Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 37,747 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
theory Unique_Factorization
  imports
    Polynomial_Interpolation.Ring_Hom_Poly
    Polynomial_Factorization.Polynomial_Divisibility
    "HOL-Combinatorics.Permutations" 
    "HOL-Computational_Algebra.Euclidean_Algorithm"
    Containers.Containers_Auxiliary (* only for a lemma *)
    More_Missing_Multiset
    "HOL-Algebra.Divisibility"
begin

hide_const(open)
  Divisibility.prime
  Divisibility.irreducible

hide_fact(open)
  Divisibility.irreducible_def
  Divisibility.irreducibleI
  Divisibility.irreducibleD
  Divisibility.irreducibleE

hide_const (open) Rings.coprime

lemma irreducible_uminus [simp]:
  fixes a::"'a::idom"
  shows "irreducible (-a) \<longleftrightarrow> irreducible a"
  using irreducible_mult_unit_left[of "-1::'a"] by auto

context comm_monoid_mult begin

  definition coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
    where coprime_def': "coprime p q \<equiv> \<forall>r. r dvd p \<longrightarrow> r dvd q \<longrightarrow> r dvd 1"

  lemma coprimeI:
    assumes "\<And>r. r dvd p \<Longrightarrow> r dvd q \<Longrightarrow> r dvd 1"
    shows "coprime p q" using assms by (auto simp: coprime_def')

  lemma coprimeE:
    assumes "coprime p q"
        and "(\<And>r. r dvd p \<Longrightarrow> r dvd q \<Longrightarrow> r dvd 1) \<Longrightarrow> thesis"
    shows thesis using assms by (auto simp: coprime_def')

  lemma coprime_commute [ac_simps]:
    "coprime p q \<longleftrightarrow> coprime q p"
    by (auto simp add: coprime_def')

  lemma not_coprime_iff_common_factor:
    "\<not> coprime p q \<longleftrightarrow> (\<exists>r. r dvd p \<and> r dvd q \<and> \<not> r dvd 1)"
    by (auto simp add: coprime_def')

end

lemma (in algebraic_semidom) coprime_iff_coprime [simp, code]:
  "coprime = Rings.coprime"
  by (simp add: fun_eq_iff coprime_def coprime_def')

lemma (in comm_semiring_1) coprime_0 [simp]:
  "coprime p 0 \<longleftrightarrow> p dvd 1" "coprime 0 p \<longleftrightarrow> p dvd 1"
  by (auto intro: coprimeI elim: coprimeE dest: dvd_trans)

(**** until here ****)


(* TODO: move or...? *)
lemma dvd_rewrites: "dvd.dvd ((*)) = (dvd)" by (unfold dvd.dvd_def dvd_def, rule)


subsection \<open>Interfacing UFD properties\<close>
hide_const (open) Divisibility.irreducible

context comm_monoid_mult_isom begin
  lemma coprime_hom[simp]: "coprime (hom x) y' \<longleftrightarrow> coprime x (Hilbert_Choice.inv hom y')"
  proof-
    show ?thesis by (unfold coprime_def', fold ball_UNIV, subst surj[symmetric], simp)
  qed
  lemma coprime_inv_hom[simp]: "coprime (Hilbert_Choice.inv hom x') y \<longleftrightarrow> coprime x' (hom y)"
  proof-
    interpret inv: comm_monoid_mult_isom "Hilbert_Choice.inv hom"..
    show ?thesis by simp
  qed
end

subsubsection \<open>Original part\<close>

lemma dvd_dvd_imp_smult:
  fixes p q :: "'a :: idom poly"
  assumes pq: "p dvd q" and qp: "q dvd p" shows "\<exists>c. p = smult c q"
proof (cases "p = 0")
  case True then show ?thesis by auto
next
  case False
  from qp obtain r where r: "p = q * r" by (elim dvdE, auto)
  with False qp have r0: "r \<noteq> 0" and q0: "q \<noteq> 0" by auto
  with divides_degree[OF pq] divides_degree[OF qp] False
  have "degree p = degree q" by auto
  with r degree_mult_eq[OF q0 r0] have "degree r = 0" by auto
  from degree_0_id[OF this] obtain c where "r = [:c:]" by metis
  from r[unfolded this] show ?thesis by auto
qed

lemma dvd_const:
  assumes pq: "(p::'a::semidom poly) dvd q" and q0: "q \<noteq> 0" and degq: "degree q = 0"
  shows "degree p = 0"
proof-
  from dvdE[OF pq] obtain r where *: "q = p * r".
  with q0 have "p \<noteq> 0" "r \<noteq> 0" by auto
  from degree_mult_eq[OF this] degq * show "degree p = 0" by auto
qed

context Rings.dvd begin
  abbreviation ddvd (infix "ddvd" 40) where "x ddvd y \<equiv> x dvd y \<and> y dvd x"
  lemma ddvd_sym[sym]: "x ddvd y \<Longrightarrow> y ddvd x" by auto
end

context comm_monoid_mult begin
  lemma ddvd_trans[trans]: "x ddvd y \<Longrightarrow> y ddvd z \<Longrightarrow> x ddvd z" using dvd_trans by auto
  lemma ddvd_transp: "transp (ddvd)" by (intro transpI, fact ddvd_trans)
end

context comm_semiring_1 begin

definition mset_factors where "mset_factors F p \<equiv>
  F \<noteq> {#} \<and> (\<forall>f. f \<in># F \<longrightarrow> irreducible f) \<and> p = prod_mset F"

lemma mset_factorsI[intro!]:
  assumes "\<And>f. f \<in># F \<Longrightarrow> irreducible f" and "F \<noteq> {#}" and "prod_mset F = p"
  shows "mset_factors F p"
  unfolding mset_factors_def using assms by auto

lemma mset_factorsD:
  assumes "mset_factors F p"
  shows "f \<in># F \<Longrightarrow> irreducible f" and "F \<noteq> {#}" and "prod_mset F = p"
  using assms[unfolded mset_factors_def] by auto

lemma mset_factorsE[elim]:
  assumes "mset_factors F p"
      and "(\<And>f. f \<in># F \<Longrightarrow> irreducible f) \<Longrightarrow> F \<noteq> {#} \<Longrightarrow> prod_mset F = p \<Longrightarrow> thesis"
  shows thesis
  using assms[unfolded mset_factors_def] by auto

lemma mset_factors_imp_not_is_unit:
  assumes "mset_factors F p"
  shows "\<not> p dvd 1"
proof(cases F)
  case empty with assms show ?thesis by auto
next
  case (add f F)
  with assms have "\<not> f dvd 1" "p = f * prod_mset F" by (auto intro!: irreducible_not_unit)
  then show ?thesis by auto
qed

definition primitive_poly where "primitive_poly f \<equiv> \<forall>d. (\<forall>i. d dvd coeff f i) \<longrightarrow> d dvd 1"

end

lemma(in semidom) mset_factors_imp_nonzero:
  assumes "mset_factors F p"
  shows "p \<noteq> 0"
proof
  assume "p = 0"
  moreover from assms have "prod_mset F = p" by auto
  ultimately obtain f where "f \<in># F" "f = 0" by auto
  with assms show False by auto
qed

class ufd = idom +
  assumes mset_factors_exist: "\<And>x. x \<noteq> 0 \<Longrightarrow> \<not> x dvd 1 \<Longrightarrow> \<exists>F. mset_factors F x"
    and mset_factors_unique: "\<And>x F G. mset_factors F x \<Longrightarrow> mset_factors G x \<Longrightarrow> rel_mset (ddvd) F G"

subsubsection \<open>Connecting to HOL/Divisibility\<close>

context comm_semiring_1 begin

  abbreviation "mk_monoid \<equiv> \<lparr>carrier = UNIV - {0}, mult = (*), one = 1\<rparr>"

  lemma carrier_0[simp]: "x \<in> carrier mk_monoid \<longleftrightarrow> x \<noteq> 0" by auto

  lemmas mk_monoid_simps = carrier_0 monoid.simps

  abbreviation irred where "irred \<equiv> Divisibility.irreducible mk_monoid"
  abbreviation factor where "factor \<equiv> Divisibility.factor mk_monoid"
  abbreviation factors where "factors \<equiv> Divisibility.factors mk_monoid"
  abbreviation properfactor where "properfactor \<equiv> Divisibility.properfactor mk_monoid"

  lemma factors: "factors fs y \<longleftrightarrow> prod_list fs = y \<and> Ball (set fs) irred"
  proof -
    have "prod_list fs = foldr (*) fs 1" by (induct fs, auto)
    thus ?thesis unfolding factors_def by auto
  qed

  lemma factor: "factor x y \<longleftrightarrow> (\<exists>z. z \<noteq> 0 \<and> x * z = y)" unfolding factor_def by auto

  lemma properfactor_nz:
    shows "(y :: 'a) \<noteq> 0 \<Longrightarrow> properfactor x y \<longleftrightarrow> x dvd y \<and> \<not> y dvd x"
    by (auto simp: properfactor_def factor_def dvd_def)

  lemma mem_Units[simp]: "y \<in> Units mk_monoid \<longleftrightarrow> y dvd 1"
    unfolding dvd_def Units_def by (auto simp: ac_simps)

end

context idom begin
  lemma irred_0[simp]: "irred (0::'a)" by (unfold Divisibility.irreducible_def, auto simp: factor properfactor_def)
  lemma factor_idom[simp]: "factor (x::'a) y \<longleftrightarrow> (if y = 0 then x = 0 else x dvd y)"
    by (cases "y = 0"; auto intro: exI[of _ 1] elim: dvdE simp: factor)

  lemma associated_connect[simp]: "(\<sim>\<^bsub>mk_monoid\<^esub>) = (ddvd)" by (intro ext, unfold associated_def, auto)

  lemma essentially_equal_connect[simp]:
    "essentially_equal mk_monoid fs gs \<longleftrightarrow> rel_mset (ddvd) (mset fs) (mset gs)"
    by (auto simp: essentially_equal_def rel_mset_via_perm)
    

  lemma irred_idom_nz:
    assumes x0: "(x::'a) \<noteq> 0"
    shows "irred x \<longleftrightarrow> irreducible x"
    using x0 by (auto simp: irreducible_altdef Divisibility.irreducible_def properfactor_nz)


  lemma dvd_dvd_imp_unit_mult:
    assumes xy: "x dvd y" and yx: "y dvd x"
    shows "\<exists>z. z dvd 1 \<and> y = x * z"
  proof(cases "x = 0")
    case True with xy show ?thesis by (auto intro: exI[of _ 1])
  next
    case x0: False
    from xy obtain z where z: "y = x * z" by (elim dvdE, auto)
    from yx obtain w where w: "x = y * w" by (elim dvdE, auto)
    from z w have "x * (z * w) = x" by (auto simp: ac_simps)
    then have "z * w = 1" using x0 by auto
    with z show ?thesis by (auto intro: exI[of _ z])
  qed

  lemma irred_inner_nz:
    assumes x0: "x \<noteq> 0"
    shows "(\<forall>b. b dvd x \<longrightarrow> \<not> x dvd b \<longrightarrow> b dvd 1) \<longleftrightarrow> (\<forall>a b. x = a * b \<longrightarrow> a dvd 1 \<or> b dvd 1)" (is "?l \<longleftrightarrow> ?r")
  proof (intro iffI allI impI)
    assume l: ?l
    fix a b
    assume xab: "x = a * b"
    then have ax: "a dvd x" and bx: "b dvd x" by auto
    { assume a1: "\<not> a dvd 1"
      with l ax have xa: "x dvd a" by auto
      from dvd_dvd_imp_unit_mult[OF ax xa] obtain z where z1: "z dvd 1" and xaz: "x = a * z" by auto
      from xab x0 have "a \<noteq> 0" by auto
      with xab xaz have "b = z" by auto
      with z1 have "b dvd 1" by auto
    }
    then show "a dvd 1 \<or> b dvd 1" by auto
  next
    assume r: ?r
    fix b assume bx: "b dvd x" and xb: "\<not> x dvd b"
    then obtain a where xab: "x = a * b" by (elim dvdE, auto simp: ac_simps)
    with r consider "a dvd 1" | "b dvd 1" by auto
    then show "b dvd 1"
    proof(cases)
      case 2 then show ?thesis by auto
    next
      case 1
      then obtain c where ac1: "a * c = 1" by (elim dvdE, auto)
      from xab have "x * c = b * (a * c)" by (auto simp: ac_simps)
      with ac1 have "x * c = b" by auto
      then have "x dvd b" by auto
      with xb show ?thesis by auto
    qed
  qed

  lemma irred_idom[simp]: "irred x \<longleftrightarrow> x = 0 \<or> irreducible x"
  by (cases "x = 0"; simp add: irred_idom_nz irred_inner_nz irreducible_def)

  lemma assumes "x \<noteq> 0" and "factors fs x" and "f \<in> set fs" shows "f \<noteq> 0"
    using assms by (auto simp: factors)

  lemma factors_as_mset_factors:
    assumes x0: "x \<noteq> 0" and x1: "x \<noteq> 1"
    shows "factors fs x \<longleftrightarrow> mset_factors (mset fs) x" using assms
    by (auto simp: factors prod_mset_prod_list)


end

context ufd begin
  interpretation comm_monoid_cancel: comm_monoid_cancel "mk_monoid::'a monoid"
    apply (unfold_locales)
    apply simp_all
    using mult_left_cancel
    apply (auto simp: ac_simps)
    done
  lemma factors_exist:
    assumes "a \<noteq> 0"
    and "\<not> a dvd 1"
    shows "\<exists>fs. set fs \<subseteq> UNIV - {0} \<and> factors fs a"
  proof-
    from mset_factors_exist[OF assms]
    obtain F where "mset_factors F a" by auto
    also from ex_mset obtain fs where "F = mset fs" by metis
    finally have fs: "mset_factors (mset fs) a".
    then have "factors fs a" using assms by (subst factors_as_mset_factors, auto)
    moreover have "set fs \<subseteq> UNIV - {0}" using fs by (auto elim!: mset_factorsE)
    ultimately show ?thesis by auto
  qed

  lemma factors_unique:
    assumes fs: "factors fs a"
       and gs: "factors gs a"
       and a0: "a \<noteq> 0"
       and a1: "\<not> a dvd 1"
    shows "rel_mset (ddvd) (mset fs) (mset gs)"
  proof-
    from a1 have "a \<noteq> 1" by auto
    with a0 fs gs have "mset_factors (mset fs) a" "mset_factors (mset gs) a" by (unfold factors_as_mset_factors)
    from mset_factors_unique[OF this] show ?thesis.
  qed

  lemma factorial_monoid: "factorial_monoid (mk_monoid :: 'a monoid)"
    by (unfold_locales; auto simp add: factors_exist factors_unique)

end

lemma (in idom) factorial_monoid_imp_ufd:
  assumes "factorial_monoid (mk_monoid :: 'a monoid)"
  shows "class.ufd ((*) :: 'a \<Rightarrow> _) 1 (+) 0 (-) uminus"
proof (unfold_locales)
  interpret factorial_monoid "mk_monoid :: 'a monoid" by (fact assms)
  {
    fix x assume x: "x \<noteq> 0" "\<not> x dvd 1"
    note * = factors_exist[simplified, OF this]
    with x show "\<exists>F. mset_factors F x" by (subst(asm) factors_as_mset_factors, auto)
  }
  fix x F G assume FG: "mset_factors F x" "mset_factors G x"
  with mset_factors_imp_not_is_unit have x1: "\<not> x dvd 1" by auto
  from FG(1) have x0: "x \<noteq> 0" by (rule mset_factors_imp_nonzero)
  obtain fs gs where fsgs: "F = mset fs" "G = mset gs" using ex_mset by metis
  note FG = FG[unfolded this]
  then have 0: "0 \<notin> set fs" "0 \<notin> set gs" by (auto elim!: mset_factorsE)
  from x1 have "x \<noteq> 1" by auto
  note FG[folded factors_as_mset_factors[OF x0 this]]
  from factors_unique[OF this, simplified, OF x0 x1, folded fsgs] 0
  show "rel_mset (ddvd) F G" by auto
qed




subsection \<open>Preservation of Irreducibility\<close>


locale comm_semiring_1_hom = comm_monoid_mult_hom hom + zero_hom hom
  for hom :: "'a :: comm_semiring_1 \<Rightarrow> 'b :: comm_semiring_1"

locale irreducibility_hom = comm_semiring_1_hom +
  assumes irreducible_imp_irreducible_hom: "irreducible a \<Longrightarrow> irreducible (hom a)"
begin
  lemma hom_mset_factors:
    assumes F: "mset_factors F p"
    shows "mset_factors (image_mset hom F) (hom p)"
  proof (unfold mset_factors_def, intro conjI allI impI)
    from F show "hom p = prod_mset (image_mset hom F)" "image_mset hom F \<noteq> {#}" by (auto simp: hom_distribs)
    fix f' assume "f' \<in># image_mset hom F"
    then obtain f where f: "f \<in># F" and f'f: "f' = hom f" by auto
    with F irreducible_imp_irreducible_hom show "irreducible f'" unfolding f'f by auto
  qed
end

locale unit_preserving_hom = comm_semiring_1_hom +
  assumes is_unit_hom_if: "\<And>x. hom x dvd 1 \<Longrightarrow> x dvd 1"
begin
  lemma is_unit_hom_iff[simp]: "hom x dvd 1 \<longleftrightarrow> x dvd 1" using is_unit_hom_if hom_dvd by force

  lemma irreducible_hom_imp_irreducible:
    assumes irr: "irreducible (hom a)" shows "irreducible a"
  proof (intro irreducibleI)
    from irr show "a \<noteq> 0" by auto
    from irr show "\<not> a dvd 1" by (auto dest: irreducible_not_unit)
    fix b c assume "a = b * c"
    then have "hom a = hom b * hom c" by (simp add: hom_distribs)
    with irr have "hom b dvd 1 \<or> hom c dvd 1" by (auto dest: irreducibleD)
    then show "b dvd 1 \<or> c dvd 1" by simp
  qed
end

locale factor_preserving_hom = unit_preserving_hom + irreducibility_hom
begin
  lemma irreducible_hom[simp]: "irreducible (hom a) \<longleftrightarrow> irreducible a"
    using irreducible_hom_imp_irreducible irreducible_imp_irreducible_hom by metis
end

lemma factor_preserving_hom_comp:
  assumes f: "factor_preserving_hom f" and g: "factor_preserving_hom g"
  shows "factor_preserving_hom (f o g)"
proof-
  interpret f: factor_preserving_hom f by (rule f)
  interpret g: factor_preserving_hom g by (rule g)
  show ?thesis by (unfold_locales, auto simp: hom_distribs)
qed

context comm_semiring_isom begin
  sublocale unit_preserving_hom by (unfold_locales, auto)
  sublocale factor_preserving_hom
  proof (standard)
    fix a :: 'a
    assume "irreducible a"
    note a = this[unfolded irreducible_def]
    show "irreducible (hom a)"
    proof (rule ccontr)
      assume "\<not> irreducible (hom a)"
      from this[unfolded Factorial_Ring.irreducible_def,simplified] a
      obtain hb hc where eq: "hom a = hb * hc" and nu: "\<not> hb dvd 1" "\<not> hc dvd 1" by auto
      from bij obtain b where hb: "hb = hom b" by (elim bij_pointE)
      from bij obtain c where hc: "hc = hom c" by (elim bij_pointE)
      from eq[unfolded hb hc, folded hom_mult] have "a = b * c" by auto
      with nu hb hc have "a = b * c" "\<not> b dvd 1" "\<not> c dvd 1" by auto
      with a show False by auto
    qed
  qed
end


subsubsection\<open>Back to divisibility\<close>

lemma(in comm_semiring_1) mset_factors_mult:
  assumes F: "mset_factors F a"
      and G: "mset_factors G b"
  shows "mset_factors (F+G) (a*b)"
proof(intro mset_factorsI)
  fix f assume "f \<in># F + G"
  then consider "f \<in># F" | "f \<in># G" by auto
  then show "irreducible f" by(cases, insert F G, auto)
qed (insert F G, auto)

lemma(in ufd) dvd_imp_subset_factors:
  assumes ab: "a dvd b"
      and F: "mset_factors F a"
      and G: "mset_factors G b"
  shows "\<exists>G'. G' \<subseteq># G \<and> rel_mset (ddvd) F G'"
proof-
  from F G have a0: "a \<noteq> 0" and b0: "b \<noteq> 0" by (simp_all add: mset_factors_imp_nonzero)
  from ab obtain c where c: "b = a * c" by (elim dvdE, auto)
  with b0 have c0: "c \<noteq> 0" by auto
  show ?thesis
  proof(cases "c dvd 1")
    case True
    show ?thesis
      proof(cases F)
        case empty with F show ?thesis by auto
      next
        case (add f F')
          with F
          have a: "f * prod_mset F' = a"
           and F': "\<And>f. f \<in># F' \<Longrightarrow> irreducible f"
           and irrf: "irreducible f" by auto
          from irrf have f0: "f \<noteq> 0" and f1: "\<not>f dvd 1" by (auto dest: irreducible_not_unit)
          from a c have "(f * c) * prod_mset F' = b" by (auto simp: ac_simps)
          moreover {
            have "irreducible (f * c)" using True irrf by (subst irreducible_mult_unit_right)
            with F' irrf have "\<And>f'. f' \<in># F' + {#f * c#} \<Longrightarrow> irreducible f'" by auto
          }
          ultimately have "mset_factors (F' + {#f * c#}) b" by (intro mset_factorsI, auto)
          from mset_factors_unique[OF this G]
          have F'G: "rel_mset (ddvd) (F' + {#f * c#}) G".
          from True add have FF': "rel_mset (ddvd) F (F' + {#f * c#})"
            by (auto simp add: multiset.rel_refl intro!: rel_mset_Plus)
          have "rel_mset (ddvd) F G"
            apply(rule transpD[OF multiset.rel_transp[OF transpI] FF' F'G])
            using ddvd_trans.
          then show ?thesis by auto
      qed
  next
    case False
      from mset_factors_exist[OF c0 this] obtain H where H: "mset_factors H c" by auto
      from c mset_factors_mult[OF F H] have "mset_factors (F + H) b" by auto
      note mset_factors_unique[OF this G]
      from rel_mset_split[OF this] obtain G1 G2
        where "G = G1 + G2" "rel_mset (ddvd) F G1" "rel_mset (ddvd) H G2" by auto
      then show ?thesis by (intro exI[of _ "G1"], auto)
  qed
qed

lemma(in idom) irreducible_factor_singleton:
  assumes a: "irreducible a"
  shows "mset_factors F a \<longleftrightarrow> F = {#a#}"
proof(cases F)
  case empty with mset_factorsD show ?thesis by auto
next
  case (add f F')
  show ?thesis
  proof
    assume F: "mset_factors F a"
    from add mset_factorsD[OF F] have *: "a = f * prod_mset F'" by auto
    then have fa: "f dvd a" by auto
    from * a have f0: "f \<noteq> 0" by auto
    from add have "f \<in># F" by auto
    with F have f: "irreducible f" by auto
    from add have "F' \<subseteq># F" by auto
    then have unitemp: "prod_mset F' dvd 1 \<Longrightarrow> F' = {#}"
    proof(induct F')
      case empty then show ?case by auto
    next
      case (add f F')
        from add have "f \<in># F" by (simp add: mset_subset_eq_insertD)
        with F irreducible_not_unit have "\<not> f dvd 1" by auto
        then have "\<not> (prod_mset F' * f) dvd 1" by simp
        with add show ?case by auto
    qed
    show "F = {#a#}"
    proof(cases "a dvd f")
      case True
        then obtain r where "f = a * r" by (elim dvdE, auto)
        with * have "f = (r * prod_mset F') * f" by (auto simp: ac_simps)
        with f0 have "r * prod_mset F' = 1" by auto
        then have "prod_mset F' dvd 1" by (metis dvd_triv_right)
        with unitemp * add show ?thesis by auto
    next
      case False with fa a f show ?thesis by (auto simp: irreducible_altdef)
    qed
  qed (insert a, auto)
qed


lemma(in ufd) irreducible_dvd_imp_factor:
  assumes ab: "a dvd b"
      and a: "irreducible a"
      and G: "mset_factors G b"
  shows "\<exists>g \<in># G. a ddvd g"
proof-
  from a have "mset_factors {#a#} a" by auto
  from dvd_imp_subset_factors[OF ab this G]
  obtain G' where G'G: "G' \<subseteq># G" and rel: "rel_mset (ddvd) {#a#} G'" by auto
  with rel_mset_size size_1_singleton_mset size_single
  obtain g where gG': "G' = {#g#}" by fastforce
  from rel[unfolded this rel_mset_def]
  have "a ddvd g" by auto
  with gG' G'G show ?thesis by auto
qed

lemma(in idom) prod_mset_remove_units:
  "prod_mset F ddvd prod_mset {# f \<in># F. \<not>f dvd 1 #}"
proof(induct F)
  case (add f F) then show ?case by (cases "f = 0", auto)
qed auto

lemma(in comm_semiring_1) mset_factors_imp_dvd:
  assumes "mset_factors F x" and "f \<in># F" shows "f dvd x"
  using assms by (simp add: dvd_prod_mset mset_factors_def)

lemma(in ufd) prime_elem_iff_irreducible[iff]:
  "prime_elem x \<longleftrightarrow> irreducible x"
proof (intro iffI, fact prime_elem_imp_irreducible, rule prime_elemI)
  assume r: "irreducible x"
  then show x0: "x \<noteq> 0" and x1: "\<not> x dvd 1" by (auto dest: irreducible_not_unit)
  from irreducible_factor_singleton[OF r]
  have *: "mset_factors {#x#} x" by auto
  fix a b
  assume "x dvd a * b"
  then obtain c where abxc: "a * b = x * c" by (elim dvdE, auto)
  show "x dvd a \<or> x dvd b"
  proof(cases "c = 0 \<or> a = 0 \<or> b = 0")
    case True with abxc show ?thesis by auto
  next
    case False
    then have a0: "a \<noteq> 0" and b0: "b \<noteq> 0" and c0: "c \<noteq> 0" by auto
    from x0 c0 have xc0: "x * c \<noteq> 0" by auto
    from x1 have xc1: "\<not> x * c dvd 1" by auto
    show ?thesis
    proof (cases "a dvd 1 \<or> b dvd 1")
      case False
      then have a1: "\<not> a dvd 1" and b1: "\<not> b dvd 1" by auto
      from mset_factors_exist[OF a0 a1]
      obtain F where Fa: "mset_factors F a" by auto
      then have F0: "F \<noteq> {#}" by auto
      from mset_factors_exist[OF b0 b1]
      obtain G where Gb: "mset_factors G b" by auto
      then have G0: "G \<noteq> {#}" by auto
      from mset_factors_mult[OF Fa Gb]
      have FGxc: "mset_factors (F + G) (x * c)" by (simp add: abxc)
      show ?thesis
      proof (cases "c dvd 1")
        case True
        from r irreducible_mult_unit_right[OF this] have "irreducible (x*c)" by simp
        note irreducible_factor_singleton[OF this] FGxc
        with F0 G0 have False by (cases F; cases G; auto)
        then show ?thesis by auto
      next
        case False
        from mset_factors_exist[OF c0 this] obtain H where "mset_factors H c" by auto
        with * have xHxc: "mset_factors (add_mset x H) (x * c)" by force
        note rel = mset_factors_unique[OF this FGxc]
        obtain hs where "mset hs = H" using ex_mset by auto
        then have "mset (x#hs) = add_mset x H" by auto
        from rel_mset_free[OF rel this]
        obtain jjs where jjsGH: "mset jjs = F + G" and rel: "list_all2 (ddvd) (x # hs) jjs" by auto
        then obtain j js where jjs: "jjs = j # js" by (cases jjs, auto)
        with rel have xj: "x ddvd j" by auto
        from jjs jjsGH have j: "j \<in> set_mset (F + G)" by (intro union_single_eq_member, auto)
        from j consider "j \<in># F" | "j \<in># G" by auto
        then show ?thesis
        proof(cases)
          case 1
          with Fa have "j dvd a" by (auto intro: mset_factors_imp_dvd)
          with xj dvd_trans have "x dvd a" by auto
          then show ?thesis by auto
        next
          case 2
          with Gb have "j dvd b" by (auto intro: mset_factors_imp_dvd)
          with xj dvd_trans have "x dvd b" by auto
          then show ?thesis by auto
        qed
      qed
    next
      case True
      then consider "a dvd 1" | "b dvd 1" by auto
      then show ?thesis
      proof(cases)
        case 1
        then obtain d where ad: "a * d = 1" by (elim dvdE, auto)
        from abxc have "x * (c * d) = a * b * d" by (auto simp: ac_simps)
        also have "... = a * d * b" by (auto simp: ac_simps)
        finally have "x dvd b" by (intro dvdI, auto simp: ad)
        then show ?thesis by auto
      next
        case 2
        then obtain d where bd: "b * d = 1" by (elim dvdE, auto)
        from abxc have "x * (c * d) = a * b * d" by (auto simp: ac_simps)
        also have "... = (b * d) * a" by (auto simp: ac_simps)
        finally have "x dvd a" by (intro dvdI, auto simp:bd)
        then show ?thesis by auto
      qed
    qed
  qed
qed

subsection\<open>Results for GCDs etc.\<close>

lemma prod_list_remove1: "(x :: 'b :: comm_monoid_mult) \<in> set xs \<Longrightarrow> prod_list (remove1 x xs) * x = prod_list xs"
  by (induct xs, auto simp: ac_simps)

(* Isabelle 2015-style and generalized gcd-class without normalization and factors *)
class comm_monoid_gcd = gcd + comm_semiring_1 +
  assumes gcd_dvd1[iff]: "gcd a b dvd a"
      and gcd_dvd2[iff]: "gcd a b dvd b"
      and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b"
begin

  lemma gcd_0_0[simp]: "gcd 0 0 = 0"
    using gcd_greatest[OF dvd_0_right dvd_0_right, of 0] by auto

  lemma gcd_zero_iff[simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
  proof
    assume "gcd a b = 0"
    from gcd_dvd1[of a b, unfolded this] gcd_dvd2[of a b, unfolded this]
    show "a = 0 \<and> b = 0" by auto
  qed auto

  lemma gcd_zero_iff'[simp]: "0 = gcd a b \<longleftrightarrow> a = 0 \<and> b = 0"
    using gcd_zero_iff by metis

  lemma dvd_gcd_0_iff[simp]:
    shows "x dvd gcd 0 a \<longleftrightarrow> x dvd a" (is ?g1)
      and "x dvd gcd a 0 \<longleftrightarrow> x dvd a" (is ?g2)
  proof-
    have "a dvd gcd a 0" "a dvd gcd 0 a" by (auto intro: gcd_greatest)
    with dvd_refl show ?g1 ?g2 by (auto dest: dvd_trans)
  qed

  lemma gcd_dvd_1[simp]: "gcd a b dvd 1 \<longleftrightarrow> coprime a b"
    using dvd_trans[OF gcd_greatest[of _ a b], of _ 1]
    by (cases "a = 0 \<and> b = 0") (auto intro!: coprimeI elim: coprimeE)

  lemma dvd_imp_gcd_dvd_gcd: "b dvd c \<Longrightarrow> gcd a b dvd gcd a c"
    by (meson gcd_dvd1 gcd_dvd2 gcd_greatest dvd_trans)

  definition listgcd :: "'a list \<Rightarrow> 'a" where
    "listgcd xs = foldr gcd xs 0"

  lemma listgcd_simps[simp]: "listgcd [] = 0" "listgcd (x # xs) = gcd x (listgcd xs)"
    by (auto simp: listgcd_def)

  lemma listgcd: "x \<in> set xs \<Longrightarrow> listgcd xs dvd x" 
  proof (induct xs)
    case (Cons y ys)
    show ?case
    proof (cases "x = y")
      case False
      with Cons have dvd: "listgcd ys dvd x" by auto
      thus ?thesis unfolding listgcd_simps using dvd_trans by blast
    next
      case True
      thus ?thesis unfolding listgcd_simps using dvd_trans by blast
    qed
  qed simp

  lemma listgcd_greatest: "(\<And> x. x \<in> set xs \<Longrightarrow> y dvd x) \<Longrightarrow> y dvd listgcd xs"
    by (induct xs arbitrary:y, auto intro: gcd_greatest)

end


context Rings.dvd begin

  definition "is_gcd x a b \<equiv> x dvd a \<and> x dvd b \<and> (\<forall>y. y dvd a \<longrightarrow> y dvd b \<longrightarrow> y dvd x)"

  definition "some_gcd a b \<equiv> SOME x. is_gcd x a b"

  lemma is_gcdI[intro!]:
    assumes "x dvd a" "x dvd b" "\<And>y. y dvd a \<Longrightarrow> y dvd b \<Longrightarrow> y dvd x"
    shows "is_gcd x a b" by (insert assms, auto simp: is_gcd_def)

  lemma is_gcdE[elim!]:
    assumes "is_gcd x a b"
        and "x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> (\<And>y. y dvd a \<Longrightarrow> y dvd b \<Longrightarrow> y dvd x) \<Longrightarrow> thesis"
    shows thesis by (insert assms, auto simp: is_gcd_def)

  lemma is_gcd_some_gcdI:
    assumes "\<exists>x. is_gcd x a b" shows "is_gcd (some_gcd a b) a b"
    by (unfold some_gcd_def, rule someI_ex[OF assms])

end

context comm_semiring_1 begin

  lemma some_gcd_0[intro!]: "is_gcd (some_gcd a 0) a 0" "is_gcd (some_gcd 0 b) 0 b"
    by (auto intro!: is_gcd_some_gcdI intro: exI[of _ a] exI[of _ b])

  lemma some_gcd_0_dvd[intro!]:
    "some_gcd a 0 dvd a" "some_gcd 0 b dvd b" using some_gcd_0 by auto

  lemma dvd_some_gcd_0[intro!]:
    "a dvd some_gcd a 0" "b dvd some_gcd 0 b" using some_gcd_0[of a] some_gcd_0[of b] by auto

end

context idom begin

  lemma is_gcd_connect:
    assumes "a \<noteq> 0" "b \<noteq> 0" shows "isgcd mk_monoid x a b \<longleftrightarrow> is_gcd x a b"
    using assms by (force simp: isgcd_def)

  lemma some_gcd_connect:
    assumes "a \<noteq> 0" and "b \<noteq> 0" shows "somegcd mk_monoid a b = some_gcd a b"
    using assms by (auto intro!: arg_cong[of _ _ Eps] simp: is_gcd_connect some_gcd_def somegcd_def)
end

context comm_monoid_gcd
begin
  lemma is_gcd_gcd: "is_gcd (gcd a b) a b" using gcd_greatest by auto
  lemma is_gcd_some_gcd: "is_gcd (some_gcd a b) a b" by (insert is_gcd_gcd, auto intro!: is_gcd_some_gcdI)
  lemma gcd_dvd_some_gcd: "gcd a b dvd some_gcd a b" using is_gcd_some_gcd by auto
  lemma some_gcd_dvd_gcd: "some_gcd a b dvd gcd a b" using is_gcd_some_gcd by (auto intro: gcd_greatest)
  lemma some_gcd_ddvd_gcd: "some_gcd a b ddvd gcd a b" by (auto intro: gcd_dvd_some_gcd some_gcd_dvd_gcd)
  lemma some_gcd_dvd: "some_gcd a b dvd d \<longleftrightarrow> gcd a b dvd d" "d dvd some_gcd a b \<longleftrightarrow> d dvd gcd a b"
    using some_gcd_ddvd_gcd[of a b] by (auto dest:dvd_trans)

end

class idom_gcd = comm_monoid_gcd + idom
begin

  interpretation raw: comm_monoid_cancel "mk_monoid :: 'a monoid"
    by (unfold_locales, auto intro: mult_commute mult_assoc)

  interpretation raw: gcd_condition_monoid "mk_monoid :: 'a monoid"
    by (unfold_locales, auto simp: is_gcd_connect intro!: exI[of _ "gcd _ _"] dest: gcd_greatest)

  lemma gcd_mult_ddvd:
    "d * gcd a b ddvd gcd (d * a) (d * b)"
  proof (cases "d = 0")
    case True then show ?thesis by auto
  next
    case d0: False
    show ?thesis
    proof (cases "a = 0 \<or> b = 0")
      case False
      note some_gcd_ddvd_gcd[of a b]
      with d0 have "d * gcd a b ddvd d * some_gcd a b" by auto
      also have "d * some_gcd a b ddvd some_gcd (d * a) (d * b)"
        using False d0 raw.gcd_mult by (simp add: some_gcd_connect)
      also note some_gcd_ddvd_gcd
      finally show ?thesis.
    next
      case True
      with d0 show ?thesis
        apply (elim disjE)
         apply (rule ddvd_trans[of _ "d * b"]; force)
         apply (rule ddvd_trans[of _ "d * a"]; force)
        done
    qed
  qed

  lemma gcd_greatest_mult: assumes cad: "c dvd a * d" and cbd: "c dvd b * d"
    shows "c dvd gcd a b * d"
  proof-
    from gcd_greatest[OF assms] have c: "c dvd gcd (d * a) (d * b)" by (auto simp: ac_simps)
    note gcd_mult_ddvd[of d a b]
    then have "gcd (d * a) (d * b) dvd gcd a b * d" by (auto simp: ac_simps)
    from dvd_trans[OF c this] show ?thesis .
  qed

  lemma listgcd_greatest_mult: "(\<And> x :: 'a. x \<in> set xs \<Longrightarrow> y dvd x * z) \<Longrightarrow> y dvd listgcd xs * z"
  proof (induct xs)
    case (Cons x xs)
    from Cons have "y dvd x * z" "y dvd listgcd xs * z" by auto
    thus ?case unfolding listgcd_simps by (rule gcd_greatest_mult)
  qed (simp)

  lemma dvd_factor_mult_gcd:
    assumes dvd: "k dvd p * q" "k dvd p * r"
      and q0: "q \<noteq> 0" and r0: "r \<noteq> 0"
    shows "k dvd p * gcd q r" 
  proof -
    from dvd gcd_greatest[of k "p * q" "p * r"]
    have "k dvd gcd (p * q) (p * r)" by simp
    also from gcd_mult_ddvd[of p q r]
    have "... dvd (p * gcd q r)" by auto
    finally show ?thesis .
  qed

  lemma coprime_mult_cross_dvd:
    assumes coprime: "coprime p q" and eq: "p' * p = q' * q"
    shows "p dvd q'" (is ?g1) and "q dvd p'" (is ?g2)
  proof (atomize(full), cases "p = 0 \<or> q = 0")
    case True
    then show "?g1 \<and> ?g2"
    proof
      assume p0: "p = 0" with coprime have "q dvd 1" by auto
      with eq p0 show ?thesis by auto
    next
      assume q0: "q = 0" with coprime have "p dvd 1" by auto
      with eq q0 show ?thesis by auto
    qed
  next
    case False
    {
      fix p q r p' q' :: 'a
      assume cop: "coprime p q" and eq: "p' * p = q' * q" and p: "p \<noteq> 0" and q: "q \<noteq> 0"
         and r: "r dvd p" "r dvd q"
      let ?gcd = "gcd q p"
      from eq have "p' * p dvd q' * q" by auto
      hence d1: "p dvd q' * q" by (rule dvd_mult_right)
      have d2: "p dvd q' * p" by auto
      from dvd_factor_mult_gcd[OF d1 d2 q p] have 1: "p dvd q' * ?gcd" .
      from q p have 2: "?gcd dvd q" by auto
      from q p have 3: "?gcd dvd p" by auto
      from cop[unfolded coprime_def', rule_format, OF 3 2] have "?gcd dvd 1" .
      from 1 dvd_mult_unit_iff[OF this] have "p dvd q'" by auto
    } note main = this
    from main[OF coprime eq,of 1] False coprime coprime_commute main[OF _ eq[symmetric], of 1]
    show "?g1 \<and> ?g2" by auto
  qed

end

subclass (in ring_gcd) idom_gcd by (unfold_locales, auto)

lemma coprime_rewrites: "comm_monoid_mult.coprime ((*)) 1 = coprime"
  apply (intro ext)
  apply (subst comm_monoid_mult.coprime_def')
  apply (unfold_locales)
  apply (unfold dvd_rewrites)
  apply (fold coprime_def') ..

(* TODO: incorporate into the default class hierarchy *)
locale gcd_condition =
  fixes ty :: "'a :: idom itself"
  assumes gcd_exists: "\<And>a b :: 'a. \<exists>x. is_gcd x a b"
begin
  sublocale idom_gcd "(*)" "1 :: 'a" "(+)" 0 "(-)" uminus some_gcd 
    rewrites "dvd.dvd ((*)) = (dvd)"
        and "comm_monoid_mult.coprime ((*) ) 1 = Unique_Factorization.coprime"
  proof-
    have "is_gcd (some_gcd a b) a b" for a b :: 'a by (intro is_gcd_some_gcdI gcd_exists)
    from this[unfolded is_gcd_def]
    show "class.idom_gcd (*) (1 :: 'a) (+) 0 (-) uminus some_gcd" by (unfold_locales, auto simp: dvd_rewrites)
  qed (simp_all add: dvd_rewrites coprime_rewrites)
end

instance semiring_gcd \<subseteq> comm_monoid_gcd by (intro_classes, auto)

lemma listgcd_connect: "listgcd = gcd_list"
proof (intro ext)
  fix xs :: "'a list"
  show "listgcd xs = gcd_list xs" by(induct xs, auto)
qed

interpretation some_gcd: gcd_condition "TYPE('a::ufd)"
proof(unfold_locales, intro exI)
  interpret factorial_monoid "mk_monoid :: 'a monoid" by (fact factorial_monoid)
  note d = dvd.dvd_def some_gcd_def carrier_0
  fix a b :: 'a
  show "is_gcd (some_gcd a b) a b"
  proof (cases "a = 0 \<or> b = 0")
    case True
    thus ?thesis using some_gcd_0 by auto
  next
    case False
    with gcdof_exists[of a b]
    show ?thesis by (auto intro!: is_gcd_some_gcdI simp add: is_gcd_connect some_gcd_connect)
  qed
qed

lemma some_gcd_listgcd_dvd_listgcd: "some_gcd.listgcd xs dvd listgcd xs"
  by (induct xs, auto simp:some_gcd_dvd intro:dvd_imp_gcd_dvd_gcd)

lemma listgcd_dvd_some_gcd_listgcd: "listgcd xs dvd some_gcd.listgcd xs"
  by (induct xs, auto simp:some_gcd_dvd intro:dvd_imp_gcd_dvd_gcd)

context factorial_ring_gcd begin

text \<open>Do not declare the following as subclass, to avoid conflict in
  \<open>field \<subseteq> gcd_condition\<close> vs. \<open>factorial_ring_gcd \<subseteq> gcd_condition\<close>.
\<close>
sublocale as_ufd: ufd
proof(unfold_locales, goal_cases)
  case (1 x)
  from prime_factorization_exists[OF \<open>x \<noteq> 0\<close>]
  obtain F where f: "\<And>f. f \<in># F \<Longrightarrow> prime_elem f" 
             and Fx: "normalize (prod_mset F) = normalize x" by auto
  from associatedE2[OF Fx] obtain u where u: "is_unit u" "x = u * prod_mset F"
    by blast
  from \<open>\<not> is_unit x\<close> Fx have "F \<noteq> {#}" by auto
  then obtain g G where F: "F = add_mset g G" by (cases F, auto)
  then have "g \<in># F" by auto
  with f[OF this]prime_elem_iff_irreducible
    irreducible_mult_unit_left[OF unit_factor_is_unit[OF \<open>x \<noteq> 0\<close>]]
  have g: "irreducible (u * g)" using u(1)
    by (subst irreducible_mult_unit_left) simp_all
  show ?case
  proof (intro exI conjI mset_factorsI)
    show "prod_mset (add_mset (u * g) G) = x"
      using \<open>x \<noteq> 0\<close> by (simp add: F ac_simps u)
    fix f assume "f \<in># add_mset (u * g) G"
    with f[unfolded F] g prime_elem_iff_irreducible
    show "irreducible f" by auto
  qed auto
next
  case (2 x F G)
  note transpD[OF multiset.rel_transp[OF ddvd_transp],trans]
  obtain fs where F: "F = mset fs" by (metis ex_mset)
  have "list_all2 (ddvd) fs (map normalize fs)" by (intro list_all2_all_nthI, auto)
  then have FH: "rel_mset (ddvd) F (image_mset normalize F)" by (unfold rel_mset_def F, force)
  also
  have FG: "image_mset normalize F = image_mset normalize G"
  proof (intro prime_factorization_unique'')
    from 2 have xF: "x = prod_mset F" and xG: "x = prod_mset G" by auto
    from xF have "normalize x = normalize (prod_mset (image_mset normalize F))"
      by (simp add: normalize_prod_mset_normalize)
    with xG have nFG: "\<dots> = normalize (prod_mset (image_mset normalize G))"
      by (simp_all add: normalize_prod_mset_normalize)
    then show "normalize (\<Prod>i\<in>#image_mset normalize F. i) =
               normalize (\<Prod>i\<in>#image_mset normalize G. i)" by auto
  next
    from 2 prime_elem_iff_irreducible have "f \<in># F \<Longrightarrow> prime_elem f" "g \<in># G \<Longrightarrow> prime_elem g" for f g
     by (auto intro: prime_elemI)
    then show " Multiset.Ball (image_mset normalize F) prime"
      "Multiset.Ball (image_mset normalize G) prime" by auto
  qed
  also
    obtain gs where G: "G = mset gs" by (metis ex_mset)
    have "list_all2 ((ddvd)\<inverse>\<inverse>) gs (map normalize gs)" by (intro list_all2_all_nthI, auto)
    then have "rel_mset (ddvd) (image_mset normalize G) G"
      by (subst multiset.rel_flip[symmetric], unfold rel_mset_def G, force)
  finally show ?case.
qed

end

instance int :: ufd by (intro class.ufd.of_class.intro as_ufd.ufd_axioms)
instance int :: idom_gcd by (intro_classes, auto)

instance field \<subseteq> ufd by (intro_classes, auto simp: dvd_field_iff)

end