Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 37,747 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
theory Unique_Factorization
imports
Polynomial_Interpolation.Ring_Hom_Poly
Polynomial_Factorization.Polynomial_Divisibility
"HOL-Combinatorics.Permutations"
"HOL-Computational_Algebra.Euclidean_Algorithm"
Containers.Containers_Auxiliary (* only for a lemma *)
More_Missing_Multiset
"HOL-Algebra.Divisibility"
begin
hide_const(open)
Divisibility.prime
Divisibility.irreducible
hide_fact(open)
Divisibility.irreducible_def
Divisibility.irreducibleI
Divisibility.irreducibleD
Divisibility.irreducibleE
hide_const (open) Rings.coprime
lemma irreducible_uminus [simp]:
fixes a::"'a::idom"
shows "irreducible (-a) \<longleftrightarrow> irreducible a"
using irreducible_mult_unit_left[of "-1::'a"] by auto
context comm_monoid_mult begin
definition coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
where coprime_def': "coprime p q \<equiv> \<forall>r. r dvd p \<longrightarrow> r dvd q \<longrightarrow> r dvd 1"
lemma coprimeI:
assumes "\<And>r. r dvd p \<Longrightarrow> r dvd q \<Longrightarrow> r dvd 1"
shows "coprime p q" using assms by (auto simp: coprime_def')
lemma coprimeE:
assumes "coprime p q"
and "(\<And>r. r dvd p \<Longrightarrow> r dvd q \<Longrightarrow> r dvd 1) \<Longrightarrow> thesis"
shows thesis using assms by (auto simp: coprime_def')
lemma coprime_commute [ac_simps]:
"coprime p q \<longleftrightarrow> coprime q p"
by (auto simp add: coprime_def')
lemma not_coprime_iff_common_factor:
"\<not> coprime p q \<longleftrightarrow> (\<exists>r. r dvd p \<and> r dvd q \<and> \<not> r dvd 1)"
by (auto simp add: coprime_def')
end
lemma (in algebraic_semidom) coprime_iff_coprime [simp, code]:
"coprime = Rings.coprime"
by (simp add: fun_eq_iff coprime_def coprime_def')
lemma (in comm_semiring_1) coprime_0 [simp]:
"coprime p 0 \<longleftrightarrow> p dvd 1" "coprime 0 p \<longleftrightarrow> p dvd 1"
by (auto intro: coprimeI elim: coprimeE dest: dvd_trans)
(**** until here ****)
(* TODO: move or...? *)
lemma dvd_rewrites: "dvd.dvd ((*)) = (dvd)" by (unfold dvd.dvd_def dvd_def, rule)
subsection \<open>Interfacing UFD properties\<close>
hide_const (open) Divisibility.irreducible
context comm_monoid_mult_isom begin
lemma coprime_hom[simp]: "coprime (hom x) y' \<longleftrightarrow> coprime x (Hilbert_Choice.inv hom y')"
proof-
show ?thesis by (unfold coprime_def', fold ball_UNIV, subst surj[symmetric], simp)
qed
lemma coprime_inv_hom[simp]: "coprime (Hilbert_Choice.inv hom x') y \<longleftrightarrow> coprime x' (hom y)"
proof-
interpret inv: comm_monoid_mult_isom "Hilbert_Choice.inv hom"..
show ?thesis by simp
qed
end
subsubsection \<open>Original part\<close>
lemma dvd_dvd_imp_smult:
fixes p q :: "'a :: idom poly"
assumes pq: "p dvd q" and qp: "q dvd p" shows "\<exists>c. p = smult c q"
proof (cases "p = 0")
case True then show ?thesis by auto
next
case False
from qp obtain r where r: "p = q * r" by (elim dvdE, auto)
with False qp have r0: "r \<noteq> 0" and q0: "q \<noteq> 0" by auto
with divides_degree[OF pq] divides_degree[OF qp] False
have "degree p = degree q" by auto
with r degree_mult_eq[OF q0 r0] have "degree r = 0" by auto
from degree_0_id[OF this] obtain c where "r = [:c:]" by metis
from r[unfolded this] show ?thesis by auto
qed
lemma dvd_const:
assumes pq: "(p::'a::semidom poly) dvd q" and q0: "q \<noteq> 0" and degq: "degree q = 0"
shows "degree p = 0"
proof-
from dvdE[OF pq] obtain r where *: "q = p * r".
with q0 have "p \<noteq> 0" "r \<noteq> 0" by auto
from degree_mult_eq[OF this] degq * show "degree p = 0" by auto
qed
context Rings.dvd begin
abbreviation ddvd (infix "ddvd" 40) where "x ddvd y \<equiv> x dvd y \<and> y dvd x"
lemma ddvd_sym[sym]: "x ddvd y \<Longrightarrow> y ddvd x" by auto
end
context comm_monoid_mult begin
lemma ddvd_trans[trans]: "x ddvd y \<Longrightarrow> y ddvd z \<Longrightarrow> x ddvd z" using dvd_trans by auto
lemma ddvd_transp: "transp (ddvd)" by (intro transpI, fact ddvd_trans)
end
context comm_semiring_1 begin
definition mset_factors where "mset_factors F p \<equiv>
F \<noteq> {#} \<and> (\<forall>f. f \<in># F \<longrightarrow> irreducible f) \<and> p = prod_mset F"
lemma mset_factorsI[intro!]:
assumes "\<And>f. f \<in># F \<Longrightarrow> irreducible f" and "F \<noteq> {#}" and "prod_mset F = p"
shows "mset_factors F p"
unfolding mset_factors_def using assms by auto
lemma mset_factorsD:
assumes "mset_factors F p"
shows "f \<in># F \<Longrightarrow> irreducible f" and "F \<noteq> {#}" and "prod_mset F = p"
using assms[unfolded mset_factors_def] by auto
lemma mset_factorsE[elim]:
assumes "mset_factors F p"
and "(\<And>f. f \<in># F \<Longrightarrow> irreducible f) \<Longrightarrow> F \<noteq> {#} \<Longrightarrow> prod_mset F = p \<Longrightarrow> thesis"
shows thesis
using assms[unfolded mset_factors_def] by auto
lemma mset_factors_imp_not_is_unit:
assumes "mset_factors F p"
shows "\<not> p dvd 1"
proof(cases F)
case empty with assms show ?thesis by auto
next
case (add f F)
with assms have "\<not> f dvd 1" "p = f * prod_mset F" by (auto intro!: irreducible_not_unit)
then show ?thesis by auto
qed
definition primitive_poly where "primitive_poly f \<equiv> \<forall>d. (\<forall>i. d dvd coeff f i) \<longrightarrow> d dvd 1"
end
lemma(in semidom) mset_factors_imp_nonzero:
assumes "mset_factors F p"
shows "p \<noteq> 0"
proof
assume "p = 0"
moreover from assms have "prod_mset F = p" by auto
ultimately obtain f where "f \<in># F" "f = 0" by auto
with assms show False by auto
qed
class ufd = idom +
assumes mset_factors_exist: "\<And>x. x \<noteq> 0 \<Longrightarrow> \<not> x dvd 1 \<Longrightarrow> \<exists>F. mset_factors F x"
and mset_factors_unique: "\<And>x F G. mset_factors F x \<Longrightarrow> mset_factors G x \<Longrightarrow> rel_mset (ddvd) F G"
subsubsection \<open>Connecting to HOL/Divisibility\<close>
context comm_semiring_1 begin
abbreviation "mk_monoid \<equiv> \<lparr>carrier = UNIV - {0}, mult = (*), one = 1\<rparr>"
lemma carrier_0[simp]: "x \<in> carrier mk_monoid \<longleftrightarrow> x \<noteq> 0" by auto
lemmas mk_monoid_simps = carrier_0 monoid.simps
abbreviation irred where "irred \<equiv> Divisibility.irreducible mk_monoid"
abbreviation factor where "factor \<equiv> Divisibility.factor mk_monoid"
abbreviation factors where "factors \<equiv> Divisibility.factors mk_monoid"
abbreviation properfactor where "properfactor \<equiv> Divisibility.properfactor mk_monoid"
lemma factors: "factors fs y \<longleftrightarrow> prod_list fs = y \<and> Ball (set fs) irred"
proof -
have "prod_list fs = foldr (*) fs 1" by (induct fs, auto)
thus ?thesis unfolding factors_def by auto
qed
lemma factor: "factor x y \<longleftrightarrow> (\<exists>z. z \<noteq> 0 \<and> x * z = y)" unfolding factor_def by auto
lemma properfactor_nz:
shows "(y :: 'a) \<noteq> 0 \<Longrightarrow> properfactor x y \<longleftrightarrow> x dvd y \<and> \<not> y dvd x"
by (auto simp: properfactor_def factor_def dvd_def)
lemma mem_Units[simp]: "y \<in> Units mk_monoid \<longleftrightarrow> y dvd 1"
unfolding dvd_def Units_def by (auto simp: ac_simps)
end
context idom begin
lemma irred_0[simp]: "irred (0::'a)" by (unfold Divisibility.irreducible_def, auto simp: factor properfactor_def)
lemma factor_idom[simp]: "factor (x::'a) y \<longleftrightarrow> (if y = 0 then x = 0 else x dvd y)"
by (cases "y = 0"; auto intro: exI[of _ 1] elim: dvdE simp: factor)
lemma associated_connect[simp]: "(\<sim>\<^bsub>mk_monoid\<^esub>) = (ddvd)" by (intro ext, unfold associated_def, auto)
lemma essentially_equal_connect[simp]:
"essentially_equal mk_monoid fs gs \<longleftrightarrow> rel_mset (ddvd) (mset fs) (mset gs)"
by (auto simp: essentially_equal_def rel_mset_via_perm)
lemma irred_idom_nz:
assumes x0: "(x::'a) \<noteq> 0"
shows "irred x \<longleftrightarrow> irreducible x"
using x0 by (auto simp: irreducible_altdef Divisibility.irreducible_def properfactor_nz)
lemma dvd_dvd_imp_unit_mult:
assumes xy: "x dvd y" and yx: "y dvd x"
shows "\<exists>z. z dvd 1 \<and> y = x * z"
proof(cases "x = 0")
case True with xy show ?thesis by (auto intro: exI[of _ 1])
next
case x0: False
from xy obtain z where z: "y = x * z" by (elim dvdE, auto)
from yx obtain w where w: "x = y * w" by (elim dvdE, auto)
from z w have "x * (z * w) = x" by (auto simp: ac_simps)
then have "z * w = 1" using x0 by auto
with z show ?thesis by (auto intro: exI[of _ z])
qed
lemma irred_inner_nz:
assumes x0: "x \<noteq> 0"
shows "(\<forall>b. b dvd x \<longrightarrow> \<not> x dvd b \<longrightarrow> b dvd 1) \<longleftrightarrow> (\<forall>a b. x = a * b \<longrightarrow> a dvd 1 \<or> b dvd 1)" (is "?l \<longleftrightarrow> ?r")
proof (intro iffI allI impI)
assume l: ?l
fix a b
assume xab: "x = a * b"
then have ax: "a dvd x" and bx: "b dvd x" by auto
{ assume a1: "\<not> a dvd 1"
with l ax have xa: "x dvd a" by auto
from dvd_dvd_imp_unit_mult[OF ax xa] obtain z where z1: "z dvd 1" and xaz: "x = a * z" by auto
from xab x0 have "a \<noteq> 0" by auto
with xab xaz have "b = z" by auto
with z1 have "b dvd 1" by auto
}
then show "a dvd 1 \<or> b dvd 1" by auto
next
assume r: ?r
fix b assume bx: "b dvd x" and xb: "\<not> x dvd b"
then obtain a where xab: "x = a * b" by (elim dvdE, auto simp: ac_simps)
with r consider "a dvd 1" | "b dvd 1" by auto
then show "b dvd 1"
proof(cases)
case 2 then show ?thesis by auto
next
case 1
then obtain c where ac1: "a * c = 1" by (elim dvdE, auto)
from xab have "x * c = b * (a * c)" by (auto simp: ac_simps)
with ac1 have "x * c = b" by auto
then have "x dvd b" by auto
with xb show ?thesis by auto
qed
qed
lemma irred_idom[simp]: "irred x \<longleftrightarrow> x = 0 \<or> irreducible x"
by (cases "x = 0"; simp add: irred_idom_nz irred_inner_nz irreducible_def)
lemma assumes "x \<noteq> 0" and "factors fs x" and "f \<in> set fs" shows "f \<noteq> 0"
using assms by (auto simp: factors)
lemma factors_as_mset_factors:
assumes x0: "x \<noteq> 0" and x1: "x \<noteq> 1"
shows "factors fs x \<longleftrightarrow> mset_factors (mset fs) x" using assms
by (auto simp: factors prod_mset_prod_list)
end
context ufd begin
interpretation comm_monoid_cancel: comm_monoid_cancel "mk_monoid::'a monoid"
apply (unfold_locales)
apply simp_all
using mult_left_cancel
apply (auto simp: ac_simps)
done
lemma factors_exist:
assumes "a \<noteq> 0"
and "\<not> a dvd 1"
shows "\<exists>fs. set fs \<subseteq> UNIV - {0} \<and> factors fs a"
proof-
from mset_factors_exist[OF assms]
obtain F where "mset_factors F a" by auto
also from ex_mset obtain fs where "F = mset fs" by metis
finally have fs: "mset_factors (mset fs) a".
then have "factors fs a" using assms by (subst factors_as_mset_factors, auto)
moreover have "set fs \<subseteq> UNIV - {0}" using fs by (auto elim!: mset_factorsE)
ultimately show ?thesis by auto
qed
lemma factors_unique:
assumes fs: "factors fs a"
and gs: "factors gs a"
and a0: "a \<noteq> 0"
and a1: "\<not> a dvd 1"
shows "rel_mset (ddvd) (mset fs) (mset gs)"
proof-
from a1 have "a \<noteq> 1" by auto
with a0 fs gs have "mset_factors (mset fs) a" "mset_factors (mset gs) a" by (unfold factors_as_mset_factors)
from mset_factors_unique[OF this] show ?thesis.
qed
lemma factorial_monoid: "factorial_monoid (mk_monoid :: 'a monoid)"
by (unfold_locales; auto simp add: factors_exist factors_unique)
end
lemma (in idom) factorial_monoid_imp_ufd:
assumes "factorial_monoid (mk_monoid :: 'a monoid)"
shows "class.ufd ((*) :: 'a \<Rightarrow> _) 1 (+) 0 (-) uminus"
proof (unfold_locales)
interpret factorial_monoid "mk_monoid :: 'a monoid" by (fact assms)
{
fix x assume x: "x \<noteq> 0" "\<not> x dvd 1"
note * = factors_exist[simplified, OF this]
with x show "\<exists>F. mset_factors F x" by (subst(asm) factors_as_mset_factors, auto)
}
fix x F G assume FG: "mset_factors F x" "mset_factors G x"
with mset_factors_imp_not_is_unit have x1: "\<not> x dvd 1" by auto
from FG(1) have x0: "x \<noteq> 0" by (rule mset_factors_imp_nonzero)
obtain fs gs where fsgs: "F = mset fs" "G = mset gs" using ex_mset by metis
note FG = FG[unfolded this]
then have 0: "0 \<notin> set fs" "0 \<notin> set gs" by (auto elim!: mset_factorsE)
from x1 have "x \<noteq> 1" by auto
note FG[folded factors_as_mset_factors[OF x0 this]]
from factors_unique[OF this, simplified, OF x0 x1, folded fsgs] 0
show "rel_mset (ddvd) F G" by auto
qed
subsection \<open>Preservation of Irreducibility\<close>
locale comm_semiring_1_hom = comm_monoid_mult_hom hom + zero_hom hom
for hom :: "'a :: comm_semiring_1 \<Rightarrow> 'b :: comm_semiring_1"
locale irreducibility_hom = comm_semiring_1_hom +
assumes irreducible_imp_irreducible_hom: "irreducible a \<Longrightarrow> irreducible (hom a)"
begin
lemma hom_mset_factors:
assumes F: "mset_factors F p"
shows "mset_factors (image_mset hom F) (hom p)"
proof (unfold mset_factors_def, intro conjI allI impI)
from F show "hom p = prod_mset (image_mset hom F)" "image_mset hom F \<noteq> {#}" by (auto simp: hom_distribs)
fix f' assume "f' \<in># image_mset hom F"
then obtain f where f: "f \<in># F" and f'f: "f' = hom f" by auto
with F irreducible_imp_irreducible_hom show "irreducible f'" unfolding f'f by auto
qed
end
locale unit_preserving_hom = comm_semiring_1_hom +
assumes is_unit_hom_if: "\<And>x. hom x dvd 1 \<Longrightarrow> x dvd 1"
begin
lemma is_unit_hom_iff[simp]: "hom x dvd 1 \<longleftrightarrow> x dvd 1" using is_unit_hom_if hom_dvd by force
lemma irreducible_hom_imp_irreducible:
assumes irr: "irreducible (hom a)" shows "irreducible a"
proof (intro irreducibleI)
from irr show "a \<noteq> 0" by auto
from irr show "\<not> a dvd 1" by (auto dest: irreducible_not_unit)
fix b c assume "a = b * c"
then have "hom a = hom b * hom c" by (simp add: hom_distribs)
with irr have "hom b dvd 1 \<or> hom c dvd 1" by (auto dest: irreducibleD)
then show "b dvd 1 \<or> c dvd 1" by simp
qed
end
locale factor_preserving_hom = unit_preserving_hom + irreducibility_hom
begin
lemma irreducible_hom[simp]: "irreducible (hom a) \<longleftrightarrow> irreducible a"
using irreducible_hom_imp_irreducible irreducible_imp_irreducible_hom by metis
end
lemma factor_preserving_hom_comp:
assumes f: "factor_preserving_hom f" and g: "factor_preserving_hom g"
shows "factor_preserving_hom (f o g)"
proof-
interpret f: factor_preserving_hom f by (rule f)
interpret g: factor_preserving_hom g by (rule g)
show ?thesis by (unfold_locales, auto simp: hom_distribs)
qed
context comm_semiring_isom begin
sublocale unit_preserving_hom by (unfold_locales, auto)
sublocale factor_preserving_hom
proof (standard)
fix a :: 'a
assume "irreducible a"
note a = this[unfolded irreducible_def]
show "irreducible (hom a)"
proof (rule ccontr)
assume "\<not> irreducible (hom a)"
from this[unfolded Factorial_Ring.irreducible_def,simplified] a
obtain hb hc where eq: "hom a = hb * hc" and nu: "\<not> hb dvd 1" "\<not> hc dvd 1" by auto
from bij obtain b where hb: "hb = hom b" by (elim bij_pointE)
from bij obtain c where hc: "hc = hom c" by (elim bij_pointE)
from eq[unfolded hb hc, folded hom_mult] have "a = b * c" by auto
with nu hb hc have "a = b * c" "\<not> b dvd 1" "\<not> c dvd 1" by auto
with a show False by auto
qed
qed
end
subsubsection\<open>Back to divisibility\<close>
lemma(in comm_semiring_1) mset_factors_mult:
assumes F: "mset_factors F a"
and G: "mset_factors G b"
shows "mset_factors (F+G) (a*b)"
proof(intro mset_factorsI)
fix f assume "f \<in># F + G"
then consider "f \<in># F" | "f \<in># G" by auto
then show "irreducible f" by(cases, insert F G, auto)
qed (insert F G, auto)
lemma(in ufd) dvd_imp_subset_factors:
assumes ab: "a dvd b"
and F: "mset_factors F a"
and G: "mset_factors G b"
shows "\<exists>G'. G' \<subseteq># G \<and> rel_mset (ddvd) F G'"
proof-
from F G have a0: "a \<noteq> 0" and b0: "b \<noteq> 0" by (simp_all add: mset_factors_imp_nonzero)
from ab obtain c where c: "b = a * c" by (elim dvdE, auto)
with b0 have c0: "c \<noteq> 0" by auto
show ?thesis
proof(cases "c dvd 1")
case True
show ?thesis
proof(cases F)
case empty with F show ?thesis by auto
next
case (add f F')
with F
have a: "f * prod_mset F' = a"
and F': "\<And>f. f \<in># F' \<Longrightarrow> irreducible f"
and irrf: "irreducible f" by auto
from irrf have f0: "f \<noteq> 0" and f1: "\<not>f dvd 1" by (auto dest: irreducible_not_unit)
from a c have "(f * c) * prod_mset F' = b" by (auto simp: ac_simps)
moreover {
have "irreducible (f * c)" using True irrf by (subst irreducible_mult_unit_right)
with F' irrf have "\<And>f'. f' \<in># F' + {#f * c#} \<Longrightarrow> irreducible f'" by auto
}
ultimately have "mset_factors (F' + {#f * c#}) b" by (intro mset_factorsI, auto)
from mset_factors_unique[OF this G]
have F'G: "rel_mset (ddvd) (F' + {#f * c#}) G".
from True add have FF': "rel_mset (ddvd) F (F' + {#f * c#})"
by (auto simp add: multiset.rel_refl intro!: rel_mset_Plus)
have "rel_mset (ddvd) F G"
apply(rule transpD[OF multiset.rel_transp[OF transpI] FF' F'G])
using ddvd_trans.
then show ?thesis by auto
qed
next
case False
from mset_factors_exist[OF c0 this] obtain H where H: "mset_factors H c" by auto
from c mset_factors_mult[OF F H] have "mset_factors (F + H) b" by auto
note mset_factors_unique[OF this G]
from rel_mset_split[OF this] obtain G1 G2
where "G = G1 + G2" "rel_mset (ddvd) F G1" "rel_mset (ddvd) H G2" by auto
then show ?thesis by (intro exI[of _ "G1"], auto)
qed
qed
lemma(in idom) irreducible_factor_singleton:
assumes a: "irreducible a"
shows "mset_factors F a \<longleftrightarrow> F = {#a#}"
proof(cases F)
case empty with mset_factorsD show ?thesis by auto
next
case (add f F')
show ?thesis
proof
assume F: "mset_factors F a"
from add mset_factorsD[OF F] have *: "a = f * prod_mset F'" by auto
then have fa: "f dvd a" by auto
from * a have f0: "f \<noteq> 0" by auto
from add have "f \<in># F" by auto
with F have f: "irreducible f" by auto
from add have "F' \<subseteq># F" by auto
then have unitemp: "prod_mset F' dvd 1 \<Longrightarrow> F' = {#}"
proof(induct F')
case empty then show ?case by auto
next
case (add f F')
from add have "f \<in># F" by (simp add: mset_subset_eq_insertD)
with F irreducible_not_unit have "\<not> f dvd 1" by auto
then have "\<not> (prod_mset F' * f) dvd 1" by simp
with add show ?case by auto
qed
show "F = {#a#}"
proof(cases "a dvd f")
case True
then obtain r where "f = a * r" by (elim dvdE, auto)
with * have "f = (r * prod_mset F') * f" by (auto simp: ac_simps)
with f0 have "r * prod_mset F' = 1" by auto
then have "prod_mset F' dvd 1" by (metis dvd_triv_right)
with unitemp * add show ?thesis by auto
next
case False with fa a f show ?thesis by (auto simp: irreducible_altdef)
qed
qed (insert a, auto)
qed
lemma(in ufd) irreducible_dvd_imp_factor:
assumes ab: "a dvd b"
and a: "irreducible a"
and G: "mset_factors G b"
shows "\<exists>g \<in># G. a ddvd g"
proof-
from a have "mset_factors {#a#} a" by auto
from dvd_imp_subset_factors[OF ab this G]
obtain G' where G'G: "G' \<subseteq># G" and rel: "rel_mset (ddvd) {#a#} G'" by auto
with rel_mset_size size_1_singleton_mset size_single
obtain g where gG': "G' = {#g#}" by fastforce
from rel[unfolded this rel_mset_def]
have "a ddvd g" by auto
with gG' G'G show ?thesis by auto
qed
lemma(in idom) prod_mset_remove_units:
"prod_mset F ddvd prod_mset {# f \<in># F. \<not>f dvd 1 #}"
proof(induct F)
case (add f F) then show ?case by (cases "f = 0", auto)
qed auto
lemma(in comm_semiring_1) mset_factors_imp_dvd:
assumes "mset_factors F x" and "f \<in># F" shows "f dvd x"
using assms by (simp add: dvd_prod_mset mset_factors_def)
lemma(in ufd) prime_elem_iff_irreducible[iff]:
"prime_elem x \<longleftrightarrow> irreducible x"
proof (intro iffI, fact prime_elem_imp_irreducible, rule prime_elemI)
assume r: "irreducible x"
then show x0: "x \<noteq> 0" and x1: "\<not> x dvd 1" by (auto dest: irreducible_not_unit)
from irreducible_factor_singleton[OF r]
have *: "mset_factors {#x#} x" by auto
fix a b
assume "x dvd a * b"
then obtain c where abxc: "a * b = x * c" by (elim dvdE, auto)
show "x dvd a \<or> x dvd b"
proof(cases "c = 0 \<or> a = 0 \<or> b = 0")
case True with abxc show ?thesis by auto
next
case False
then have a0: "a \<noteq> 0" and b0: "b \<noteq> 0" and c0: "c \<noteq> 0" by auto
from x0 c0 have xc0: "x * c \<noteq> 0" by auto
from x1 have xc1: "\<not> x * c dvd 1" by auto
show ?thesis
proof (cases "a dvd 1 \<or> b dvd 1")
case False
then have a1: "\<not> a dvd 1" and b1: "\<not> b dvd 1" by auto
from mset_factors_exist[OF a0 a1]
obtain F where Fa: "mset_factors F a" by auto
then have F0: "F \<noteq> {#}" by auto
from mset_factors_exist[OF b0 b1]
obtain G where Gb: "mset_factors G b" by auto
then have G0: "G \<noteq> {#}" by auto
from mset_factors_mult[OF Fa Gb]
have FGxc: "mset_factors (F + G) (x * c)" by (simp add: abxc)
show ?thesis
proof (cases "c dvd 1")
case True
from r irreducible_mult_unit_right[OF this] have "irreducible (x*c)" by simp
note irreducible_factor_singleton[OF this] FGxc
with F0 G0 have False by (cases F; cases G; auto)
then show ?thesis by auto
next
case False
from mset_factors_exist[OF c0 this] obtain H where "mset_factors H c" by auto
with * have xHxc: "mset_factors (add_mset x H) (x * c)" by force
note rel = mset_factors_unique[OF this FGxc]
obtain hs where "mset hs = H" using ex_mset by auto
then have "mset (x#hs) = add_mset x H" by auto
from rel_mset_free[OF rel this]
obtain jjs where jjsGH: "mset jjs = F + G" and rel: "list_all2 (ddvd) (x # hs) jjs" by auto
then obtain j js where jjs: "jjs = j # js" by (cases jjs, auto)
with rel have xj: "x ddvd j" by auto
from jjs jjsGH have j: "j \<in> set_mset (F + G)" by (intro union_single_eq_member, auto)
from j consider "j \<in># F" | "j \<in># G" by auto
then show ?thesis
proof(cases)
case 1
with Fa have "j dvd a" by (auto intro: mset_factors_imp_dvd)
with xj dvd_trans have "x dvd a" by auto
then show ?thesis by auto
next
case 2
with Gb have "j dvd b" by (auto intro: mset_factors_imp_dvd)
with xj dvd_trans have "x dvd b" by auto
then show ?thesis by auto
qed
qed
next
case True
then consider "a dvd 1" | "b dvd 1" by auto
then show ?thesis
proof(cases)
case 1
then obtain d where ad: "a * d = 1" by (elim dvdE, auto)
from abxc have "x * (c * d) = a * b * d" by (auto simp: ac_simps)
also have "... = a * d * b" by (auto simp: ac_simps)
finally have "x dvd b" by (intro dvdI, auto simp: ad)
then show ?thesis by auto
next
case 2
then obtain d where bd: "b * d = 1" by (elim dvdE, auto)
from abxc have "x * (c * d) = a * b * d" by (auto simp: ac_simps)
also have "... = (b * d) * a" by (auto simp: ac_simps)
finally have "x dvd a" by (intro dvdI, auto simp:bd)
then show ?thesis by auto
qed
qed
qed
qed
subsection\<open>Results for GCDs etc.\<close>
lemma prod_list_remove1: "(x :: 'b :: comm_monoid_mult) \<in> set xs \<Longrightarrow> prod_list (remove1 x xs) * x = prod_list xs"
by (induct xs, auto simp: ac_simps)
(* Isabelle 2015-style and generalized gcd-class without normalization and factors *)
class comm_monoid_gcd = gcd + comm_semiring_1 +
assumes gcd_dvd1[iff]: "gcd a b dvd a"
and gcd_dvd2[iff]: "gcd a b dvd b"
and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b"
begin
lemma gcd_0_0[simp]: "gcd 0 0 = 0"
using gcd_greatest[OF dvd_0_right dvd_0_right, of 0] by auto
lemma gcd_zero_iff[simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
proof
assume "gcd a b = 0"
from gcd_dvd1[of a b, unfolded this] gcd_dvd2[of a b, unfolded this]
show "a = 0 \<and> b = 0" by auto
qed auto
lemma gcd_zero_iff'[simp]: "0 = gcd a b \<longleftrightarrow> a = 0 \<and> b = 0"
using gcd_zero_iff by metis
lemma dvd_gcd_0_iff[simp]:
shows "x dvd gcd 0 a \<longleftrightarrow> x dvd a" (is ?g1)
and "x dvd gcd a 0 \<longleftrightarrow> x dvd a" (is ?g2)
proof-
have "a dvd gcd a 0" "a dvd gcd 0 a" by (auto intro: gcd_greatest)
with dvd_refl show ?g1 ?g2 by (auto dest: dvd_trans)
qed
lemma gcd_dvd_1[simp]: "gcd a b dvd 1 \<longleftrightarrow> coprime a b"
using dvd_trans[OF gcd_greatest[of _ a b], of _ 1]
by (cases "a = 0 \<and> b = 0") (auto intro!: coprimeI elim: coprimeE)
lemma dvd_imp_gcd_dvd_gcd: "b dvd c \<Longrightarrow> gcd a b dvd gcd a c"
by (meson gcd_dvd1 gcd_dvd2 gcd_greatest dvd_trans)
definition listgcd :: "'a list \<Rightarrow> 'a" where
"listgcd xs = foldr gcd xs 0"
lemma listgcd_simps[simp]: "listgcd [] = 0" "listgcd (x # xs) = gcd x (listgcd xs)"
by (auto simp: listgcd_def)
lemma listgcd: "x \<in> set xs \<Longrightarrow> listgcd xs dvd x"
proof (induct xs)
case (Cons y ys)
show ?case
proof (cases "x = y")
case False
with Cons have dvd: "listgcd ys dvd x" by auto
thus ?thesis unfolding listgcd_simps using dvd_trans by blast
next
case True
thus ?thesis unfolding listgcd_simps using dvd_trans by blast
qed
qed simp
lemma listgcd_greatest: "(\<And> x. x \<in> set xs \<Longrightarrow> y dvd x) \<Longrightarrow> y dvd listgcd xs"
by (induct xs arbitrary:y, auto intro: gcd_greatest)
end
context Rings.dvd begin
definition "is_gcd x a b \<equiv> x dvd a \<and> x dvd b \<and> (\<forall>y. y dvd a \<longrightarrow> y dvd b \<longrightarrow> y dvd x)"
definition "some_gcd a b \<equiv> SOME x. is_gcd x a b"
lemma is_gcdI[intro!]:
assumes "x dvd a" "x dvd b" "\<And>y. y dvd a \<Longrightarrow> y dvd b \<Longrightarrow> y dvd x"
shows "is_gcd x a b" by (insert assms, auto simp: is_gcd_def)
lemma is_gcdE[elim!]:
assumes "is_gcd x a b"
and "x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> (\<And>y. y dvd a \<Longrightarrow> y dvd b \<Longrightarrow> y dvd x) \<Longrightarrow> thesis"
shows thesis by (insert assms, auto simp: is_gcd_def)
lemma is_gcd_some_gcdI:
assumes "\<exists>x. is_gcd x a b" shows "is_gcd (some_gcd a b) a b"
by (unfold some_gcd_def, rule someI_ex[OF assms])
end
context comm_semiring_1 begin
lemma some_gcd_0[intro!]: "is_gcd (some_gcd a 0) a 0" "is_gcd (some_gcd 0 b) 0 b"
by (auto intro!: is_gcd_some_gcdI intro: exI[of _ a] exI[of _ b])
lemma some_gcd_0_dvd[intro!]:
"some_gcd a 0 dvd a" "some_gcd 0 b dvd b" using some_gcd_0 by auto
lemma dvd_some_gcd_0[intro!]:
"a dvd some_gcd a 0" "b dvd some_gcd 0 b" using some_gcd_0[of a] some_gcd_0[of b] by auto
end
context idom begin
lemma is_gcd_connect:
assumes "a \<noteq> 0" "b \<noteq> 0" shows "isgcd mk_monoid x a b \<longleftrightarrow> is_gcd x a b"
using assms by (force simp: isgcd_def)
lemma some_gcd_connect:
assumes "a \<noteq> 0" and "b \<noteq> 0" shows "somegcd mk_monoid a b = some_gcd a b"
using assms by (auto intro!: arg_cong[of _ _ Eps] simp: is_gcd_connect some_gcd_def somegcd_def)
end
context comm_monoid_gcd
begin
lemma is_gcd_gcd: "is_gcd (gcd a b) a b" using gcd_greatest by auto
lemma is_gcd_some_gcd: "is_gcd (some_gcd a b) a b" by (insert is_gcd_gcd, auto intro!: is_gcd_some_gcdI)
lemma gcd_dvd_some_gcd: "gcd a b dvd some_gcd a b" using is_gcd_some_gcd by auto
lemma some_gcd_dvd_gcd: "some_gcd a b dvd gcd a b" using is_gcd_some_gcd by (auto intro: gcd_greatest)
lemma some_gcd_ddvd_gcd: "some_gcd a b ddvd gcd a b" by (auto intro: gcd_dvd_some_gcd some_gcd_dvd_gcd)
lemma some_gcd_dvd: "some_gcd a b dvd d \<longleftrightarrow> gcd a b dvd d" "d dvd some_gcd a b \<longleftrightarrow> d dvd gcd a b"
using some_gcd_ddvd_gcd[of a b] by (auto dest:dvd_trans)
end
class idom_gcd = comm_monoid_gcd + idom
begin
interpretation raw: comm_monoid_cancel "mk_monoid :: 'a monoid"
by (unfold_locales, auto intro: mult_commute mult_assoc)
interpretation raw: gcd_condition_monoid "mk_monoid :: 'a monoid"
by (unfold_locales, auto simp: is_gcd_connect intro!: exI[of _ "gcd _ _"] dest: gcd_greatest)
lemma gcd_mult_ddvd:
"d * gcd a b ddvd gcd (d * a) (d * b)"
proof (cases "d = 0")
case True then show ?thesis by auto
next
case d0: False
show ?thesis
proof (cases "a = 0 \<or> b = 0")
case False
note some_gcd_ddvd_gcd[of a b]
with d0 have "d * gcd a b ddvd d * some_gcd a b" by auto
also have "d * some_gcd a b ddvd some_gcd (d * a) (d * b)"
using False d0 raw.gcd_mult by (simp add: some_gcd_connect)
also note some_gcd_ddvd_gcd
finally show ?thesis.
next
case True
with d0 show ?thesis
apply (elim disjE)
apply (rule ddvd_trans[of _ "d * b"]; force)
apply (rule ddvd_trans[of _ "d * a"]; force)
done
qed
qed
lemma gcd_greatest_mult: assumes cad: "c dvd a * d" and cbd: "c dvd b * d"
shows "c dvd gcd a b * d"
proof-
from gcd_greatest[OF assms] have c: "c dvd gcd (d * a) (d * b)" by (auto simp: ac_simps)
note gcd_mult_ddvd[of d a b]
then have "gcd (d * a) (d * b) dvd gcd a b * d" by (auto simp: ac_simps)
from dvd_trans[OF c this] show ?thesis .
qed
lemma listgcd_greatest_mult: "(\<And> x :: 'a. x \<in> set xs \<Longrightarrow> y dvd x * z) \<Longrightarrow> y dvd listgcd xs * z"
proof (induct xs)
case (Cons x xs)
from Cons have "y dvd x * z" "y dvd listgcd xs * z" by auto
thus ?case unfolding listgcd_simps by (rule gcd_greatest_mult)
qed (simp)
lemma dvd_factor_mult_gcd:
assumes dvd: "k dvd p * q" "k dvd p * r"
and q0: "q \<noteq> 0" and r0: "r \<noteq> 0"
shows "k dvd p * gcd q r"
proof -
from dvd gcd_greatest[of k "p * q" "p * r"]
have "k dvd gcd (p * q) (p * r)" by simp
also from gcd_mult_ddvd[of p q r]
have "... dvd (p * gcd q r)" by auto
finally show ?thesis .
qed
lemma coprime_mult_cross_dvd:
assumes coprime: "coprime p q" and eq: "p' * p = q' * q"
shows "p dvd q'" (is ?g1) and "q dvd p'" (is ?g2)
proof (atomize(full), cases "p = 0 \<or> q = 0")
case True
then show "?g1 \<and> ?g2"
proof
assume p0: "p = 0" with coprime have "q dvd 1" by auto
with eq p0 show ?thesis by auto
next
assume q0: "q = 0" with coprime have "p dvd 1" by auto
with eq q0 show ?thesis by auto
qed
next
case False
{
fix p q r p' q' :: 'a
assume cop: "coprime p q" and eq: "p' * p = q' * q" and p: "p \<noteq> 0" and q: "q \<noteq> 0"
and r: "r dvd p" "r dvd q"
let ?gcd = "gcd q p"
from eq have "p' * p dvd q' * q" by auto
hence d1: "p dvd q' * q" by (rule dvd_mult_right)
have d2: "p dvd q' * p" by auto
from dvd_factor_mult_gcd[OF d1 d2 q p] have 1: "p dvd q' * ?gcd" .
from q p have 2: "?gcd dvd q" by auto
from q p have 3: "?gcd dvd p" by auto
from cop[unfolded coprime_def', rule_format, OF 3 2] have "?gcd dvd 1" .
from 1 dvd_mult_unit_iff[OF this] have "p dvd q'" by auto
} note main = this
from main[OF coprime eq,of 1] False coprime coprime_commute main[OF _ eq[symmetric], of 1]
show "?g1 \<and> ?g2" by auto
qed
end
subclass (in ring_gcd) idom_gcd by (unfold_locales, auto)
lemma coprime_rewrites: "comm_monoid_mult.coprime ((*)) 1 = coprime"
apply (intro ext)
apply (subst comm_monoid_mult.coprime_def')
apply (unfold_locales)
apply (unfold dvd_rewrites)
apply (fold coprime_def') ..
(* TODO: incorporate into the default class hierarchy *)
locale gcd_condition =
fixes ty :: "'a :: idom itself"
assumes gcd_exists: "\<And>a b :: 'a. \<exists>x. is_gcd x a b"
begin
sublocale idom_gcd "(*)" "1 :: 'a" "(+)" 0 "(-)" uminus some_gcd
rewrites "dvd.dvd ((*)) = (dvd)"
and "comm_monoid_mult.coprime ((*) ) 1 = Unique_Factorization.coprime"
proof-
have "is_gcd (some_gcd a b) a b" for a b :: 'a by (intro is_gcd_some_gcdI gcd_exists)
from this[unfolded is_gcd_def]
show "class.idom_gcd (*) (1 :: 'a) (+) 0 (-) uminus some_gcd" by (unfold_locales, auto simp: dvd_rewrites)
qed (simp_all add: dvd_rewrites coprime_rewrites)
end
instance semiring_gcd \<subseteq> comm_monoid_gcd by (intro_classes, auto)
lemma listgcd_connect: "listgcd = gcd_list"
proof (intro ext)
fix xs :: "'a list"
show "listgcd xs = gcd_list xs" by(induct xs, auto)
qed
interpretation some_gcd: gcd_condition "TYPE('a::ufd)"
proof(unfold_locales, intro exI)
interpret factorial_monoid "mk_monoid :: 'a monoid" by (fact factorial_monoid)
note d = dvd.dvd_def some_gcd_def carrier_0
fix a b :: 'a
show "is_gcd (some_gcd a b) a b"
proof (cases "a = 0 \<or> b = 0")
case True
thus ?thesis using some_gcd_0 by auto
next
case False
with gcdof_exists[of a b]
show ?thesis by (auto intro!: is_gcd_some_gcdI simp add: is_gcd_connect some_gcd_connect)
qed
qed
lemma some_gcd_listgcd_dvd_listgcd: "some_gcd.listgcd xs dvd listgcd xs"
by (induct xs, auto simp:some_gcd_dvd intro:dvd_imp_gcd_dvd_gcd)
lemma listgcd_dvd_some_gcd_listgcd: "listgcd xs dvd some_gcd.listgcd xs"
by (induct xs, auto simp:some_gcd_dvd intro:dvd_imp_gcd_dvd_gcd)
context factorial_ring_gcd begin
text \<open>Do not declare the following as subclass, to avoid conflict in
\<open>field \<subseteq> gcd_condition\<close> vs. \<open>factorial_ring_gcd \<subseteq> gcd_condition\<close>.
\<close>
sublocale as_ufd: ufd
proof(unfold_locales, goal_cases)
case (1 x)
from prime_factorization_exists[OF \<open>x \<noteq> 0\<close>]
obtain F where f: "\<And>f. f \<in># F \<Longrightarrow> prime_elem f"
and Fx: "normalize (prod_mset F) = normalize x" by auto
from associatedE2[OF Fx] obtain u where u: "is_unit u" "x = u * prod_mset F"
by blast
from \<open>\<not> is_unit x\<close> Fx have "F \<noteq> {#}" by auto
then obtain g G where F: "F = add_mset g G" by (cases F, auto)
then have "g \<in># F" by auto
with f[OF this]prime_elem_iff_irreducible
irreducible_mult_unit_left[OF unit_factor_is_unit[OF \<open>x \<noteq> 0\<close>]]
have g: "irreducible (u * g)" using u(1)
by (subst irreducible_mult_unit_left) simp_all
show ?case
proof (intro exI conjI mset_factorsI)
show "prod_mset (add_mset (u * g) G) = x"
using \<open>x \<noteq> 0\<close> by (simp add: F ac_simps u)
fix f assume "f \<in># add_mset (u * g) G"
with f[unfolded F] g prime_elem_iff_irreducible
show "irreducible f" by auto
qed auto
next
case (2 x F G)
note transpD[OF multiset.rel_transp[OF ddvd_transp],trans]
obtain fs where F: "F = mset fs" by (metis ex_mset)
have "list_all2 (ddvd) fs (map normalize fs)" by (intro list_all2_all_nthI, auto)
then have FH: "rel_mset (ddvd) F (image_mset normalize F)" by (unfold rel_mset_def F, force)
also
have FG: "image_mset normalize F = image_mset normalize G"
proof (intro prime_factorization_unique'')
from 2 have xF: "x = prod_mset F" and xG: "x = prod_mset G" by auto
from xF have "normalize x = normalize (prod_mset (image_mset normalize F))"
by (simp add: normalize_prod_mset_normalize)
with xG have nFG: "\<dots> = normalize (prod_mset (image_mset normalize G))"
by (simp_all add: normalize_prod_mset_normalize)
then show "normalize (\<Prod>i\<in>#image_mset normalize F. i) =
normalize (\<Prod>i\<in>#image_mset normalize G. i)" by auto
next
from 2 prime_elem_iff_irreducible have "f \<in># F \<Longrightarrow> prime_elem f" "g \<in># G \<Longrightarrow> prime_elem g" for f g
by (auto intro: prime_elemI)
then show " Multiset.Ball (image_mset normalize F) prime"
"Multiset.Ball (image_mset normalize G) prime" by auto
qed
also
obtain gs where G: "G = mset gs" by (metis ex_mset)
have "list_all2 ((ddvd)\<inverse>\<inverse>) gs (map normalize gs)" by (intro list_all2_all_nthI, auto)
then have "rel_mset (ddvd) (image_mset normalize G) G"
by (subst multiset.rel_flip[symmetric], unfold rel_mset_def G, force)
finally show ?case.
qed
end
instance int :: ufd by (intro class.ufd.of_class.intro as_ufd.ufd_axioms)
instance int :: idom_gcd by (intro_classes, auto)
instance field \<subseteq> ufd by (intro_classes, auto simp: dvd_field_iff)
end
|