
case True
with res[unfolded next_primes_def] have nc: "next_candidates 0 = (m,ps)" by auto
from this[unfolded next_candidates_def] have ps: "ps = primes_1000" and m: "m = 1001" by auto
have ps: "set ps = {i. prime i \<and> n \<le> i \<and> i < m}" unfolding m True ps
by (auto simp: primes_1000)
with next_candidates[OF nc n[unfolded True]] True
show ?thesis by simp
next
case False
with res[unfolded next_primes_def Let_def] obtain qs where nc: "next_candidates n = (m, qs)"
and ps: "ps = filter prime qs" by (cases "next_candidates n", auto)
have "sorted qs \<Longrightarrow> sorted ps" unfolding ps using sorted_filter[of id qs prime] by auto
with next_candidates[OF nc n] show ?thesis unfolding ps by auto
qed
thus "candidate_invariant m" "sorted ps" "distinct ps" "n < m"
"set ps = {i. prime i \<and> n \<le> i \<and> i < m}" by auto
qed
lemma find_prime: assumes "\<exists> n. prime n \<and> f n"
shows "prime (find_prime f) \<and> f (find_prime f)"
proof -
from assms obtain n where fn: "prime n" "f n" by auto
{
fix i ps m
assume "candidate_invariant i"
and "n \<in> set ps \<or> n \<ge> i"
and "m = (Suc n - i, length ps)"
and "\<And> p. p \<in> set ps \<Longrightarrow> prime p"
hence "prime (find_prime_main f i ps) \<and> f (find_prime_main f i ps)"
proof (induct m arbitrary: i ps rule: wf_induct[OF wf_measures[of "[fst, snd]"]])
case (1 m i ps)
note IH = 1(1)[rule_format]
note can = 1(2)
note n = 1(3)
note m = 1(4)
note ps = 1(5)
note simps [simp] = find_prime_main.simps[of f i ps]
show ?case
proof (cases ps)
case Nil
with n have i_n: "i \<le> n" by auto
obtain j qs where np: "next_primes i = (j,qs)" by force
note j = next_primes[OF np can]
from j(4) i_n m have meas: "((Suc n - j, length qs), m) \<in> measures [fst, snd]" by auto
have n: "n \<in> set qs \<or> j \<le> n" unfolding j(5) using i_n fn by auto
show ?thesis unfolding simps using IH[OF meas j(1) n refl] j(5) by (simp add: Nil np)
next
case (Cons p qs)
show ?thesis
proof (cases "f p")
case True
thus ?thesis unfolding simps using ps unfolding Cons by simp
next
case False
have m: "((Suc n - i, length qs), m) \<in> measures [fst, snd]" using m unfolding Cons by simp
have n: "n \<in> set qs \<or> i \<le> n" using False n fn by (auto simp: Cons)
from IH[OF m can n refl ps]
show ?thesis unfolding simps using Cons False by simp
qed
qed
qed
} note main = this
have "candidate_invariant 0" by (simp add: candidate_invariant_def)
from main[OF this _ refl, of Nil] show ?thesis unfolding find_prime_def by auto
qed
definition suitable_prime_bz :: "int poly \<Rightarrow> int" where
"suitable_prime_bz f \<equiv> let lc = lead_coeff f in int (find_prime (\<lambda> n. let p = int n in
coprime lc p \<and> separable_impl p f))"
lemma suitable_prime_bz: assumes sf: "square_free f" and p: "p = suitable_prime_bz f"
shows "prime p" "coprime (lead_coeff f) p" "poly_mod.square_free_m p f"
proof -
let ?lc = "lead_coeff f"
from prime_for_berlekamp_zassenhaus_exists[OF sf, unfolded Let_def]
obtain P where *: "prime P \<and> coprime ?lc P \<and> separable_impl P f"
by auto
hence "prime (nat P)" using prime_int_nat_transfer by blast
with * have "\<exists> p. prime p \<and> coprime ?lc (int p) \<and> separable_impl p f"
by (intro exI [of _ "nat P"]) (auto dest: prime_gt_0_int)
from find_prime[OF this]
have prime: "prime p" and cop: "coprime ?lc p" and sf: "separable_impl p f"
unfolding p suitable_prime_bz_def Let_def by auto
then interpret poly_mod_prime p by unfold_locales
from prime cop separable_impl(1)[OF sf]
show "prime p" "coprime ?lc p" "square_free_m f" by auto
qed
definition square_free_heuristic :: "int poly \<Rightarrow> int option" where
"square_free_heuristic f = (let lc = lead_coeff f in
find (\<lambda> p. coprime lc p \<and> separable_impl p f) [2, 3, 5, 7, 11, 13, 17, 19, 23])"
lemma find_Some_D: "find f xs = Some y \<Longrightarrow> y \<in> set xs \<and> f y" unfolding find_Some_iff by auto
lemma square_free_heuristic: assumes "square_free_heuristic f = Some p"
shows "coprime (lead_coeff f) p \<and> separable_impl p f \<and> prime p"
proof -
from find_Some_D[OF assms[unfolded square_free_heuristic_def Let_def]]
show ?thesis by auto
qed
end
|