Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 225,515 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 |
(* Title: InternalAdjunction
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2019
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu>
*)
section "Adjunctions in a Bicategory"
theory InternalAdjunction
imports CanonicalIsos Strictness
begin
text \<open>
An \emph{internal adjunction} in a bicategory is a four-tuple \<open>(f, g, \<eta>, \<epsilon>)\<close>,
where \<open>f\<close> and \<open>g\<close> are antiparallel 1-cells and \<open>\<guillemotleft>\<eta> : src f \<Rightarrow> g \<star> f\<guillemotright>\<close> and
\<open>\<guillemotleft>\<epsilon> : f \<star> g \<Rightarrow> src g\<guillemotright>\<close> are 2-cells, such that the familiar ``triangle''
(or ``zig-zag'') identities are satisfied. We state the triangle identities
in two equivalent forms, each of which is convenient in certain situations.
\<close>
locale adjunction_in_bicategory =
adjunction_data_in_bicategory +
assumes triangle_left: "(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]"
and triangle_right: "(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]"
begin
lemma triangle_left':
shows "\<l>[f] \<cdot> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[f] = f"
using triangle_left triangle_equiv_form by simp
lemma triangle_right':
shows "\<r>[g] \<cdot> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g] = g"
using triangle_right triangle_equiv_form by simp
end
text \<open>
Internal adjunctions have a number of properties, which we now develop,
that generalize those of ordinary adjunctions involving functors and
natural transformations.
\<close>
context bicategory
begin
lemma adjunction_unit_determines_counit:
assumes "adjunction_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg f g \<eta> \<epsilon>"
and "adjunction_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg f g \<eta> \<epsilon>'"
shows "\<epsilon> = \<epsilon>'"
proof -
interpret E: adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using assms(1) by auto
interpret E': adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>'
using assms(2) by auto
text \<open>
Note that since we want to prove the the result for an arbitrary bicategory,
not just in for a strict bicategory, the calculation is a little more involved
than one might expect from a treatment that suppresses canonical isomorphisms.
\<close>
have "\<epsilon> = \<epsilon> \<cdot> (f \<star> \<r>[g] \<cdot> (g \<star> \<epsilon>') \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> \<l>\<^sup>-\<^sup>1[g])"
using E'.triangle_right' comp_arr_dom by simp
also have "... = \<epsilon> \<cdot> (f \<star> \<r>[g]) \<cdot> (f \<star> g \<star> \<epsilon>') \<cdot> (f \<star> \<a>[g, f, g]) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
using E.antipar whisker_left by simp
also have "... = \<epsilon> \<cdot> ((f \<star> \<r>[g]) \<cdot> (f \<star> g \<star> \<epsilon>')) \<cdot> (f \<star> \<a>[g, f, g]) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
using comp_assoc by simp
also have "... = \<epsilon> \<cdot> \<r>[f \<star> g] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, src g] \<cdot> (f \<star> g \<star> \<epsilon>')) \<cdot>
(f \<star> \<a>[g, f, g]) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
proof -
have "f \<star> \<r>[g] = \<r>[f \<star> g] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, src g]"
using E.antipar(1) runit_hcomp(3) by auto
thus ?thesis
using comp_assoc by simp
qed
also have "... = (\<epsilon> \<cdot> \<r>[f \<star> g]) \<cdot> ((f \<star> g) \<star> \<epsilon>') \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> g] \<cdot>
(f \<star> \<a>[g, f, g]) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
using E.antipar E'.counit_in_hom assoc'_naturality [of f g \<epsilon>'] comp_assoc by simp
also have "... = \<r>[trg f] \<cdot> ((\<epsilon> \<star> trg f) \<cdot> ((f \<star> g) \<star> \<epsilon>')) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> g] \<cdot>
(f \<star> \<a>[g, f, g]) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
using E.antipar E.counit_in_hom runit_naturality [of \<epsilon>] comp_assoc by simp
also have "... = (\<l>[src g] \<cdot> (src g \<star> \<epsilon>')) \<cdot> (\<epsilon> \<star> f \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> g] \<cdot>
(f \<star> \<a>[g, f, g]) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
proof -
have "(\<epsilon> \<star> trg f) \<cdot> ((f \<star> g) \<star> \<epsilon>') = (src g \<star> \<epsilon>') \<cdot> (\<epsilon> \<star> f \<star> g)"
using E.antipar interchange E.counit_in_hom comp_arr_dom comp_cod_arr
by (metis E'.counit_simps(1-3) E.counit_simps(1-3))
thus ?thesis
using E.antipar comp_assoc unitor_coincidence by simp
qed
also have "... = \<epsilon>' \<cdot> \<l>[f \<star> g] \<cdot> (\<epsilon> \<star> f \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> g] \<cdot>
(f \<star> \<a>[g, f, g]) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
proof -
have "\<l>[src g] \<cdot> (src g \<star> \<epsilon>') = \<epsilon>' \<cdot> \<l>[f \<star> g]"
using E.antipar lunit_naturality [of \<epsilon>'] by simp
thus ?thesis
using comp_assoc by simp
qed
also have "... = \<epsilon>' \<cdot> (\<l>[f] \<star> g) \<cdot> (\<a>\<^sup>-\<^sup>1[trg f, f, g] \<cdot> (\<epsilon> \<star> f \<star> g)) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> g] \<cdot>
(f \<star> \<a>[g, f, g]) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
using E.antipar lunit_hcomp comp_assoc by simp
also have "... = \<epsilon>' \<cdot> (\<l>[f] \<star> g) \<cdot> ((\<epsilon> \<star> f) \<star> g) \<cdot> (\<a>\<^sup>-\<^sup>1[f \<star> g, f, g] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> g] \<cdot>
(f \<star> \<a>[g, f, g])) \<cdot> (f \<star> \<eta> \<star> g) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
using E.antipar assoc'_naturality [of \<epsilon> f g] comp_assoc by simp
also have "... = \<epsilon>' \<cdot> (\<l>[f] \<star> g) \<cdot> ((\<epsilon> \<star> f) \<star> g) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<star> g) \<cdot>
(\<a>\<^sup>-\<^sup>1[f, g \<star> f, g] \<cdot> (f \<star> \<eta> \<star> g)) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
proof -
have "\<a>\<^sup>-\<^sup>1[f \<star> g, f, g] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> g] \<cdot> (f \<star> \<a>[g, f, g]) =
(\<a>\<^sup>-\<^sup>1[f, g, f] \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> f, g]"
using E.antipar iso_assoc' pentagon' comp_assoc
invert_side_of_triangle(2)
[of "\<a>\<^sup>-\<^sup>1[f \<star> g, f, g] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> g]"
"(\<a>\<^sup>-\<^sup>1[f, g, f] \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> f, g]" "f \<star> \<a>\<^sup>-\<^sup>1[g, f, g]"]
by simp
thus ?thesis
using comp_assoc by simp
qed
also have "... = \<epsilon>' \<cdot> (\<l>[f] \<star> g) \<cdot> ((\<epsilon> \<star> f) \<star> g) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<star> g) \<cdot>
((f \<star> \<eta>) \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[f, trg g, g] \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
using E.antipar assoc'_naturality [of f \<eta> g] comp_assoc by simp
also have "... = \<epsilon>' \<cdot> (\<l>[f] \<star> g) \<cdot> ((\<epsilon> \<star> f) \<star> g) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<star> g) \<cdot>
((f \<star> \<eta>) \<star> g) \<cdot> (\<r>\<^sup>-\<^sup>1[f] \<star> g)"
proof -
have "\<a>\<^sup>-\<^sup>1[f, trg g, g] \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g]) = \<r>\<^sup>-\<^sup>1[f] \<star> g"
proof -
have "\<r>\<^sup>-\<^sup>1[f] \<star> g = inv (\<r>[f] \<star> g)"
using E.antipar by simp
also have "... = inv ((f \<star> \<l>[g]) \<cdot> \<a>[f, trg g, g])"
using E.antipar by (simp add: triangle)
also have "... = \<a>\<^sup>-\<^sup>1[f, trg g, g] \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[g])"
using E.antipar inv_comp by simp
finally show ?thesis by simp
qed
thus ?thesis by simp
qed
also have "... = \<epsilon>' \<cdot> (\<l>[f] \<cdot> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[f] \<star> g)"
using E.antipar whisker_right by simp
also have "... = \<epsilon>'"
using E.triangle_left' comp_arr_dom by simp
finally show ?thesis by simp
qed
end
subsection "Adjoint Transpose"
context adjunction_in_bicategory
begin
interpretation E: self_evaluation_map V H \<a> \<i> src trg ..
notation E.eval ("\<lbrace>_\<rbrace>")
text \<open>
Just as for an ordinary adjunction between categories, an adjunction in a bicategory
determines bijections between hom-sets. There are two versions of this relationship:
depending on whether the transposition is occurring on the left (\emph{i.e.}~``output'')
side or the right (\emph{i.e.}~``input'') side.
\<close>
definition trnl\<^sub>\<eta>
where "trnl\<^sub>\<eta> v \<mu> \<equiv> (g \<star> \<mu>) \<cdot> \<a>[g, f, v] \<cdot> (\<eta> \<star> v) \<cdot> \<l>\<^sup>-\<^sup>1[v]"
definition trnl\<^sub>\<epsilon>
where "trnl\<^sub>\<epsilon> u \<nu> \<equiv> \<l>[u] \<cdot> (\<epsilon> \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, u] \<cdot> (f \<star> \<nu>)"
lemma adjoint_transpose_left:
assumes "ide u" and "ide v" and "src f = trg v" and "src g = trg u"
shows "trnl\<^sub>\<eta> v \<in> hom (f \<star> v) u \<rightarrow> hom v (g \<star> u)"
and "trnl\<^sub>\<epsilon> u \<in> hom v (g \<star> u) \<rightarrow> hom (f \<star> v) u"
and "\<guillemotleft>\<mu> : f \<star> v \<Rightarrow> u\<guillemotright> \<Longrightarrow> trnl\<^sub>\<epsilon> u (trnl\<^sub>\<eta> v \<mu>) = \<mu>"
and "\<guillemotleft>\<nu> : v \<Rightarrow> g \<star> u\<guillemotright> \<Longrightarrow> trnl\<^sub>\<eta> v (trnl\<^sub>\<epsilon> u \<nu>) = \<nu>"
and "bij_betw (trnl\<^sub>\<eta> v) (hom (f \<star> v) u) (hom v (g \<star> u))"
and "bij_betw (trnl\<^sub>\<epsilon> u) (hom v (g \<star> u)) (hom (f \<star> v) u)"
proof -
show A: "trnl\<^sub>\<eta> v \<in> hom (f \<star> v) u \<rightarrow> hom v (g \<star> u)"
using assms antipar trnl\<^sub>\<eta>_def by fastforce
show B: "trnl\<^sub>\<epsilon> u \<in> hom v (g \<star> u) \<rightarrow> hom (f \<star> v) u"
using assms antipar trnl\<^sub>\<epsilon>_def by fastforce
show C: "\<And>\<mu>. \<guillemotleft>\<mu> : f \<star> v \<Rightarrow> u\<guillemotright> \<Longrightarrow> trnl\<^sub>\<epsilon> u (trnl\<^sub>\<eta> v \<mu>) = \<mu>"
proof -
fix \<mu>
assume \<mu>: "\<guillemotleft>\<mu> : f \<star> v \<Rightarrow> u\<guillemotright>"
have "trnl\<^sub>\<epsilon> u (trnl\<^sub>\<eta> v \<mu>) =
\<l>[u] \<cdot> (\<epsilon> \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, u] \<cdot> (f \<star> (g \<star> \<mu>) \<cdot> \<a>[g, f, v] \<cdot> (\<eta> \<star> v) \<cdot> \<l>\<^sup>-\<^sup>1[v])"
using trnl\<^sub>\<eta>_def trnl\<^sub>\<epsilon>_def by simp
also have "... = \<l>[u] \<cdot> (\<epsilon> \<star> u) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, u] \<cdot> (f \<star> g \<star> \<mu>)) \<cdot> (f \<star> \<a>[g, f, v]) \<cdot>
(f \<star> \<eta> \<star> v) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[v])"
using assms \<mu> antipar whisker_left comp_assoc by auto
also have "... = \<l>[u] \<cdot> ((\<epsilon> \<star> u) \<cdot> ((f \<star> g) \<star> \<mu>)) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> v] \<cdot> (f \<star> \<a>[g, f, v]) \<cdot>
(f \<star> \<eta> \<star> v) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[v])"
using assms \<mu> antipar assoc'_naturality [of f g \<mu>] comp_assoc by fastforce
also have "... = \<l>[u] \<cdot> (trg u \<star> \<mu>) \<cdot>
(\<epsilon> \<star> f \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> v] \<cdot> (f \<star> \<a>[g, f, v]) \<cdot>
(f \<star> \<eta> \<star> v) \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[v])"
proof -
have "(\<epsilon> \<star> u) \<cdot> ((f \<star> g) \<star> \<mu>) = (trg u \<star> \<mu>) \<cdot> (\<epsilon> \<star> f \<star> v)"
using assms \<mu> antipar comp_cod_arr comp_arr_dom
interchange [of "trg u" \<epsilon> \<mu> "f \<star> v"] interchange [of \<epsilon> "f \<star> g" u \<mu>]
by auto
thus ?thesis
using comp_assoc by simp
qed
also have "... = \<l>[u] \<cdot> (trg u \<star> \<mu>) \<cdot> \<a>[trg f, f, v] \<cdot>
((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<star> v) \<cdot>
\<a>\<^sup>-\<^sup>1[f, trg v, v] \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[v])"
proof -
have 1: "(\<epsilon> \<star> f \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> v] \<cdot> (f \<star> \<a>[g, f, v]) \<cdot> (f \<star> \<eta> \<star> v) =
\<a>[trg f, f, v] \<cdot> ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, trg v, v]"
proof -
have "(\<epsilon> \<star> f \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> v] \<cdot> (f \<star> \<a>[g, f, v]) \<cdot> (f \<star> \<eta> \<star> v) =
(\<epsilon> \<star> f \<star> v) \<cdot>
\<a>[f \<star> g, f, v] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> f, v] \<cdot>
(f \<star> \<eta> \<star> v)"
proof -
have "(\<epsilon> \<star> f \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f \<star> v] \<cdot> (f \<star> \<a>[g, f, v]) \<cdot> (f \<star> \<eta> \<star> v) =
(\<epsilon> \<star> f \<star> v) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f \<star> v] \<cdot> (f \<star> \<a>[g, f, v])) \<cdot> (f \<star> \<eta> \<star> v)"
using comp_assoc by simp
also have "... = (\<epsilon> \<star> f \<star> v) \<cdot>
\<a>[f \<star> g, f, v] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> f, v] \<cdot>
(f \<star> \<eta> \<star> v)"
proof -
have "\<a>\<^sup>-\<^sup>1[f, g, f \<star> v] \<cdot> (f \<star> \<a>[g, f, v]) =
\<a>[f \<star> g, f, v] \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> f, v]"
using assms antipar canI_associator_0 whisker_can_left_0 whisker_can_right_0
canI_associator_hcomp(1-3)
by simp
thus ?thesis
using comp_assoc by simp
qed
finally show ?thesis by blast
qed
also have "... = ((\<epsilon> \<star> f \<star> v) \<cdot> \<a>[f \<star> g, f, v]) \<cdot>
(\<a>\<^sup>-\<^sup>1[f, g, f] \<star> v) \<cdot> ((f \<star> \<eta>) \<star> v) \<cdot>
\<a>\<^sup>-\<^sup>1[f, trg v, v]"
using assms \<mu> antipar assoc'_naturality [of f \<eta> v] comp_assoc by simp
also have "... = (\<a>[trg f, f, v] \<cdot> ((\<epsilon> \<star> f) \<star> v)) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<star> v) \<cdot> ((f \<star> \<eta>) \<star> v) \<cdot>
\<a>\<^sup>-\<^sup>1[f, trg v, v]"
using assms \<mu> antipar assoc_naturality [of \<epsilon> f v] by simp
also have "... = \<a>[trg f, f, v] \<cdot>
(((\<epsilon> \<star> f) \<star> v) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<star> v) \<cdot> ((f \<star> \<eta>) \<star> v)) \<cdot>
\<a>\<^sup>-\<^sup>1[f, trg v, v]"
using comp_assoc by simp
also have "... = \<a>[trg f, f, v] \<cdot> ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, trg v, v]"
using assms \<mu> antipar whisker_right by simp
finally show ?thesis by simp
qed
show ?thesis
using 1 comp_assoc by metis
qed
also have "... = \<l>[u] \<cdot> (trg u \<star> \<mu>) \<cdot>
\<a>[trg f, f, v] \<cdot> (\<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f] \<star> v) \<cdot> \<a>\<^sup>-\<^sup>1[f, trg v, v] \<cdot> (f \<star> \<l>\<^sup>-\<^sup>1[v])"
using assms \<mu> antipar triangle_left by simp
also have "... = \<l>[u] \<cdot> (trg u \<star> \<mu>) \<cdot> can (\<^bold>\<langle>trg u\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>v\<^bold>\<rangle>) (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>v\<^bold>\<rangle>)"
using assms \<mu> antipar canI_unitor_0 canI_associator_1
canI_associator_1(1-2) [of f v] whisker_can_right_0 whisker_can_left_0
by simp
also have "... = \<l>[u] \<cdot> (trg u \<star> \<mu>) \<cdot> \<l>\<^sup>-\<^sup>1[f \<star> v]"
unfolding can_def using assms antipar comp_arr_dom comp_cod_arr \<ll>_ide_simp
by simp
also have "... = (\<l>[u] \<cdot> \<l>\<^sup>-\<^sup>1[u]) \<cdot> \<mu>"
using assms \<mu> lunit'_naturality [of \<mu>] comp_assoc by auto
also have "... = \<mu>"
using assms \<mu> comp_cod_arr iso_lunit comp_arr_inv inv_is_inverse by auto
finally show "trnl\<^sub>\<epsilon> u (trnl\<^sub>\<eta> v \<mu>) = \<mu>" by simp
qed
show D: "\<And>\<nu>. \<guillemotleft>\<nu> : v \<Rightarrow> g \<star> u\<guillemotright> \<Longrightarrow> trnl\<^sub>\<eta> v (trnl\<^sub>\<epsilon> u \<nu>) = \<nu>"
proof -
fix \<nu>
assume \<nu>: "\<guillemotleft>\<nu> : v \<Rightarrow> g \<star> u\<guillemotright>"
have "trnl\<^sub>\<eta> v (trnl\<^sub>\<epsilon> u \<nu>) =
(g \<star> \<l>[u] \<cdot> (\<epsilon> \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, u] \<cdot> (f \<star> \<nu>)) \<cdot> \<a>[g, f, v] \<cdot> (\<eta> \<star> v) \<cdot> \<l>\<^sup>-\<^sup>1[v]"
using trnl\<^sub>\<eta>_def trnl\<^sub>\<epsilon>_def by simp
also have "... = (g \<star> \<l>[u]) \<cdot> (g \<star> \<epsilon> \<star> u) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> (g \<star> f \<star> \<nu>) \<cdot>
\<a>[g, f, v] \<cdot> (\<eta> \<star> v) \<cdot> \<l>\<^sup>-\<^sup>1[v]"
using assms \<nu> antipar interchange [of g "g \<cdot> g \<cdot> g"] comp_assoc by auto
also have "... = ((g \<star> \<l>[u]) \<cdot> (g \<star> \<epsilon> \<star> u) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot>
\<a>[g, f, g \<star> u] \<cdot> (\<eta> \<star> g \<star> u)) \<cdot> (trg v \<star> \<nu>) \<cdot> \<l>\<^sup>-\<^sup>1[v]"
proof -
have "(g \<star> f \<star> \<nu>) \<cdot> \<a>[g, f, v] \<cdot> (\<eta> \<star> v) \<cdot> \<l>\<^sup>-\<^sup>1[v] =
\<a>[g, f, g \<star> u] \<cdot> (\<eta> \<star> g \<star> u) \<cdot> (trg v \<star> \<nu>) \<cdot> \<l>\<^sup>-\<^sup>1[v]"
proof -
have "(g \<star> f \<star> \<nu>) \<cdot> \<a>[g, f, v] \<cdot> (\<eta> \<star> v) \<cdot> \<l>\<^sup>-\<^sup>1[v] =
\<a>[g, f, g \<star> u] \<cdot> ((g \<star> f) \<star> \<nu>) \<cdot> (\<eta> \<star> v) \<cdot> \<l>\<^sup>-\<^sup>1[v]"
proof -
have "(g \<star> f \<star> \<nu>) \<cdot> \<a>[g, f, v] = \<a>[g, f, g \<star> u] \<cdot> ((g \<star> f) \<star> \<nu>)"
using assms \<nu> antipar assoc_naturality [of g f \<nu>] by auto
thus ?thesis
using assms comp_assoc by metis
qed
also have "... = \<a>[g, f, g \<star> u] \<cdot> (\<eta> \<star> g \<star> u) \<cdot> (trg v \<star> \<nu>) \<cdot> \<l>\<^sup>-\<^sup>1[v]"
proof -
have "((g \<star> f) \<star> \<nu>) \<cdot> (\<eta> \<star> v) = (\<eta> \<star> g \<star> u) \<cdot> (trg v \<star> \<nu>)"
using assms \<nu> antipar comp_arr_dom comp_cod_arr
interchange [of "g \<star> f" \<eta> \<nu> v] interchange [of \<eta> "trg v" "g \<star> u" \<nu>]
by auto
thus ?thesis
using comp_assoc by metis
qed
finally show ?thesis by blast
qed
thus ?thesis using comp_assoc by simp
qed
also have "... = \<l>[g \<star> u] \<cdot> (trg v \<star> \<nu>) \<cdot> \<l>\<^sup>-\<^sup>1[v]"
proof -
have "(g \<star> \<l>[u]) \<cdot> (g \<star> \<epsilon> \<star> u) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> (\<eta> \<star> g \<star> u) =
\<l>[g \<star> u]"
proof -
have "(g \<star> \<l>[u]) \<cdot> (g \<star> \<epsilon> \<star> u) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> (\<eta> \<star> g \<star> u) =
(g \<star> \<l>[u]) \<cdot> \<a>[g, trg u, u] \<cdot>
((g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<star> u) \<cdot>
\<a>\<^sup>-\<^sup>1[trg v, g, u]"
proof -
have "(g \<star> \<l>[u]) \<cdot> (g \<star> \<epsilon> \<star> u) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> (\<eta> \<star> g \<star> u) =
(g \<star> \<l>[u]) \<cdot> (g \<star> \<epsilon> \<star> u) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot>
((\<eta> \<star> g \<star> u) \<cdot> \<a>[trg v, g, u]) \<cdot> \<a>\<^sup>-\<^sup>1[trg v, g, u]"
using assms antipar comp_arr_dom comp_assoc comp_assoc_assoc'(1) by simp
also have "... = (g \<star> \<l>[u]) \<cdot> (g \<star> \<epsilon> \<star> u) \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot>
(\<a>[g \<star> f, g, u] \<cdot> ((\<eta> \<star> g) \<star> u)) \<cdot> \<a>\<^sup>-\<^sup>1[trg v, g, u]"
using assms antipar assoc_naturality [of \<eta> g u] by simp
also have "... = (g \<star> \<l>[u]) \<cdot> (g \<star> \<epsilon> \<star> u) \<cdot>
((g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> \<a>[g \<star> f, g, u]) \<cdot>
((\<eta> \<star> g) \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[trg v, g, u]"
using comp_assoc by simp
also have "... = (g \<star> \<l>[u]) \<cdot> ((\<a>[g, trg u, u] \<cdot> \<a>\<^sup>-\<^sup>1[g, trg u, u]) \<cdot> (g \<star> \<epsilon> \<star> u)) \<cdot>
((g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> \<a>[g \<star> f, g, u]) \<cdot>
((\<eta> \<star> g) \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[trg v, g, u]"
proof -
have "(\<a>[g, trg u, u] \<cdot> \<a>\<^sup>-\<^sup>1[g, trg u, u]) \<cdot> (g \<star> \<epsilon> \<star> u) = g \<star> \<epsilon> \<star> u"
using assms antipar comp_cod_arr comp_assoc_assoc'(1) by simp
thus ?thesis
using comp_assoc by simp
qed
also have "... = (g \<star> \<l>[u]) \<cdot> \<a>[g, trg u, u] \<cdot> (\<a>\<^sup>-\<^sup>1[g, trg u, u] \<cdot> (g \<star> \<epsilon> \<star> u)) \<cdot>
(g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> \<a>[g \<star> f, g, u] \<cdot>
((\<eta> \<star> g) \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[trg v, g, u]"
using comp_assoc by simp
also have "... = (g \<star> \<l>[u]) \<cdot> \<a>[g, trg u, u] \<cdot> (((g \<star> \<epsilon>) \<star> u) \<cdot> (\<a>\<^sup>-\<^sup>1[g, f \<star> g, u] \<cdot>
(g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> \<a>[g \<star> f, g, u]) \<cdot>
((\<eta> \<star> g) \<star> u)) \<cdot> \<a>\<^sup>-\<^sup>1[trg v, g, u]"
using assms antipar assoc'_naturality [of g \<epsilon> u] comp_assoc by simp
also have "... = (g \<star> \<l>[u]) \<cdot> \<a>[g, trg u, u] \<cdot>
((g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<star> u) \<cdot>
\<a>\<^sup>-\<^sup>1[trg v, g, u]"
proof -
have "\<a>\<^sup>-\<^sup>1[g, f \<star> g, u] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> \<a>[g \<star> f, g, u] =
\<a>[g, f, g] \<star> u"
using assms antipar canI_associator_0 whisker_can_left_0 whisker_can_right_0
canI_associator_hcomp
by simp
hence "((g \<star> \<epsilon>) \<star> u) \<cdot>
(\<a>\<^sup>-\<^sup>1[g, f \<star> g, u] \<cdot> (g \<star> \<a>\<^sup>-\<^sup>1[f, g, u]) \<cdot> \<a>[g, f, g \<star> u] \<cdot> \<a>[g \<star> f, g, u]) \<cdot>
((\<eta> \<star> g) \<star> u) =
(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<star> u"
using assms antipar whisker_right by simp
thus ?thesis by simp
qed
finally show ?thesis by blast
qed
also have "... = (g \<star> \<l>[u]) \<cdot> \<a>[g, trg u, u] \<cdot> (\<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g] \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[trg g, g, u]"
using assms antipar triangle_right by simp
also have "... = can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>u\<^bold>\<rangle>) (\<^bold>\<langle>trg g\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>u\<^bold>\<rangle>)"
proof -
have "(g \<star> \<l>[u]) \<cdot> \<a>[g, trg u, u] \<cdot> (\<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g] \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[trg g, g, u] =
((g \<star> \<l>[u]) \<cdot> \<a>[g, trg u, u] \<cdot> (\<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g] \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[trg g, g, u])"
using comp_assoc by simp
moreover have "... = can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>u\<^bold>\<rangle>) (\<^bold>\<langle>trg g\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>u\<^bold>\<rangle>)"
using assms antipar canI_unitor_0 canI_associator_1 [of g u] inv_can
whisker_can_left_0 whisker_can_right_0
by simp
ultimately show ?thesis by simp
qed
also have "... = \<l>[g \<star> u]"
unfolding can_def using assms comp_arr_dom comp_cod_arr \<ll>_ide_simp by simp
finally show ?thesis by simp
qed
thus ?thesis by simp
qed
also have "... = (\<l>[g \<star> u] \<cdot> \<l>\<^sup>-\<^sup>1[g \<star> u]) \<cdot> \<nu>"
using assms \<nu> lunit'_naturality comp_assoc by auto
also have "... = \<nu>"
using assms \<nu> comp_cod_arr iso_lunit comp_arr_inv inv_is_inverse by auto
finally show "trnl\<^sub>\<eta> v (trnl\<^sub>\<epsilon> u \<nu>) = \<nu>" by simp
qed
show "bij_betw (trnl\<^sub>\<eta> v) (hom (f \<star> v) u) (hom v (g \<star> u))"
using A B C D by (intro bij_betwI) auto
show "bij_betw (trnl\<^sub>\<epsilon> u) (hom v (g \<star> u)) (hom (f \<star> v) u)"
using A B C D by (intro bij_betwI) auto
qed
lemma trnl\<^sub>\<epsilon>_comp:
assumes "ide u" and "seq \<mu> \<nu>" and "src f = trg \<mu>"
shows "trnl\<^sub>\<epsilon> u (\<mu> \<cdot> \<nu>) = trnl\<^sub>\<epsilon> u \<mu> \<cdot> (f \<star> \<nu>)"
using assms trnl\<^sub>\<epsilon>_def whisker_left [of f \<mu> \<nu>] comp_assoc by auto
definition trnr\<^sub>\<eta>
where "trnr\<^sub>\<eta> v \<mu> \<equiv> (\<mu> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[v, g, f] \<cdot> (v \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
definition trnr\<^sub>\<epsilon>
where "trnr\<^sub>\<epsilon> u \<nu> \<equiv> \<r>[u] \<cdot> (u \<star> \<epsilon>) \<cdot> \<a>[u, f, g] \<cdot> (\<nu> \<star> g)"
lemma adjoint_transpose_right:
assumes "ide u" and "ide v" and "src v = trg g" and "src u = trg f"
shows "trnr\<^sub>\<eta> v \<in> hom (v \<star> g) u \<rightarrow> hom v (u \<star> f)"
and "trnr\<^sub>\<epsilon> u \<in> hom v (u \<star> f) \<rightarrow> hom (v \<star> g) u"
and "\<guillemotleft>\<mu> : v \<star> g \<Rightarrow> u\<guillemotright> \<Longrightarrow> trnr\<^sub>\<epsilon> u (trnr\<^sub>\<eta> v \<mu>) = \<mu>"
and "\<guillemotleft>\<nu> : v \<Rightarrow> u \<star> f\<guillemotright> \<Longrightarrow> trnr\<^sub>\<eta> v (trnr\<^sub>\<epsilon> u \<nu>) = \<nu>"
and "bij_betw (trnr\<^sub>\<eta> v) (hom (v \<star> g) u) (hom v (u \<star> f))"
and "bij_betw (trnr\<^sub>\<epsilon> u) (hom v (u \<star> f)) (hom (v \<star> g) u)"
proof -
show A: "trnr\<^sub>\<eta> v \<in> hom (v \<star> g) u \<rightarrow> hom v (u \<star> f)"
using assms antipar trnr\<^sub>\<eta>_def by fastforce
show B: "trnr\<^sub>\<epsilon> u \<in> hom v (u \<star> f) \<rightarrow> hom (v \<star> g) u"
using assms antipar trnr\<^sub>\<epsilon>_def by fastforce
show C: "\<And>\<mu>. \<guillemotleft>\<mu> : v \<star> g \<Rightarrow> u\<guillemotright> \<Longrightarrow> trnr\<^sub>\<epsilon> u (trnr\<^sub>\<eta> v \<mu>) = \<mu>"
proof -
fix \<mu>
assume \<mu>: "\<guillemotleft>\<mu> : v \<star> g \<Rightarrow> u\<guillemotright>"
have "trnr\<^sub>\<epsilon> u (trnr\<^sub>\<eta> v \<mu>) =
\<r>[u] \<cdot> (u \<star> \<epsilon>) \<cdot> \<a>[u, f, g] \<cdot> ((\<mu> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[v, g, f] \<cdot> (v \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[v] \<star> g)"
unfolding trnr\<^sub>\<epsilon>_def trnr\<^sub>\<eta>_def by simp
also have "... = \<r>[u] \<cdot> (u \<star> \<epsilon>) \<cdot> (\<a>[u, f, g] \<cdot> ((\<mu> \<star> f) \<star> g)) \<cdot>
(\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g) \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g)"
using assms \<mu> antipar whisker_right comp_assoc by auto
also have "... = \<r>[u] \<cdot> (u \<star> \<epsilon>) \<cdot> ((\<mu> \<star> f \<star> g) \<cdot> \<a>[v \<star> g, f, g]) \<cdot>
(\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g) \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g)"
using assms \<mu> antipar assoc_naturality [of \<mu> f g] by auto
also have "... = \<r>[u] \<cdot> ((u \<star> \<epsilon>) \<cdot> (\<mu> \<star> f \<star> g)) \<cdot> \<a>[v \<star> g, f, g] \<cdot>
(\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g) \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g)"
using comp_assoc by auto
also have "... = \<r>[u] \<cdot> (\<mu> \<star> src u) \<cdot> ((v \<star> g) \<star> \<epsilon>) \<cdot> \<a>[v \<star> g, f, g] \<cdot>
(\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g) \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g)"
proof -
have "(u \<star> \<epsilon>) \<cdot> (\<mu> \<star> f \<star> g) = (\<mu> \<star> src u) \<cdot> ((v \<star> g) \<star> \<epsilon>)"
using assms \<mu> antipar comp_arr_dom comp_cod_arr
interchange [of \<mu> "v \<star> g" "src u" \<epsilon>] interchange [of u \<mu> \<epsilon> "f \<star> g"]
by auto
thus ?thesis
using comp_assoc by simp
qed
also have "... = \<r>[u] \<cdot> (\<mu> \<star> src u) \<cdot>
(((v \<star> g) \<star> \<epsilon>) \<cdot> \<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g)) \<cdot>
(\<r>\<^sup>-\<^sup>1[v] \<star> g)"
using comp_assoc by simp
also have "... = \<r>[u] \<cdot> (\<mu> \<star> src u) \<cdot>
(\<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> (v \<star> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g)) \<cdot>
\<a>[v, src v, g]) \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g)"
proof -
have "((v \<star> g) \<star> \<epsilon>) \<cdot> \<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g) =
\<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> (v \<star> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g)) \<cdot> \<a>[v, src v, g]"
proof -
have "((v \<star> g) \<star> \<epsilon>) \<cdot> \<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g) =
((\<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> \<a>[v, g, src u]) \<cdot> ((v \<star> g) \<star> \<epsilon>)) \<cdot>
\<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g)"
proof -
have "arr v \<and> dom v = v \<and> cod v = v"
using assms(2) ide_char by blast
moreover have "arr g \<and> dom g = g \<and> cod g = g"
using ide_right ide_char by blast
ultimately show ?thesis
by (metis (no_types) antipar(2) assms(3-4) assoc_naturality
counit_simps(1,3,5) hcomp_reassoc(1) comp_assoc)
qed
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> (\<a>[v, g, src u] \<cdot> ((v \<star> g) \<star> \<epsilon>)) \<cdot>
\<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> ((v \<star> \<eta>) \<star> g)"
using comp_assoc by simp
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> ((v \<star> g \<star> \<epsilon>) \<cdot> \<a>[v, g, f \<star> g]) \<cdot>
\<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot>
(\<a>\<^sup>-\<^sup>1[v, g \<star> f, g] \<cdot> \<a>[v, g \<star> f, g]) \<cdot> ((v \<star> \<eta>) \<star> g)"
proof -
have "\<a>[v, g, src u] \<cdot> ((v \<star> g) \<star> \<epsilon>) = (v \<star> g \<star> \<epsilon>) \<cdot> \<a>[v, g, f \<star> g]"
using assms antipar assoc_naturality [of v g \<epsilon>] by simp
moreover have "(\<a>\<^sup>-\<^sup>1[v, g \<star> f, g] \<cdot> \<a>[v, g \<star> f, g]) \<cdot> ((v \<star> \<eta>) \<star> g) = (v \<star> \<eta>) \<star> g"
using assms antipar comp_cod_arr comp_assoc_assoc'(2) by simp
ultimately show ?thesis by simp
qed
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> (v \<star> g \<star> \<epsilon>) \<cdot>
\<a>[v, g, f \<star> g] \<cdot> \<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot>
\<a>\<^sup>-\<^sup>1[v, g \<star> f, g] \<cdot> \<a>[v, g \<star> f, g] \<cdot> ((v \<star> \<eta>) \<star> g)"
using comp_assoc by simp
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> ((v \<star> g \<star> \<epsilon>) \<cdot>
(\<a>[v, g, f \<star> g] \<cdot> \<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot>
\<a>\<^sup>-\<^sup>1[v, g \<star> f, g]) \<cdot> (v \<star> \<eta> \<star> g)) \<cdot> \<a>[v, src v, g]"
using assms antipar assoc_naturality [of v \<eta> g] comp_assoc by simp
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot>
((v \<star> g \<star> \<epsilon>) \<cdot> (v \<star> \<a>[g, f, g]) \<cdot> (v \<star> \<eta> \<star> g)) \<cdot>
\<a>[v, src v, g]"
proof -
have "\<a>[v, g, f \<star> g] \<cdot> \<a>[v \<star> g, f, g] \<cdot> (\<a>\<^sup>-\<^sup>1[v, g, f] \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[v, g \<star> f, g] =
v \<star> \<a>[g, f, g]"
using assms antipar canI_associator_0 canI_associator_hcomp
whisker_can_left_0 whisker_can_right_0
by simp
thus ?thesis
using assms antipar whisker_left by simp
qed
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot>
(v \<star> (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g)) \<cdot>
\<a>[v, src v, g]"
using assms antipar whisker_left by simp
finally show ?thesis by simp
qed
thus ?thesis by auto
qed
also have "... = \<r>[u] \<cdot> (\<mu> \<star> src u) \<cdot>
\<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> (v \<star> \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]) \<cdot>
\<a>[v, src v, g] \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g)"
using triangle_right comp_assoc by simp
also have "... = \<r>[u] \<cdot> (\<mu> \<star> src u) \<cdot> \<r>\<^sup>-\<^sup>1[v \<star> g]"
proof -
have "\<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> (v \<star> \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]) \<cdot> \<a>[v, src v, g] \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g) = \<r>\<^sup>-\<^sup>1[v \<star> g]"
proof -
have "\<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> (v \<star> \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]) \<cdot> \<a>[v, src v, g] \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g) =
\<a>\<^sup>-\<^sup>1[v, g, trg f] \<cdot> can (\<^bold>\<langle>v\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0) (\<^bold>\<langle>v\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>)"
using assms canI_unitor_0 canI_associator_1(2-3) whisker_can_left_0(1)
whisker_can_right_0
by simp
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src g] \<cdot> can (\<^bold>\<langle>v\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0) (\<^bold>\<langle>v\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>)"
using antipar by simp
(* TODO: There should be an alternate version of whisker_can_left for this. *)
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src g] \<cdot> (v \<star> can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0) \<^bold>\<langle>g\<^bold>\<rangle>)"
using assms canI_unitor_0(2) whisker_can_left_0 by simp
also have "... = \<a>\<^sup>-\<^sup>1[v, g, src g] \<cdot> (v \<star> \<r>\<^sup>-\<^sup>1[g])"
using assms canI_unitor_0(2) by simp
also have "... = \<r>\<^sup>-\<^sup>1[v \<star> g]"
using assms runit_hcomp(2) by simp
finally have "\<a>\<^sup>-\<^sup>1[v, g, src u] \<cdot> (v \<star> \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]) \<cdot> \<a>[v, src v, g] \<cdot> (\<r>\<^sup>-\<^sup>1[v] \<star> g) =
\<r>\<^sup>-\<^sup>1[v \<star> g]"
by simp
thus ?thesis by simp
qed
thus ?thesis by simp
qed
also have "... = (\<r>[u] \<cdot> \<r>\<^sup>-\<^sup>1[u]) \<cdot> \<mu>"
using assms \<mu> runit'_naturality [of \<mu>] comp_assoc by auto
also have "... = \<mu>"
using \<mu> comp_cod_arr iso_runit inv_is_inverse comp_arr_inv by auto
finally show "trnr\<^sub>\<epsilon> u (trnr\<^sub>\<eta> v \<mu>) = \<mu>" by simp
qed
show D: "\<And>\<nu>. \<guillemotleft>\<nu> : v \<Rightarrow> u \<star> f\<guillemotright> \<Longrightarrow> trnr\<^sub>\<eta> v (trnr\<^sub>\<epsilon> u \<nu>) = \<nu>"
proof -
fix \<nu>
assume \<nu>: "\<guillemotleft>\<nu> : v \<Rightarrow> u \<star> f\<guillemotright>"
have "trnr\<^sub>\<eta> v (trnr\<^sub>\<epsilon> u \<nu>) =
(\<r>[u] \<cdot> (u \<star> \<epsilon>) \<cdot> \<a>[u, f, g] \<cdot> (\<nu> \<star> g) \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[v, g, f] \<cdot> (v \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
unfolding trnr\<^sub>\<eta>_def trnr\<^sub>\<epsilon>_def by simp
also have "... = (\<r>[u] \<star> f) \<cdot> ((u \<star> \<epsilon>) \<star> f) \<cdot> (\<a>[u, f, g] \<star> f) \<cdot>
(((\<nu> \<star> g) \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[v, g, f]) \<cdot> (v \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using assms \<nu> antipar whisker_right comp_assoc by auto
also have "... = (\<r>[u] \<star> f) \<cdot> ((u \<star> \<epsilon>) \<star> f) \<cdot> (\<a>[u, f, g] \<star> f) \<cdot>
(\<a>\<^sup>-\<^sup>1[u \<star> f, g, f] \<cdot> (\<nu> \<star> g \<star> f)) \<cdot> (v \<star> \<eta>) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using assms \<nu> antipar assoc'_naturality [of \<nu> g f] by auto
also have "... = (\<r>[u] \<star> f) \<cdot> ((u \<star> \<epsilon>) \<star> f) \<cdot> (\<a>[u, f, g] \<star> f) \<cdot>
\<a>\<^sup>-\<^sup>1[u \<star> f, g, f] \<cdot> ((\<nu> \<star> g \<star> f) \<cdot> (v \<star> \<eta>)) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using comp_assoc by simp
also have "... = (\<r>[u] \<star> f) \<cdot> ((u \<star> \<epsilon>) \<star> f) \<cdot> (\<a>[u, f, g] \<star> f) \<cdot>
\<a>\<^sup>-\<^sup>1[u \<star> f, g, f] \<cdot> (((u \<star> f) \<star> \<eta>) \<cdot> (\<nu> \<star> src v)) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
proof -
have "(\<nu> \<star> g \<star> f) \<cdot> (v \<star> \<eta>) = ((u \<star> f) \<star> \<eta>) \<cdot> (\<nu> \<star> src v)"
using assms \<nu> antipar interchange [of "u \<star> f" \<nu> \<eta> "src v"]
interchange [of \<nu> v "g \<star> f" \<eta>] comp_arr_dom comp_cod_arr
by auto
thus ?thesis by simp
qed
also have "... = ((\<r>[u] \<star> f) \<cdot> ((u \<star> \<epsilon>) \<star> f) \<cdot>
((\<a>[u, f, g] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[u \<star> f, g, f]) \<cdot>
((u \<star> f) \<star> \<eta>)) \<cdot> (\<nu> \<star> src v) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using comp_assoc by simp
also have "... = ((\<r>[u] \<star> f) \<cdot> ((u \<star> \<epsilon>) \<star> f) \<cdot>
(\<a>\<^sup>-\<^sup>1[u, f \<star> g, f] \<cdot> (u \<star> \<a>\<^sup>-\<^sup>1[f, g, f]) \<cdot> \<a>[u, f, g \<star> f]) \<cdot>
((u \<star> f) \<star> \<eta>)) \<cdot> (\<nu> \<star> src v) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using assms antipar canI_associator_hcomp canI_associator_0 whisker_can_left_0
whisker_can_right_0
by simp
also have "... = ((\<r>[u] \<star> f) \<cdot> (((u \<star> \<epsilon>) \<star> f) \<cdot>
\<a>\<^sup>-\<^sup>1[u, f \<star> g, f]) \<cdot> (u \<star> \<a>\<^sup>-\<^sup>1[f, g, f]) \<cdot> (\<a>[u, f, g \<star> f]) \<cdot>
((u \<star> f) \<star> \<eta>)) \<cdot> (\<nu> \<star> src v) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using comp_assoc by simp
also have "... = ((\<r>[u] \<star> f) \<cdot> (\<a>\<^sup>-\<^sup>1[u, src u, f] \<cdot> (u \<star> \<epsilon> \<star> f)) \<cdot>
(u \<star> \<a>\<^sup>-\<^sup>1[f, g, f]) \<cdot> ((u \<star> f \<star> \<eta>) \<cdot> \<a>[u, f, src f])) \<cdot>
(\<nu> \<star> src v) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using assms antipar assoc'_naturality [of u \<epsilon> f] assoc_naturality [of u f \<eta>]
by auto
also have "... = (\<r>[u] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[u, src u, f] \<cdot>
((u \<star> \<epsilon> \<star> f) \<cdot> (u \<star> \<a>\<^sup>-\<^sup>1[f, g, f]) \<cdot> (u \<star> f \<star> \<eta>)) \<cdot> \<a>[u, f, src f] \<cdot>
(\<nu> \<star> src v) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using comp_assoc by simp
also have "... = (\<r>[u] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[u, src u, f] \<cdot>
(u \<star> (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)) \<cdot> \<a>[u, f, src f] \<cdot>
(\<nu> \<star> src v) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using assms antipar whisker_left by auto
also have "... = ((\<r>[u] \<star> f) \<cdot> (\<a>\<^sup>-\<^sup>1[u, src u, f] \<cdot> (u \<star> \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]) \<cdot> \<a>[u, f, src f])) \<cdot>
(\<nu> \<star> src v) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
using assms antipar triangle_left comp_assoc by simp
also have "... = \<r>[u \<star> f] \<cdot> (\<nu> \<star> src v) \<cdot> \<r>\<^sup>-\<^sup>1[v]"
proof -
have "(\<r>[u] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[u, src u, f] \<cdot> (u \<star> \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]) \<cdot> \<a>[u, f, src f] =
((u \<star> \<l>[f]) \<cdot> (\<a>[u, src u, f] \<cdot> \<a>\<^sup>-\<^sup>1[u, src u, f])) \<cdot>
(u \<star> \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]) \<cdot> \<a>[u, f, src f]"
using assms ide_left ide_right antipar triangle comp_assoc by metis
also have "... = (u \<star> \<r>[f]) \<cdot> \<a>[u, f, src f]"
using assms antipar canI_associator_1 canI_unitor_0 whisker_can_left_0
whisker_can_right_0 canI_associator_1
by simp
also have "... = \<r>[u \<star> f]"
using assms antipar runit_hcomp by simp
finally show ?thesis by simp
qed
also have "... = (\<r>[u \<star> f] \<cdot> \<r>\<^sup>-\<^sup>1[u \<star> f]) \<cdot> \<nu>"
using assms \<nu> runit'_naturality [of \<nu>] comp_assoc by auto
also have "... = \<nu>"
using assms \<nu> comp_cod_arr comp_arr_inv inv_is_inverse iso_runit by auto
finally show "trnr\<^sub>\<eta> v (trnr\<^sub>\<epsilon> u \<nu>) = \<nu>" by auto
qed
show "bij_betw (trnr\<^sub>\<eta> v) (hom (v \<star> g) u) (hom v (u \<star> f))"
using A B C D by (intro bij_betwI, auto)
show "bij_betw (trnr\<^sub>\<epsilon> u) (hom v (u \<star> f)) (hom (v \<star> g) u)"
using A B C D by (intro bij_betwI, auto)
qed
lemma trnr\<^sub>\<eta>_comp:
assumes "ide v" and "seq \<mu> \<nu>" and "src \<mu> = trg f"
shows "trnr\<^sub>\<eta> v (\<mu> \<cdot> \<nu>) = (\<mu> \<star> f) \<cdot> trnr\<^sub>\<eta> v \<nu>"
using assms trnr\<^sub>\<eta>_def whisker_right comp_assoc by auto
end
text \<open>
It is useful to have at hand the simpler versions of the preceding results that
hold in a normal bicategory and in a strict bicategory.
\<close>
locale adjunction_in_normal_bicategory =
normal_bicategory +
adjunction_in_bicategory
begin
lemma triangle_left:
shows "(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = f"
using triangle_left strict_lunit strict_runit by simp
lemma triangle_right:
shows "(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = g"
using triangle_right strict_lunit strict_runit by simp
lemma trnr\<^sub>\<eta>_eq:
assumes "ide u" and "ide v"
and "src v = trg g" and "src u = trg f"
and "\<mu> \<in> hom (v \<star> g) u"
shows "trnr\<^sub>\<eta> v \<mu> = (\<mu> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[v, g, f] \<cdot> (v \<star> \<eta>)"
unfolding trnr\<^sub>\<eta>_def
using assms antipar strict_runit' comp_arr_ide [of "\<r>\<^sup>-\<^sup>1[v]" "v \<star> \<eta>"] hcomp_arr_obj
by auto
lemma trnr\<^sub>\<epsilon>_eq:
assumes "ide u" and "ide v"
and "src v = trg g" and "src u = trg f"
and "\<nu> \<in> hom v (u \<star> f)"
shows "trnr\<^sub>\<epsilon> u \<nu> = (u \<star> \<epsilon>) \<cdot> \<a>[u, f, g] \<cdot> (\<nu> \<star> g)"
unfolding trnr\<^sub>\<epsilon>_def
using assms antipar strict_runit comp_ide_arr hcomp_arr_obj by auto
lemma trnl\<^sub>\<eta>_eq:
assumes "ide u" and "ide v"
and "src f = trg v" and "src g = trg u"
and "\<mu> \<in> hom (f \<star> v) u"
shows "trnl\<^sub>\<eta> v \<mu> = (g \<star> \<mu>) \<cdot> \<a>[g, f, v] \<cdot> (\<eta> \<star> v)"
using assms trnl\<^sub>\<eta>_def antipar strict_lunit comp_arr_dom hcomp_obj_arr by auto
lemma trnl\<^sub>\<epsilon>_eq:
assumes "ide u" and "ide v"
and "src f = trg v" and "src g = trg u"
and "\<nu> \<in> hom v (g \<star> u)"
shows "trnl\<^sub>\<epsilon> u \<nu> = (\<epsilon> \<star> u) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, u] \<cdot> (f \<star> \<nu>)"
using assms trnl\<^sub>\<epsilon>_def antipar strict_lunit comp_cod_arr hcomp_obj_arr by auto
end
locale adjunction_in_strict_bicategory =
strict_bicategory +
adjunction_in_normal_bicategory
begin
lemma triangle_left:
shows "(\<epsilon> \<star> f) \<cdot> (f \<star> \<eta>) = f"
using ide_left ide_right antipar triangle_left strict_assoc' comp_cod_arr
by (metis dom_eqI ideD(1) seqE)
lemma triangle_right:
shows "(g \<star> \<epsilon>) \<cdot> (\<eta> \<star> g) = g"
using ide_left ide_right antipar triangle_right strict_assoc comp_cod_arr
by (metis ideD(1) ideD(2) seqE)
lemma trnr\<^sub>\<eta>_eq:
assumes "ide u" and "ide v"
and "src v = trg g" and "src u = trg f"
and "\<mu> \<in> hom (v \<star> g) u"
shows "trnr\<^sub>\<eta> v \<mu> = (\<mu> \<star> f) \<cdot> (v \<star> \<eta>)"
using assms antipar trnr\<^sub>\<eta>_eq strict_assoc' comp_ide_arr [of "\<a>\<^sup>-\<^sup>1[v, g, f]" "v \<star> \<eta>"]
by force
lemma trnr\<^sub>\<epsilon>_eq:
assumes "ide u" and "ide v"
and "src v = trg g" and "src u = trg f"
and "\<nu> \<in> hom v (u \<star> f)"
shows "trnr\<^sub>\<epsilon> u \<nu> = (u \<star> \<epsilon>) \<cdot> (\<nu> \<star> g)"
using assms antipar trnr\<^sub>\<epsilon>_eq strict_assoc comp_ide_arr [of "\<a>[u, f, g]" "\<nu> \<star> g"]
by force
lemma trnl\<^sub>\<eta>_eq:
assumes "ide u" and "ide v"
and "src f = trg v" and "src g = trg u"
and "\<mu> \<in> hom (f \<star> v) u"
shows "trnl\<^sub>\<eta> v \<mu> = (g \<star> \<mu>) \<cdot> (\<eta> \<star> v)"
using assms antipar trnl\<^sub>\<eta>_eq strict_assoc comp_ide_arr [of "\<a>[g, f, v]" "\<eta> \<star> v"]
by force
lemma trnl\<^sub>\<epsilon>_eq:
assumes "ide u" and "ide v"
and "src f = trg v" and "src g = trg u"
and "\<nu> \<in> hom v (g \<star> u)"
shows "trnl\<^sub>\<epsilon> u \<nu> = (\<epsilon> \<star> u) \<cdot> (f \<star> \<nu>)"
using assms antipar trnl\<^sub>\<epsilon>_eq strict_assoc' comp_ide_arr [of "\<a>\<^sup>-\<^sup>1[f, g, u]" "f \<star> \<nu>"]
by fastforce
end
subsection "Preservation Properties for Adjunctions"
text \<open>
Here we show that adjunctions are preserved under isomorphisms of the
left and right adjoints.
\<close>
context bicategory
begin
interpretation E: self_evaluation_map V H \<a> \<i> src trg ..
notation E.eval ("\<lbrace>_\<rbrace>")
definition adjoint_pair
where "adjoint_pair f g \<equiv> \<exists>\<eta> \<epsilon>. adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
(* These would normally be called "maps", but that name is too heavily used already. *)
abbreviation is_left_adjoint
where "is_left_adjoint f \<equiv> \<exists>g. adjoint_pair f g"
abbreviation is_right_adjoint
where "is_right_adjoint g \<equiv> \<exists>f. adjoint_pair f g"
lemma adjoint_pair_antipar:
assumes "adjoint_pair f g"
shows "ide f" and "ide g" and "src f = trg g" and "src g = trg f"
proof -
obtain \<eta> \<epsilon> where A: "adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms adjoint_pair_def by auto
interpret A: adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using A by auto
show "ide f" by simp
show "ide g" by simp
show "src f = trg g" using A.antipar by simp
show "src g = trg f" using A.antipar by simp
qed
lemma left_adjoint_is_ide:
assumes "is_left_adjoint f"
shows "ide f"
using assms adjoint_pair_antipar by auto
lemma right_adjoint_is_ide:
assumes "is_right_adjoint f"
shows "ide f"
using assms adjoint_pair_antipar by auto
lemma adjunction_preserved_by_iso_right:
assumes "adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
and "\<guillemotleft>\<phi> : g \<Rightarrow> g'\<guillemotright>" and "iso \<phi>"
shows "adjunction_in_bicategory V H \<a> \<i> src trg f g' ((\<phi> \<star> f) \<cdot> \<eta>) (\<epsilon> \<cdot> (f \<star> inv \<phi>))"
proof
interpret A: adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using assms by auto
show "ide f" by simp
show "ide g'"
using assms(2) isomorphic_def by auto
show "\<guillemotleft>(\<phi> \<star> f) \<cdot> \<eta> : src f \<Rightarrow> g' \<star> f\<guillemotright>"
using assms A.antipar by fastforce
show "\<guillemotleft>\<epsilon> \<cdot> (f \<star> inv \<phi>) : f \<star> g' \<Rightarrow> src g'\<guillemotright>"
using assms A.antipar A.counit_in_hom by auto
show "(\<epsilon> \<cdot> (f \<star> inv \<phi>) \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g', f] \<cdot> (f \<star> (\<phi> \<star> f) \<cdot> \<eta>) = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]"
proof -
have "(\<epsilon> \<cdot> (f \<star> inv \<phi>) \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g', f] \<cdot> (f \<star> (\<phi> \<star> f) \<cdot> \<eta>) =
(\<epsilon> \<star> f) \<cdot> (((f \<star> inv \<phi>) \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g', f]) \<cdot> (f \<star> \<phi> \<star> f) \<cdot> (f \<star> \<eta>)"
using assms A.antipar whisker_right whisker_left comp_assoc by auto
also have "... = (\<epsilon> \<star> f) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> inv \<phi> \<star> f)) \<cdot> (f \<star> \<phi> \<star> f) \<cdot> (f \<star> \<eta>)"
using assms A.antipar assoc'_naturality [of f "inv \<phi>" f] by auto
also have "... = (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> ((f \<star> inv \<phi> \<star> f) \<cdot> (f \<star> \<phi> \<star> f)) \<cdot> (f \<star> \<eta>)"
using comp_assoc by simp
also have "... = (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> g \<star> f) \<cdot> (f \<star> \<eta>)"
using assms A.antipar comp_inv_arr inv_is_inverse whisker_left
whisker_right [of f "inv \<phi>" \<phi>]
by auto
also have "... = (\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)"
using assms A.antipar comp_cod_arr by simp
also have "... = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]"
using A.triangle_left by simp
finally show ?thesis by simp
qed
show "(g' \<star> \<epsilon> \<cdot> (f \<star> inv \<phi>)) \<cdot> \<a>[g', f, g'] \<cdot> ((\<phi> \<star> f) \<cdot> \<eta> \<star> g') = \<r>\<^sup>-\<^sup>1[g'] \<cdot> \<l>[g']"
proof -
have "(g' \<star> \<epsilon> \<cdot> (f \<star> inv \<phi>)) \<cdot> \<a>[g', f, g'] \<cdot> ((\<phi> \<star> f) \<cdot> \<eta> \<star> g') =
(g' \<star> \<epsilon>) \<cdot> ((g' \<star> f \<star> inv \<phi>) \<cdot> \<a>[g', f, g']) \<cdot> ((\<phi> \<star> f) \<star> g') \<cdot> (\<eta> \<star> g')"
using assms A.antipar whisker_left whisker_right comp_assoc by auto
also have "... = (g' \<star> \<epsilon>) \<cdot> (\<a>[g', f, g] \<cdot> ((g' \<star> f) \<star> inv \<phi>)) \<cdot> ((\<phi> \<star> f) \<star> g') \<cdot> (\<eta> \<star> g')"
using assms A.antipar assoc_naturality [of g' f "inv \<phi>"] by auto
also have "... = (g' \<star> \<epsilon>) \<cdot> \<a>[g', f, g] \<cdot> (((g' \<star> f) \<star> inv \<phi>) \<cdot> ((\<phi> \<star> f) \<star> g')) \<cdot> (\<eta> \<star> g')"
using comp_assoc by simp
also have "... = (g' \<star> \<epsilon>) \<cdot> (\<a>[g', f, g] \<cdot> ((\<phi> \<star> f) \<star> g)) \<cdot> ((g \<star> f) \<star> inv \<phi>) \<cdot> (\<eta> \<star> g')"
proof -
have "((g' \<star> f) \<star> inv \<phi>) \<cdot> ((\<phi> \<star> f) \<star> g') = (\<phi> \<star> f) \<star> inv \<phi>"
using assms A.antipar comp_arr_dom comp_cod_arr
interchange [of "g' \<star> f" "\<phi> \<star> f" "inv \<phi>" g']
by auto
also have "... = ((\<phi> \<star> f) \<star> g) \<cdot> ((g \<star> f) \<star> inv \<phi>)"
using assms A.antipar comp_arr_dom comp_cod_arr
interchange [of "\<phi> \<star> f" "g \<star> f" g "inv \<phi>"]
by auto
finally show ?thesis
using comp_assoc by simp
qed
also have "... = ((g' \<star> \<epsilon>) \<cdot> (\<phi> \<star> f \<star> g)) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> (trg g \<star> inv \<phi>)"
proof -
have "\<a>[g', f, g] \<cdot> ((\<phi> \<star> f) \<star> g) = (\<phi> \<star> f \<star> g) \<cdot> \<a>[g, f, g]"
using assms A.antipar assoc_naturality [of \<phi> f g] by auto
moreover have "((g \<star> f) \<star> inv \<phi>) \<cdot> (\<eta> \<star> g') = (\<eta> \<star> g) \<cdot> (trg g \<star> inv \<phi>)"
using assms A.antipar comp_arr_dom comp_cod_arr
interchange [of "g \<star> f" \<eta> "inv \<phi>" g'] interchange [of \<eta> "trg g" g "inv \<phi>"]
by auto
ultimately show ?thesis
using comp_assoc by simp
qed
also have "... = ((\<phi> \<star> src g) \<cdot> (g \<star> \<epsilon>)) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) \<cdot> (trg g \<star> inv \<phi>)"
using assms A.antipar comp_arr_dom comp_cod_arr
interchange [of g' \<phi> \<epsilon> "f \<star> g"] interchange [of \<phi> g "src g" \<epsilon>]
by (metis A.counit_simps(1) A.counit_simps(2) A.counit_simps(3) in_homE)
also have "... = (\<phi> \<star> src g) \<cdot> ((g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g)) \<cdot> (trg g \<star> inv \<phi>)"
using comp_assoc by simp
also have "... = ((\<phi> \<star> src g) \<cdot> \<r>\<^sup>-\<^sup>1[g]) \<cdot> \<l>[g] \<cdot> (trg g \<star> inv \<phi>)"
using assms A.antipar A.triangle_right comp_cod_arr comp_assoc
by simp
also have "... = (\<r>\<^sup>-\<^sup>1[g'] \<cdot> \<phi>) \<cdot> inv \<phi> \<cdot> \<l>[g']"
using assms A.antipar runit'_naturality [of \<phi>] lunit_naturality [of "inv \<phi>"]
by auto
also have "... = \<r>\<^sup>-\<^sup>1[g'] \<cdot> (\<phi> \<cdot> inv \<phi>) \<cdot> \<l>[g']"
using comp_assoc by simp
also have "... = \<r>\<^sup>-\<^sup>1[g'] \<cdot> \<l>[g']"
using assms comp_cod_arr comp_arr_inv' by auto
finally show ?thesis by simp
qed
qed
lemma adjunction_preserved_by_iso_left:
assumes "adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
and "\<guillemotleft>\<phi> : f \<Rightarrow> f'\<guillemotright>" and "iso \<phi>"
shows "adjunction_in_bicategory V H \<a> \<i> src trg f' g ((g \<star> \<phi>) \<cdot> \<eta>) (\<epsilon> \<cdot> (inv \<phi> \<star> g))"
proof
interpret A: adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using assms by auto
show "ide g" by simp
show "ide f'"
using assms(2) isomorphic_def by auto
show "\<guillemotleft>(g \<star> \<phi>) \<cdot> \<eta> : src f' \<Rightarrow> g \<star> f'\<guillemotright>"
using assms A.antipar A.unit_in_hom by force
show "\<guillemotleft>\<epsilon> \<cdot> (inv \<phi> \<star> g) : f' \<star> g \<Rightarrow> src g\<guillemotright>"
using assms A.antipar by force
show "(g \<star> \<epsilon> \<cdot> (inv \<phi> \<star> g)) \<cdot> \<a>[g, f', g] \<cdot> ((g \<star> \<phi>) \<cdot> \<eta> \<star> g) = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]"
proof -
have "(g \<star> \<epsilon> \<cdot> (inv \<phi> \<star> g)) \<cdot> \<a>[g, f', g] \<cdot> ((g \<star> \<phi>) \<cdot> \<eta> \<star> g) =
(g \<star> \<epsilon>) \<cdot> ((g \<star> inv \<phi> \<star> g) \<cdot> \<a>[g, f', g]) \<cdot> ((g \<star> \<phi>) \<star> g) \<cdot> (\<eta> \<star> g)"
using assms A.antipar whisker_left whisker_right comp_assoc by auto
also have "... = (g \<star> \<epsilon>) \<cdot> (\<a>[g, f, g] \<cdot> ((g \<star> inv \<phi>) \<star> g)) \<cdot> ((g \<star> \<phi>) \<star> g) \<cdot> (\<eta> \<star> g)"
using assms A.antipar assoc_naturality [of g "inv \<phi>" g] by auto
also have "... = (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (((g \<star> inv \<phi>) \<star> g) \<cdot> ((g \<star> \<phi>) \<star> g)) \<cdot> (\<eta> \<star> g)"
using comp_assoc by simp
also have "... = (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> ((g \<star> f) \<star> g) \<cdot> (\<eta> \<star> g)"
using assms A.antipar comp_inv_arr inv_is_inverse whisker_right
whisker_left [of g "inv \<phi>" \<phi>]
by auto
also have "... = (g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g)"
using assms A.antipar comp_cod_arr by simp
also have "... = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]"
using A.triangle_right by simp
finally show ?thesis by simp
qed
show "(\<epsilon> \<cdot> (inv \<phi> \<star> g) \<star> f') \<cdot> \<a>\<^sup>-\<^sup>1[f', g, f'] \<cdot> (f' \<star> (g \<star> \<phi>) \<cdot> \<eta>) = \<l>\<^sup>-\<^sup>1[f'] \<cdot> \<r>[f']"
proof -
have "(\<epsilon> \<cdot> (inv \<phi> \<star> g) \<star> f') \<cdot> \<a>\<^sup>-\<^sup>1[f', g, f'] \<cdot> (f' \<star> (g \<star> \<phi>) \<cdot> \<eta>) =
(\<epsilon> \<star> f') \<cdot> (((inv \<phi> \<star> g) \<star> f') \<cdot> \<a>\<^sup>-\<^sup>1[f', g, f']) \<cdot> (f' \<star> g \<star> \<phi>) \<cdot> (f' \<star> \<eta>)"
using assms A.antipar whisker_right whisker_left comp_assoc
by auto
also have "... = (\<epsilon> \<star> f') \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f'] \<cdot> (inv \<phi> \<star> g \<star> f')) \<cdot> (f' \<star> g \<star> \<phi>) \<cdot> (f' \<star> \<eta>)"
using assms A.antipar assoc'_naturality [of "inv \<phi>" g f'] by auto
also have "... = (\<epsilon> \<star> f') \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f'] \<cdot> ((inv \<phi> \<star> g \<star> f') \<cdot> (f' \<star> g \<star> \<phi>)) \<cdot> (f' \<star> \<eta>)"
using comp_assoc by simp
also have "... = (\<epsilon> \<star> f') \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, f'] \<cdot> (f \<star> g \<star> \<phi>)) \<cdot> (inv \<phi> \<star> g \<star> f) \<cdot> (f' \<star> \<eta>)"
proof -
have "(inv \<phi> \<star> g \<star> f') \<cdot> (f' \<star> g \<star> \<phi>) = (f \<star> g \<star> \<phi>) \<cdot> (inv \<phi> \<star> g \<star> f)"
using assms(2-3) A.antipar comp_arr_dom comp_cod_arr
interchange [of "inv \<phi>" f' "g \<star> f'" "g \<star> \<phi>"]
interchange [of f "inv \<phi>" "g \<star> \<phi>" "g \<star> f"]
by auto
thus ?thesis
using comp_assoc by simp
qed
also have "... = ((\<epsilon> \<star> f') \<cdot> ((f \<star> g) \<star> \<phi>)) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> (inv \<phi> \<star> src f)"
proof -
have "\<a>\<^sup>-\<^sup>1[f, g, f'] \<cdot> (f \<star> g \<star> \<phi>) = ((f \<star> g) \<star> \<phi>) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f]"
using assms A.antipar assoc'_naturality [of f g \<phi>] by auto
moreover have "(inv \<phi> \<star> g \<star> f) \<cdot> (f' \<star> \<eta>) = (f \<star> \<eta>) \<cdot> (inv \<phi> \<star> src f)"
using assms A.antipar comp_arr_dom comp_cod_arr
interchange [of "inv \<phi>" f' "g \<star> f" \<eta>] interchange [of f "inv \<phi>" \<eta> "src f"]
by auto
ultimately show ?thesis
using comp_assoc by simp
qed
also have "... = ((trg f \<star> \<phi>) \<cdot> (\<epsilon> \<star> f)) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) \<cdot> (inv \<phi> \<star> src f)"
using assms A.antipar comp_arr_dom comp_cod_arr
interchange [of \<epsilon> "f \<star> g" f' \<phi>] interchange [of "trg f" \<epsilon> \<phi> f]
by (metis A.counit_simps(1) A.counit_simps(2) A.counit_simps(3) in_homE)
also have "... = (trg f \<star> \<phi>) \<cdot> ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)) \<cdot> (inv \<phi> \<star> src f)"
using comp_assoc by simp
also have "... = ((trg f \<star> \<phi>) \<cdot> \<l>\<^sup>-\<^sup>1[f]) \<cdot> \<r>[f] \<cdot> (inv \<phi> \<star> src f)"
using assms A.antipar A.triangle_left comp_cod_arr comp_assoc
by simp
also have "... = (\<l>\<^sup>-\<^sup>1[f'] \<cdot> \<phi>) \<cdot> inv \<phi> \<cdot> \<r>[f']"
using assms A.antipar lunit'_naturality runit_naturality [of "inv \<phi>"] by auto
also have "... = \<l>\<^sup>-\<^sup>1[f'] \<cdot> (\<phi> \<cdot> inv \<phi>) \<cdot> \<r>[f']"
using comp_assoc by simp
also have "... = \<l>\<^sup>-\<^sup>1[f'] \<cdot> \<r>[f']"
using assms comp_cod_arr comp_arr_inv inv_is_inverse by auto
finally show ?thesis by simp
qed
qed
lemma adjoint_pair_preserved_by_iso:
assumes "adjoint_pair f g"
and "\<guillemotleft>\<phi> : f \<Rightarrow> f'\<guillemotright>" and "iso \<phi>"
and "\<guillemotleft>\<psi> : g \<Rightarrow> g'\<guillemotright>" and "iso \<psi>"
shows "adjoint_pair f' g'"
using assms adjoint_pair_def adjunction_preserved_by_iso_left
adjunction_preserved_by_iso_right
by metis
lemma left_adjoint_preserved_by_iso:
assumes "is_left_adjoint f"
and "\<guillemotleft>\<phi> : f \<Rightarrow> f'\<guillemotright>" and "iso \<phi>"
shows "is_left_adjoint f'"
proof -
obtain g where g: "adjoint_pair f g"
using assms by auto
have "adjoint_pair f' g"
using assms g adjoint_pair_preserved_by_iso [of f g \<phi> f' g g]
adjoint_pair_antipar [of f g]
by auto
thus ?thesis by auto
qed
lemma right_adjoint_preserved_by_iso:
assumes "is_right_adjoint g"
and "\<guillemotleft>\<phi> : g \<Rightarrow> g'\<guillemotright>" and "iso \<phi>"
shows "is_right_adjoint g'"
proof -
obtain f where f: "adjoint_pair f g"
using assms by auto
have "adjoint_pair f g'"
using assms f adjoint_pair_preserved_by_iso [of f g f f \<phi> g']
adjoint_pair_antipar [of f g]
by auto
thus ?thesis by auto
qed
lemma left_adjoint_preserved_by_iso':
assumes "is_left_adjoint f" and "f \<cong> f'"
shows "is_left_adjoint f'"
using assms isomorphic_def left_adjoint_preserved_by_iso by blast
lemma right_adjoint_preserved_by_iso':
assumes "is_right_adjoint g" and "g \<cong> g'"
shows "is_right_adjoint g'"
using assms isomorphic_def right_adjoint_preserved_by_iso by blast
lemma obj_self_adjunction:
assumes "obj a"
shows "adjunction_in_bicategory V H \<a> \<i> src trg a a \<l>\<^sup>-\<^sup>1[a] \<r>[a]"
proof
show 1: "ide a"
using assms by auto
show "\<guillemotleft>\<l>\<^sup>-\<^sup>1[a] : src a \<Rightarrow> a \<star> a\<guillemotright>"
using assms 1 by auto
show "\<guillemotleft>\<r>[a] : a \<star> a \<Rightarrow> src a\<guillemotright>"
using assms 1 by fastforce
show "(\<r>[a] \<star> a) \<cdot> \<a>\<^sup>-\<^sup>1[a, a, a] \<cdot> (a \<star> \<l>\<^sup>-\<^sup>1[a]) = \<l>\<^sup>-\<^sup>1[a] \<cdot> \<r>[a]"
using assms 1 canI_unitor_1 canI_associator_1(2) canI_associator_3
whisker_can_right_1 whisker_can_left_1 can_Ide_self obj_simps
by simp
show "(a \<star> \<r>[a]) \<cdot> \<a>[a, a, a] \<cdot> (\<l>\<^sup>-\<^sup>1[a] \<star> a) = \<r>\<^sup>-\<^sup>1[a] \<cdot> \<l>[a]"
using assms 1 canI_unitor_1 canI_associator_1(2) canI_associator_3
whisker_can_right_1 whisker_can_left_1 can_Ide_self
by simp
qed
lemma obj_is_self_adjoint:
assumes "obj a"
shows "adjoint_pair a a" and "is_left_adjoint a" and "is_right_adjoint a"
using assms obj_self_adjunction adjoint_pair_def by auto
end
subsection "Pseudofunctors and Adjunctions"
context pseudofunctor
begin
lemma preserves_adjunction:
assumes "adjunction_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>"
shows "adjunction_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (F f) (F g)
(D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g))"
proof -
interpret adjunction_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>
using assms by auto
interpret A: adjunction_data_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D
\<open>F f\<close> \<open>F g\<close> \<open>D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)\<close>
\<open>D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)\<close>
using adjunction_data_in_bicategory_axioms preserves_adjunction_data by auto
show "adjunction_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (F f) (F g)
(D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g))"
proof
show "(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D
(F f \<star>\<^sub>D D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) =
D.lunit' (F f) \<cdot>\<^sub>D \<r>\<^sub>D[F f]"
proof -
have 1: "D.iso (\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f)))"
using antipar C.VV.ide_char C.VV.arr_char D.iso_is_arr FF_def
by (intro D.isos_compose D.seqI, simp_all)
have "(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D
(F f \<star>\<^sub>D D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) =
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) \<star>\<^sub>D F f) \<cdot>\<^sub>D
(D.inv (\<Phi> (f, g)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D
\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f)) \<cdot>\<^sub>D
(F f \<star>\<^sub>D D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))"
proof -
have "\<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] =
(D.inv (\<Phi> (f, g)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D
\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f))"
proof -
have "\<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D D.inv (\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f))) =
D.inv (F \<a>\<^sub>C[f, g, f] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f))"
proof -
have "D.inv (\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F f]) =
D.inv (F \<a>\<^sub>C[f, g, f] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f))"
using antipar assoc_coherence by simp
moreover
have "D.inv (\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F f]) =
\<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D D.inv (\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f)))"
proof -
have "D.seq (\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f))) \<a>\<^sub>D[F f, F g, F f]"
using antipar by fastforce
thus ?thesis
using 1 antipar D.comp_assoc
D.inv_comp [of "\<a>\<^sub>D[F f, F g, F f]" "\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f))"]
by auto
qed
ultimately show ?thesis by simp
qed
moreover have 2: "D.iso (F \<a>\<^sub>C[f, g, f] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f))"
using antipar D.isos_compose C.VV.ide_char C.VV.arr_char cmp_simps(4)
by simp
ultimately have "\<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] =
D.inv (F \<a>\<^sub>C[f, g, f] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f)) \<cdot>\<^sub>D
(\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f)))"
using 1 2 antipar D.invert_side_of_triangle(2) D.inv_inv D.iso_inv_iso D.arr_inv
by metis
moreover have "D.inv (F \<a>\<^sub>C[f, g, f] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f)) =
(D.inv (\<Phi> (f, g)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f]"
proof -
have "D.inv (F \<a>\<^sub>C[f, g, f] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f)) =
D.inv (\<Phi> (f \<star>\<^sub>C g, f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f)) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f]"
using antipar D.isos_compose C.VV.arr_char cmp_simps(4)
preserves_inv D.inv_comp C.VV.cod_char
by simp
also have "... = (D.inv (\<Phi> (f, g) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, f))) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f]"
using antipar D.inv_comp C.VV.ide_char C.VV.arr_char cmp_simps(4)
by simp
also have "... = ((D.inv (\<Phi> (f, g)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, f))) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f]"
using antipar C.VV.ide_char C.VV.arr_char by simp
also have "... = (D.inv (\<Phi> (f, g)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f]"
using D.comp_assoc by simp
finally show ?thesis by simp
qed
ultimately show ?thesis
using D.comp_assoc by simp
qed
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<star>\<^sub>D F f) \<cdot>\<^sub>D
D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D
\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D
(F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))"
proof -
have "... = ((D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f)) \<cdot>\<^sub>D
(D.inv (\<Phi> (f, g)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D
\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, f)) \<cdot>\<^sub>D
((F f \<star>\<^sub>D D.inv (\<Phi> (g, f))) \<cdot>\<^sub>D (F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)))"
proof -
have "D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) \<star>\<^sub>D F f =
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f)"
using ide_left ide_right antipar D.whisker_right unit_char(2)
by (metis A.counit_simps(1) A.ide_left D.comp_assoc)
moreover have "F f \<star>\<^sub>D D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) =
(F f \<star>\<^sub>D D.inv (\<Phi> (g, f))) \<cdot>\<^sub>D (F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))"
using antipar unit_char(2) D.whisker_left by simp
ultimately show ?thesis by simp
qed
also have "... = (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<star>\<^sub>D F f) \<cdot>\<^sub>D
(((\<Phi> (f, g) \<star>\<^sub>D F f) \<cdot>\<^sub>D (D.inv (\<Phi> (f, g)) \<star>\<^sub>D F f)) \<cdot>\<^sub>D
D.inv (\<Phi> (f \<star>\<^sub>C g, f))) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D \<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D
(((F f \<star>\<^sub>D \<Phi> (g, f)) \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv (\<Phi> (g, f)))) \<cdot>\<^sub>D
(F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)))"
using D.comp_assoc by simp
also have "... = (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<star>\<^sub>D F f) \<cdot>\<^sub>D
D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D
\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D
(F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))"
proof -
have "((F f \<star>\<^sub>D \<Phi> (g, f)) \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv (\<Phi> (g, f)))) \<cdot>\<^sub>D
(F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) =
F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)"
proof -
have "(F f \<star>\<^sub>D \<Phi> (g, f)) \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv (\<Phi> (g, f))) = F f \<star>\<^sub>D F (g \<star>\<^sub>C f)"
using antipar unit_char(2) D.comp_arr_inv D.inv_is_inverse
D.whisker_left [of "F f" "\<Phi> (g, f)" "D.inv (\<Phi> (g, f))"]
by simp
moreover have "D.seq (F f \<star>\<^sub>D F (g \<star>\<^sub>C f)) (F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))"
using antipar by fastforce
ultimately show ?thesis
using D.comp_cod_arr by auto
qed
moreover have "((\<Phi> (f, g) \<star>\<^sub>D F f) \<cdot>\<^sub>D (D.inv (\<Phi> (f, g)) \<star>\<^sub>D F f)) \<cdot>\<^sub>D
D.inv (\<Phi> (f \<star>\<^sub>C g, f)) =
D.inv (\<Phi> (f \<star>\<^sub>C g, f))"
using antipar D.comp_arr_inv D.inv_is_inverse D.comp_cod_arr
D.whisker_right [of "F f" "\<Phi> (f, g)" "D.inv (\<Phi> (f, g))"]
by simp
ultimately show ?thesis by simp
qed
finally show ?thesis by simp
qed
also have "... = (D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D
D.inv (\<Phi> (trg\<^sub>C f, f)) \<cdot>\<^sub>D F (\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>D
((\<Phi> (f \<star>\<^sub>C g, f) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, f))) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f]) \<cdot>\<^sub>D
((\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D D.inv (\<Phi> (f, g \<star>\<^sub>C f))) \<cdot>\<^sub>D F (f \<star>\<^sub>C \<eta>)) \<cdot>\<^sub>D
\<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f))"
proof -
have "(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<star>\<^sub>D F f) \<cdot>\<^sub>D
D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D
\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D
(F f \<star>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) =
((D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D (F \<epsilon> \<star>\<^sub>D F f)) \<cdot>\<^sub>D
D.inv (\<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D
F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D
\<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D
((F f \<star>\<^sub>D F \<eta>) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f)))"
using antipar D.comp_assoc D.whisker_left D.whisker_right unit_char(2)
by simp
moreover have "F \<epsilon> \<star>\<^sub>D F f = D.inv (\<Phi> (trg\<^sub>C f, f)) \<cdot>\<^sub>D F (\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f)"
using antipar \<Phi>.naturality [of "(\<epsilon>, f)"] C.VV.arr_char FF_def
D.invert_side_of_triangle(1) C.VV.dom_char C.VV.cod_char
by simp
moreover have "F f \<star>\<^sub>D F \<eta> = D.inv (\<Phi> (f, g \<star>\<^sub>C f)) \<cdot>\<^sub>D F (f \<star>\<^sub>C \<eta>) \<cdot>\<^sub>D \<Phi> (f, src\<^sub>C f)"
using antipar \<Phi>.naturality [of "(f, \<eta>)"] C.VV.arr_char FF_def
D.invert_side_of_triangle(1) C.VV.dom_char C.VV.cod_char
by simp
ultimately show ?thesis
using D.comp_assoc by simp
qed
also have "... = ((D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C f, f))) \<cdot>\<^sub>D
(F (\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>D
(F ((f \<star>\<^sub>C g) \<star>\<^sub>C f) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D F (f \<star>\<^sub>C g \<star>\<^sub>C f)) \<cdot>\<^sub>D
F (f \<star>\<^sub>C \<eta>)) \<cdot>\<^sub>D
\<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f))"
using antipar D.comp_arr_inv' D.comp_assoc by simp
also have "... = ((D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C f, f))) \<cdot>\<^sub>D
(F (\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D F (f \<star>\<^sub>C \<eta>)) \<cdot>\<^sub>D
\<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f))"
proof -
have "F ((f \<star>\<^sub>C g) \<star>\<^sub>C f) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D F (f \<star>\<^sub>C g \<star>\<^sub>C f) = F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f]"
using antipar D.comp_arr_dom D.comp_cod_arr by simp
thus ?thesis by simp
qed
also have "... = D.inv (\<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f)) \<cdot>\<^sub>D
F ((\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>C \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>C (f \<star>\<^sub>C \<eta>)) \<cdot>\<^sub>D
\<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f))"
proof -
have "(D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C f, f)) =
D.inv (\<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f))"
proof -
have "D.iso (\<Phi> (trg\<^sub>C f, f))"
using antipar by simp
moreover have "D.iso (unit (trg\<^sub>C f) \<star>\<^sub>D F f)"
using antipar unit_char(2) by simp
moreover have "D.seq (\<Phi> (trg\<^sub>C f, f)) (unit (trg\<^sub>C f) \<star>\<^sub>D F f)"
using antipar D.iso_is_arr calculation(2)
apply (intro D.seqI D.hseqI) by auto
ultimately show ?thesis
using antipar D.inv_comp unit_char(2) by simp
qed
moreover have "F (\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D F (f \<star>\<^sub>C \<eta>) =
F ((\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>C \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>C (f \<star>\<^sub>C \<eta>))"
using antipar by simp
ultimately show ?thesis by simp
qed
also have "... = (D.lunit' (F f) \<cdot>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D
F (C.lunit' f \<cdot>\<^sub>C \<r>\<^sub>C[f]) \<cdot>\<^sub>D
(D.inv (F \<r>\<^sub>C[f]) \<cdot>\<^sub>D \<r>\<^sub>D[F f])"
proof -
have "F ((\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>C \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>C (f \<star>\<^sub>C \<eta>)) = F (C.lunit' f \<cdot>\<^sub>C \<r>\<^sub>C[f])"
using triangle_left by simp
moreover have "D.inv (\<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f)) =
D.lunit' (F f) \<cdot>\<^sub>D F \<l>\<^sub>C[f]"
proof -
have 0: "D.iso (\<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f))"
using unit_char(2)
apply (intro D.isos_compose D.seqI) by auto
show ?thesis
proof -
have 1: "D.iso (F \<l>\<^sub>C[f])"
using C.iso_lunit preserves_iso by auto
moreover have "D.iso (F \<l>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f))"
by (metis (no_types) A.ide_left D.iso_lunit ide_left lunit_coherence)
moreover have "D.inv (D.inv (F \<l>\<^sub>C[f])) = F \<l>\<^sub>C[f]"
using 1 D.inv_inv by blast
ultimately show ?thesis
by (metis 0 D.inv_comp D.invert_side_of_triangle(2) D.iso_inv_iso
D.iso_is_arr ide_left lunit_coherence)
qed
qed
moreover have "\<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f)) = D.inv (F \<r>\<^sub>C[f]) \<cdot>\<^sub>D \<r>\<^sub>D[F f]"
using ide_left runit_coherence preserves_iso C.iso_runit D.invert_side_of_triangle(1)
by (metis A.ide_left D.runit_simps(1))
ultimately show ?thesis by simp
qed
also have "... = D.lunit' (F f) \<cdot>\<^sub>D
((F \<l>\<^sub>C[f] \<cdot>\<^sub>D F (C.lunit' f)) \<cdot>\<^sub>D (F \<r>\<^sub>C[f] \<cdot>\<^sub>D D.inv (F \<r>\<^sub>C[f]))) \<cdot>\<^sub>D
\<r>\<^sub>D[F f]"
using D.comp_assoc by simp
also have "... = D.lunit' (F f) \<cdot>\<^sub>D \<r>\<^sub>D[F f]"
using D.comp_cod_arr C.iso_runit C.iso_lunit preserves_iso D.comp_arr_inv'
preserves_inv
by force
finally show ?thesis by blast
qed
show "(F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D
\<a>\<^sub>D[F g, F f, F g] \<cdot>\<^sub>D (D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g) =
D.runit' (F g) \<cdot>\<^sub>D \<l>\<^sub>D[F g]"
proof -
have "\<a>\<^sub>D[F g, F f, F g] =
D.inv (\<Phi> (g, f \<star>\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g))) \<cdot>\<^sub>D
F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D \<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D (\<Phi> (g, f) \<star>\<^sub>D F g)"
proof -
have "D.iso (\<Phi> (g, f \<star>\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g)))"
using antipar D.iso_is_arr
apply (intro D.isos_compose, auto)
by (metis C.iso_assoc D.comp_assoc D.seqE ide_left ide_right
preserves_assoc(1) preserves_iso)
moreover have "F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D \<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D (\<Phi> (g, f) \<star>\<^sub>D F g) =
\<Phi> (g, f \<star>\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D \<a>\<^sub>D[F g, F f, F g]"
using antipar assoc_coherence by simp
moreover have "D.seq (F \<a>\<^sub>C[g, f, g]) (\<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D (\<Phi> (g, f) \<star>\<^sub>D F g))"
using antipar C.VV.arr_char C.VV.dom_char C.VV.cod_char FF_def
by (intro D.seqI D.hseqI') auto
ultimately show ?thesis
using D.invert_side_of_triangle(1) D.comp_assoc by auto
qed
hence "(F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D
\<a>\<^sub>D[F g, F f, F g] \<cdot>\<^sub>D
(D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g) =
(F g \<star>\<^sub>D (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D
D.inv (\<Phi> (g, f \<star>\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g))) \<cdot>\<^sub>D
F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D
\<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D (\<Phi> (g, f) \<star>\<^sub>D F g) \<cdot>\<^sub>D
(D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g)"
using D.comp_assoc by simp
also have "... = ((F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g))) \<cdot>\<^sub>D
D.inv (\<Phi> (g, f \<star>\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g))) \<cdot>\<^sub>D
F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D \<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D
(\<Phi> (g, f) \<star>\<^sub>D F g) \<cdot>\<^sub>D ((D.inv (\<Phi> (g, f)) \<star>\<^sub>D F g) \<cdot>\<^sub>D
(F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g))"
proof -
have "F g \<star>\<^sub>D (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D \<Phi> (f, g) =
(F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g))"
proof -
have "D.seq (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon>) (\<Phi> (f, g))"
using antipar D.comp_assoc by simp
thus ?thesis
using antipar D.whisker_left by simp
qed
moreover have "D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g =
(D.inv (\<Phi> (g, f)) \<star>\<^sub>D F g) \<cdot>\<^sub>D (F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g)"
using antipar D.whisker_right by simp
ultimately show ?thesis
using D.comp_assoc by simp
qed
also have "... = (F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D
(((F g \<star>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D D.inv (F g \<star>\<^sub>D \<Phi> (f, g))) \<cdot>\<^sub>D
D.inv (\<Phi> (g, f \<star>\<^sub>C g))) \<cdot>\<^sub>D F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D \<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D
((\<Phi> (g, f) \<star>\<^sub>D F g) \<cdot>\<^sub>D (D.inv (\<Phi> (g, f)) \<star>\<^sub>D F g)) \<cdot>\<^sub>D
(F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g)"
proof -
have "D.inv (\<Phi> (g, f \<star>\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g))) =
D.inv (F g \<star>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D D.inv (\<Phi> (g, f \<star>\<^sub>C g))"
proof -
have "D.iso (\<Phi> (g, f \<star>\<^sub>C g))"
using antipar by simp
moreover have "D.iso (F g \<star>\<^sub>D \<Phi> (f, g))"
using antipar by simp
moreover have "D.seq (\<Phi> (g, f \<star>\<^sub>C g)) (F g \<star>\<^sub>D \<Phi> (f, g))"
using antipar cmp_in_hom A.ide_right D.iso_is_arr
by (intro D.seqI) auto
ultimately show ?thesis
using antipar D.inv_comp by simp
qed
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D
D.inv (\<Phi> (g, f \<star>\<^sub>C g)) \<cdot>\<^sub>D F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D \<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D
(F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g)"
proof -
have "((\<Phi> (g, f) \<star>\<^sub>D F g) \<cdot>\<^sub>D (D.inv (\<Phi> (g, f)) \<star>\<^sub>D F g)) \<cdot>\<^sub>D
(F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g) =
(F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) \<star>\<^sub>D F g)"
proof -
have "(\<Phi> (g, f) \<star>\<^sub>D F g) \<cdot>\<^sub>D (D.inv (\<Phi> (g, f)) \<star>\<^sub>D F g) = F (g \<star>\<^sub>C f) \<star>\<^sub>D F g"
using antipar D.comp_arr_inv'
D.whisker_right [of "F g" "\<Phi> (g, f)" "D.inv (\<Phi> (g, f))"]
by simp
thus ?thesis
using antipar D.comp_cod_arr D.whisker_right by simp
qed
moreover have "((F g \<star>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D D.inv (F g \<star>\<^sub>D \<Phi> (f, g))) \<cdot>\<^sub>D
D.inv (\<Phi> (g, f \<star>\<^sub>C g)) =
D.inv (\<Phi> (g, f \<star>\<^sub>C g))"
using antipar D.comp_arr_inv' D.comp_cod_arr
D.whisker_left [of "F g" "\<Phi> (f, g)" "D.inv (\<Phi> (f, g))"]
by simp
ultimately show ?thesis by simp
qed
also have "... = (F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f))) \<cdot>\<^sub>D
((F g \<star>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D D.inv (\<Phi> (g, f \<star>\<^sub>C g))) \<cdot>\<^sub>D
F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D
(\<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D (F \<eta> \<star>\<^sub>D F g)) \<cdot>\<^sub>D
(unit (src\<^sub>C f) \<star>\<^sub>D F g)"
using antipar D.whisker_left D.whisker_right unit_char(2) D.comp_assoc by simp
also have "... = (F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (g, src\<^sub>C g)) \<cdot>\<^sub>D
(F (g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>D F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D F (\<eta> \<star>\<^sub>C g)) \<cdot>\<^sub>D
\<Phi> (trg\<^sub>C g, g) \<cdot>\<^sub>D (unit (src\<^sub>C f) \<star>\<^sub>D F g)"
proof -
have "(F g \<star>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D D.inv (\<Phi> (g, f \<star>\<^sub>C g)) = D.inv (\<Phi> (g, src\<^sub>C g)) \<cdot>\<^sub>D F (g \<star>\<^sub>C \<epsilon>)"
using antipar C.VV.arr_char \<Phi>.naturality [of "(g, \<epsilon>)"] FF_def
D.invert_opposite_sides_of_square C.VV.dom_char C.VV.cod_char
by simp
moreover have "\<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D (F \<eta> \<star>\<^sub>D F g) = F (\<eta> \<star>\<^sub>C g) \<cdot>\<^sub>D \<Phi> (trg\<^sub>C g, g)"
using antipar C.VV.arr_char \<Phi>.naturality [of "(\<eta>, g)"] FF_def
C.VV.dom_char C.VV.cod_char
by simp
ultimately show ?thesis
using D.comp_assoc by simp
qed
also have "... = ((F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (g, src\<^sub>C g)) \<cdot>\<^sub>D
F (C.runit' g)) \<cdot>\<^sub>D (F \<l>\<^sub>C[g] \<cdot>\<^sub>D \<Phi> (trg\<^sub>C g, g) \<cdot>\<^sub>D (unit (src\<^sub>C f) \<star>\<^sub>D F g))"
proof -
have "F (g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>D F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D F (\<eta> \<star>\<^sub>C g) = F (C.runit' g) \<cdot>\<^sub>D F \<l>\<^sub>C[g]"
using ide_left ide_right antipar triangle_right
by (metis C.comp_in_homE C.seqI' preserves_comp triangle_in_hom(2))
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = D.runit' (F g) \<cdot>\<^sub>D \<l>\<^sub>D[F g]"
proof -
have "D.inv \<r>\<^sub>D[F g] =
(F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (g, src\<^sub>C g)) \<cdot>\<^sub>D F (C.runit' g)"
proof -
have "D.runit' (F g) = D.inv (F \<r>\<^sub>C[g] \<cdot>\<^sub>D \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (src\<^sub>C g)))"
using runit_coherence by simp
also have
"... = (F g \<star>\<^sub>D D.inv (unit (trg\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (g, src\<^sub>C g)) \<cdot>\<^sub>D F (C.runit' g)"
proof -
have "D.inv (F \<r>\<^sub>C[g] \<cdot>\<^sub>D \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (src\<^sub>C g))) =
D.inv (F g \<star>\<^sub>D unit (src\<^sub>C g)) \<cdot>\<^sub>D D.inv (\<Phi> (g, src\<^sub>C g)) \<cdot>\<^sub>D F (C.runit' g)"
proof -
have "D.iso (F \<r>\<^sub>C[g])"
using preserves_iso by simp
moreover have 1: "D.iso (\<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (src\<^sub>C g)))"
using preserves_iso unit_char(2) D.arrI D.seqE ide_right runit_coherence
by (intro D.isos_compose D.seqI, auto)
moreover have "D.seq (F \<r>\<^sub>C[g]) (\<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (src\<^sub>C g)))"
using ide_right A.ide_right D.runit_simps(1) runit_coherence by metis
ultimately have "D.inv (F \<r>\<^sub>C[g] \<cdot>\<^sub>D \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (src\<^sub>C g))) =
D.inv (\<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (src\<^sub>C g))) \<cdot>\<^sub>D F (C.runit' g)"
using C.iso_runit preserves_inv D.inv_comp by simp
moreover have "D.inv (\<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (src\<^sub>C g))) =
D.inv (F g \<star>\<^sub>D unit (src\<^sub>C g)) \<cdot>\<^sub>D D.inv (\<Phi> (g, src\<^sub>C g))"
proof -
have "D.seq (\<Phi> (g, src\<^sub>C g)) (F g \<star>\<^sub>D unit (src\<^sub>C g))"
using 1 antipar preserves_iso unit_char(2) by fast
(*
* TODO: The fact that auto cannot do this step is probably what is blocking
* the whole thing from being done by auto.
*)
thus ?thesis
using 1 antipar preserves_iso unit_char(2) D.inv_comp by auto
qed
ultimately show ?thesis
using D.comp_assoc by simp
qed
thus ?thesis
using antipar unit_char(2) preserves_iso by simp
qed
finally show ?thesis by simp
qed
thus ?thesis
using antipar lunit_coherence by simp
qed
finally show ?thesis by simp
qed
qed
qed
lemma preserves_adjoint_pair:
assumes "C.adjoint_pair f g"
shows "D.adjoint_pair (F f) (F g)"
using assms C.adjoint_pair_def D.adjoint_pair_def preserves_adjunction by blast
lemma preserves_left_adjoint:
assumes "C.is_left_adjoint f"
shows "D.is_left_adjoint (F f)"
using assms preserves_adjoint_pair by auto
lemma preserves_right_adjoint:
assumes "C.is_right_adjoint g"
shows "D.is_right_adjoint (F g)"
using assms preserves_adjoint_pair by auto
end
context equivalence_pseudofunctor
begin
lemma reflects_adjunction:
assumes "C.ide f" and "C.ide g"
and "\<guillemotleft>\<eta> : src\<^sub>C f \<Rightarrow>\<^sub>C g \<star>\<^sub>C f\<guillemotright>" and "\<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C src\<^sub>C g\<guillemotright>"
and "adjunction_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (F f) (F g)
(D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g))"
shows "adjunction_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>"
proof -
let ?\<eta>' = "D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)"
let ?\<epsilon>' = "D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)"
interpret A': adjunction_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>F f\<close> \<open>F g\<close> ?\<eta>' ?\<epsilon>'
using assms(5) by auto
interpret A: adjunction_data_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>
using assms(1-4) by (unfold_locales, auto)
show ?thesis
proof
show "(\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>C \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>C (f \<star>\<^sub>C \<eta>) = \<l>\<^sub>C\<^sup>-\<^sup>1[f] \<cdot>\<^sub>C \<r>\<^sub>C[f]"
proof -
have 1: "C.par ((\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>C \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>C (f \<star>\<^sub>C \<eta>)) (\<l>\<^sub>C\<^sup>-\<^sup>1[f] \<cdot>\<^sub>C \<r>\<^sub>C[f])"
using assms A.antipar by simp
moreover have "F ((\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>C \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>C (f \<star>\<^sub>C \<eta>)) = F (\<l>\<^sub>C\<^sup>-\<^sup>1[f] \<cdot>\<^sub>C \<r>\<^sub>C[f])"
proof -
have "F ((\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>C \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>C (f \<star>\<^sub>C \<eta>)) =
F (\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>D F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, f] \<cdot>\<^sub>D F (f \<star>\<^sub>C \<eta>)"
using 1 by (metis C.seqE preserves_comp)
also have "... =
(F (\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f)) \<cdot>\<^sub>D
(\<Phi> (f, g) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv (\<Phi> (g, f))) \<cdot>\<^sub>D
(D.inv (\<Phi> (f, g \<star>\<^sub>C f)) \<cdot>\<^sub>D F (f \<star>\<^sub>C \<eta>))"
using assms A.antipar preserves_assoc(2) D.comp_assoc by auto
also have "... = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D ((F \<epsilon> \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F f)) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D
((F f \<star>\<^sub>D D.inv (\<Phi> (g, f))) \<cdot>\<^sub>D (F f \<star>\<^sub>D F \<eta>)) \<cdot>\<^sub>D
D.inv (\<Phi> (f, src\<^sub>C f))"
proof -
have "F (\<epsilon> \<star>\<^sub>C f) \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, f) = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (F \<epsilon> \<star>\<^sub>D F f)"
using assms \<Phi>.naturality [of "(\<epsilon>, f)"] FF_def C.VV.arr_char
C.VV.dom_char C.VV.cod_char
by simp
moreover have "D.inv (\<Phi> (f, g \<star>\<^sub>C f)) \<cdot>\<^sub>D F (f \<star>\<^sub>C \<eta>) =
(F f \<star>\<^sub>D F \<eta>) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))"
proof -
have "F (f \<star>\<^sub>C \<eta>) \<cdot>\<^sub>D \<Phi> (f, src\<^sub>C f) = \<Phi> (f, g \<star>\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D F \<eta>)"
using assms \<Phi>.naturality [of "(f, \<eta>)"] FF_def C.VV.arr_char A.antipar
C.VV.dom_char C.VV.cod_char
by simp
thus ?thesis
using assms A.antipar cmp_components_are_iso C.VV.arr_char cmp_in_hom
FF_def C.VV.dom_simp C.VV.cod_simp
D.invert_opposite_sides_of_square
[of "\<Phi> (f, g \<star>\<^sub>C f)" "F f \<star>\<^sub>D F \<eta>" "F (f \<star>\<^sub>C \<eta>)" "\<Phi> (f, src\<^sub>C f)"]
by fastforce
qed
ultimately show ?thesis
using D.comp_assoc by simp
qed
also have "... = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) \<star>\<^sub>D F f) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D
(F f \<star>\<^sub>D D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta>) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))"
using assms A.antipar cmp_in_hom A.ide_left A.ide_right A'.ide_left A'.ide_right
D.whisker_left [of "F f" "D.inv (\<Phi> (g, f))" "F \<eta>"]
D.whisker_right [of "F f" "F \<epsilon>" "\<Phi> (f, g)"]
by (metis A'.counit_in_vhom A'.unit_simps(1)D.arrI D.comp_assoc
D.src.preserves_reflects_arr D.src_vcomp D.vseq_implies_hpar(1) cmp_simps(2))
also have "... = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<cdot>\<^sub>D ?\<epsilon>' \<star>\<^sub>D F f) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D
(F f \<star>\<^sub>D ?\<eta>' \<cdot>\<^sub>D D.inv (unit (src\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))"
proof -
have "F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) = unit (trg\<^sub>C f) \<cdot>\<^sub>D ?\<epsilon>'"
proof -
have "D.iso (unit (trg\<^sub>C f))"
using A.ide_left C.ideD(1) unit_char(2) by blast
thus ?thesis
by (metis A'.counit_simps(1) D.comp_assoc D.comp_cod_arr D.inv_is_inverse
D.seqE D.comp_arr_inv)
qed
moreover have "D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> = ?\<eta>' \<cdot>\<^sub>D D.inv (unit (src\<^sub>C f))"
using assms(2) unit_char D.comp_arr_inv D.inv_is_inverse D.comp_assoc D.comp_cod_arr
by (metis A'.unit_simps(1) A.antipar(1) C.ideD(1) C.obj_trg
D.invert_side_of_triangle(2))
ultimately show ?thesis by simp
qed
also have "... = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D ((unit (trg\<^sub>C f) \<star>\<^sub>D F f) \<cdot>\<^sub>D
(?\<epsilon>' \<star>\<^sub>D F f)) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D ((F f \<star>\<^sub>D ?\<eta>') \<cdot>\<^sub>D
(F f \<star>\<^sub>D D.inv (unit (src\<^sub>C f)))) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))"
using assms A.antipar A'.antipar unit_char D.whisker_left D.whisker_right
by simp
also have "... = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f) \<cdot>\<^sub>D
((?\<epsilon>' \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F f] \<cdot>\<^sub>D (F f \<star>\<^sub>D ?\<eta>')) \<cdot>\<^sub>D
(F f \<star>\<^sub>D D.inv (unit (src\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))"
using D.comp_assoc by simp
also have "... = (\<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f]) \<cdot>\<^sub>D
\<r>\<^sub>D[F f] \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv (unit (src\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))"
using A'.triangle_left D.comp_assoc by simp
also have "... = F \<l>\<^sub>C\<^sup>-\<^sup>1[f] \<cdot>\<^sub>D F \<r>\<^sub>C[f]"
using assms A.antipar preserves_lunit(2) preserves_runit(1) by simp
also have "... = F (\<l>\<^sub>C\<^sup>-\<^sup>1[f] \<cdot>\<^sub>C \<r>\<^sub>C[f])"
using assms by simp
finally show ?thesis by simp
qed
ultimately show ?thesis
using is_faithful by blast
qed
show "(g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>C \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>C (\<eta> \<star>\<^sub>C g) = \<r>\<^sub>C\<^sup>-\<^sup>1[g] \<cdot>\<^sub>C \<l>\<^sub>C[g]"
proof -
have 1: "C.par ((g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>C \<a>\<^sub>C g f g \<cdot>\<^sub>C (\<eta> \<star>\<^sub>C g)) (\<r>\<^sub>C\<^sup>-\<^sup>1[g] \<cdot>\<^sub>C \<l>\<^sub>C[g])"
using assms A.antipar by auto
moreover have "F ((g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>C \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>C (\<eta> \<star>\<^sub>C g)) = F (\<r>\<^sub>C\<^sup>-\<^sup>1[g] \<cdot>\<^sub>C \<l>\<^sub>C[g])"
proof -
have "F ((g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>C \<a>\<^sub>C g f g \<cdot>\<^sub>C (\<eta> \<star>\<^sub>C g)) =
F (g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>D F \<a>\<^sub>C[g, f, g] \<cdot>\<^sub>D F (\<eta> \<star>\<^sub>C g)"
using 1 by auto
also have "... = (F (g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>D \<Phi> (g, f \<star>\<^sub>C g)) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D
\<a>\<^sub>D[F g, F f, F g] \<cdot>\<^sub>D
(D.inv (\<Phi> (g, f)) \<star>\<^sub>D F g) \<cdot>\<^sub>D (D.inv (\<Phi> (g \<star>\<^sub>C f, g)) \<cdot>\<^sub>D F (\<eta> \<star>\<^sub>C g))"
using assms A.antipar preserves_assoc(1) [of g f g] D.comp_assoc by auto
also have "... = \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D ((F g \<star>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g))) \<cdot>\<^sub>D
\<a>\<^sub>D[F g, F f, F g] \<cdot>\<^sub>D
((D.inv (\<Phi> (g, f)) \<star>\<^sub>D F g) \<cdot>\<^sub>D (F \<eta> \<star>\<^sub>D F g)) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C g, g))"
proof -
have "F (g \<star>\<^sub>C \<epsilon>) \<cdot>\<^sub>D \<Phi> (g, f \<star>\<^sub>C g) = \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D F \<epsilon>)"
using assms \<Phi>.naturality [of "(g, \<epsilon>)"] FF_def C.VV.arr_char
C.VV.dom_simp C.VV.cod_simp
by auto
moreover have "D.inv (\<Phi> (g \<star>\<^sub>C f, g)) \<cdot>\<^sub>D F (\<eta> \<star>\<^sub>C g) =
(F \<eta> \<star>\<^sub>D F g) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C g, g))"
proof -
have "F (\<eta> \<star>\<^sub>C g) \<cdot>\<^sub>D \<Phi> (trg\<^sub>C g, g) = \<Phi> (g \<star>\<^sub>C f, g) \<cdot>\<^sub>D (F \<eta> \<star>\<^sub>D F g)"
using assms \<Phi>.naturality [of "(\<eta>, g)"] FF_def C.VV.arr_char A.antipar
C.VV.dom_simp C.VV.cod_simp
by auto
thus ?thesis
using assms A.antipar cmp_components_are_iso C.VV.arr_char FF_def
C.VV.dom_simp C.VV.cod_simp
D.invert_opposite_sides_of_square
[of "\<Phi> (g \<star>\<^sub>C f, g)" "F \<eta> \<star>\<^sub>D F g" "F (\<eta> \<star>\<^sub>C g)" "\<Phi> (trg\<^sub>C g, g)"]
by fastforce
qed
ultimately show ?thesis
using D.comp_assoc by simp
qed
also have " ... = \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D
\<a>\<^sub>D[F g, F f, F g] \<cdot>\<^sub>D
(D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<star>\<^sub>D F g) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C g, g))"
proof -
have "(F g \<star>\<^sub>D F \<epsilon>) \<cdot>\<^sub>D (F g \<star>\<^sub>D \<Phi> (f, g)) = F g \<star>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)"
using assms A.antipar D.whisker_left
by (metis A'.counit_simps(1) A'.ide_right D.seqE)
moreover have "(D.inv (\<Phi> (g, f)) \<star>\<^sub>D F g) \<cdot>\<^sub>D (F \<eta> \<star>\<^sub>D F g) =
D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<star>\<^sub>D F g"
using assms A.antipar D.whisker_right by simp
ultimately show ?thesis by simp
qed
also have "... = \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (trg\<^sub>C f) \<cdot>\<^sub>D ?\<epsilon>') \<cdot>\<^sub>D
\<a>\<^sub>D[F g, F f, F g] \<cdot>\<^sub>D
(?\<eta>' \<cdot>\<^sub>D D.inv (unit (src\<^sub>C f)) \<star>\<^sub>D F g) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C g, g))"
proof -
have "F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) = unit (trg\<^sub>C f) \<cdot>\<^sub>D ?\<epsilon>'"
using unit_char D.comp_arr_inv D.inv_is_inverse D.comp_assoc D.comp_cod_arr
by (metis A'.counit_simps(1) C.ideD(1) C.obj_trg D.seqE assms(1))
moreover have "D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> = ?\<eta>' \<cdot>\<^sub>D D.inv (unit (src\<^sub>C f))"
using unit_char D.comp_arr_inv D.inv_is_inverse D.comp_assoc D.comp_cod_arr
by (metis A'.unit_simps(1) A.unit_simps(1) A.unit_simps(5)
C.obj_trg D.invert_side_of_triangle(2))
ultimately show ?thesis by simp
qed
also have "... = \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (trg\<^sub>C f)) \<cdot>\<^sub>D
((F g \<star>\<^sub>D ?\<epsilon>') \<cdot>\<^sub>D \<a>\<^sub>D[F g, F f, F g] \<cdot>\<^sub>D (?\<eta>' \<star>\<^sub>D F g)) \<cdot>\<^sub>D
(D.inv (unit (src\<^sub>C f)) \<star>\<^sub>D F g) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C g, g))"
using assms A.antipar unit_char D.whisker_left D.whisker_right D.comp_assoc
by simp
also have "... = \<Phi> (g, src\<^sub>C g) \<cdot>\<^sub>D (F g \<star>\<^sub>D unit (trg\<^sub>C f)) \<cdot>\<^sub>D \<r>\<^sub>D\<^sup>-\<^sup>1[F g] \<cdot>\<^sub>D
\<l>\<^sub>D[F g] \<cdot>\<^sub>D (D.inv (unit (src\<^sub>C f)) \<star>\<^sub>D F g) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C g, g))"
using A'.triangle_right D.comp_assoc by simp
also have "... = F \<r>\<^sub>C\<^sup>-\<^sup>1[g] \<cdot>\<^sub>D F \<l>\<^sub>C[g]"
using assms A.antipar preserves_lunit(1) preserves_runit(2) D.comp_assoc
by simp
also have "... = F (\<r>\<^sub>C\<^sup>-\<^sup>1[g] \<cdot>\<^sub>C \<l>\<^sub>C[g])"
using assms by simp
finally show ?thesis by simp
qed
ultimately show ?thesis
using is_faithful by blast
qed
qed
qed
lemma reflects_adjoint_pair:
assumes "C.ide f" and "C.ide g"
and "src\<^sub>C f = trg\<^sub>C g" and "src\<^sub>C g = trg\<^sub>C f"
and "D.adjoint_pair (F f) (F g)"
shows "C.adjoint_pair f g"
proof -
obtain \<eta>' \<epsilon>' where A': "adjunction_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (F f) (F g) \<eta>' \<epsilon>'"
using assms D.adjoint_pair_def by auto
interpret A': adjunction_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>F f\<close> \<open>F g\<close> \<eta>' \<epsilon>'
using A' by auto
have 1: "\<guillemotleft>\<Phi> (g, f) \<cdot>\<^sub>D \<eta>' \<cdot>\<^sub>D D.inv (unit (src\<^sub>C f)) : F (src\<^sub>C f) \<Rightarrow>\<^sub>D F (g \<star>\<^sub>C f)\<guillemotright>"
using assms unit_char [of "src\<^sub>C f"] A'.unit_in_hom
by (intro D.comp_in_homI, auto)
have 2: "\<guillemotleft>unit (trg\<^sub>C f) \<cdot>\<^sub>D \<epsilon>' \<cdot>\<^sub>D D.inv (\<Phi> (f, g)): F (f \<star>\<^sub>C g) \<Rightarrow>\<^sub>D F (trg\<^sub>C f)\<guillemotright>"
using assms cmp_in_hom [of f g] unit_char [of "trg\<^sub>C f"] A'.counit_in_hom
by (intro D.comp_in_homI, auto)
obtain \<eta> where \<eta>: "\<guillemotleft>\<eta> : src\<^sub>C f \<Rightarrow>\<^sub>C g \<star>\<^sub>C f\<guillemotright> \<and>
F \<eta> = \<Phi> (g, f) \<cdot>\<^sub>D \<eta>' \<cdot>\<^sub>D D.inv (unit (src\<^sub>C f))"
using assms 1 A'.unit_in_hom cmp_in_hom locally_full by fastforce
have \<eta>': "\<eta>' = D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)"
using assms 1 \<eta> cmp_in_hom D.iso_inv_iso cmp_components_are_iso unit_char(2)
D.invert_side_of_triangle(1) [of "F \<eta>" "\<Phi> (g, f)" "\<eta>' \<cdot>\<^sub>D D.inv (unit (src\<^sub>C f))"]
D.invert_side_of_triangle(2) [of "D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta>" \<eta>' "D.inv (unit (src\<^sub>C f))"]
by (metis (no_types, lifting) C.ideD(1) C.obj_trg D.arrI D.comp_assoc D.inv_inv)
obtain \<epsilon> where \<epsilon>: "\<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C trg\<^sub>C f\<guillemotright> \<and>
F \<epsilon> = unit (trg\<^sub>C f) \<cdot>\<^sub>D \<epsilon>' \<cdot>\<^sub>D D.inv (\<Phi> (f, g))"
using assms 2 A'.counit_in_hom cmp_in_hom locally_full by fastforce
have \<epsilon>': "\<epsilon>' = D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)"
using assms 2 \<epsilon> cmp_in_hom D.iso_inv_iso unit_char(2) D.comp_assoc
D.invert_side_of_triangle(1) [of "F \<epsilon>" "unit (trg\<^sub>C f)" "\<epsilon>' \<cdot>\<^sub>D D.inv (\<Phi> (f, g))"]
D.invert_side_of_triangle(2) [of "D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon>" \<epsilon>' "D.inv (\<Phi> (f, g))"]
by (metis (no_types, lifting) C.arrI C.ideD(1) C.obj_trg D.inv_inv cmp_components_are_iso
preserves_arr)
have "adjunction_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (F f) (F g)
(D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f))
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g))"
using A'.adjunction_in_bicategory_axioms \<eta>' \<epsilon>' by simp
hence "adjunction_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>"
using assms \<eta> \<epsilon> reflects_adjunction by simp
thus ?thesis
using C.adjoint_pair_def by auto
qed
lemma reflects_left_adjoint:
assumes "C.ide f" and "D.is_left_adjoint (F f)"
shows "C.is_left_adjoint f"
proof -
obtain g' where g': "D.adjoint_pair (F f) g'"
using assms D.adjoint_pair_def by auto
obtain g where g: "\<guillemotleft>g : trg\<^sub>C f \<rightarrow>\<^sub>C src\<^sub>C f\<guillemotright> \<and> C.ide g \<and> D.isomorphic (F g) g'"
using assms g' locally_essentially_surjective [of "trg\<^sub>C f" "src\<^sub>C f" g']
D.adjoint_pair_antipar [of "F f" g']
by auto
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : g' \<Rightarrow>\<^sub>D F g\<guillemotright> \<and> D.iso \<phi>"
using g D.isomorphic_def D.isomorphic_symmetric by metis
have "D.adjoint_pair (F f) (F g)"
using assms g g' \<phi> D.adjoint_pair_preserved_by_iso [of "F f" g' "F f" "F f" \<phi> "F g"]
by auto
thus ?thesis
using assms g reflects_adjoint_pair [of f g] D.adjoint_pair_antipar C.in_hhom_def
by auto
qed
lemma reflects_right_adjoint:
assumes "C.ide g" and "D.is_right_adjoint (F g)"
shows "C.is_right_adjoint g"
proof -
obtain f' where f': "D.adjoint_pair f' (F g)"
using assms D.adjoint_pair_def by auto
obtain f where f: "\<guillemotleft>f : trg\<^sub>C g \<rightarrow>\<^sub>C src\<^sub>C g\<guillemotright> \<and> C.ide f \<and> D.isomorphic (F f) f'"
using assms f' locally_essentially_surjective [of "trg\<^sub>C g" "src\<^sub>C g" f']
D.adjoint_pair_antipar [of f' "F g"]
by auto
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : f' \<Rightarrow>\<^sub>D F f\<guillemotright> \<and> D.iso \<phi>"
using f D.isomorphic_def D.isomorphic_symmetric by metis
have "D.adjoint_pair (F f) (F g)"
using assms f f' \<phi> D.adjoint_pair_preserved_by_iso [of f' "F g" \<phi> "F f" "F g" "F g"]
by auto
thus ?thesis
using assms f reflects_adjoint_pair [of f g] D.adjoint_pair_antipar C.in_hhom_def
by auto
qed
end
subsection "Composition of Adjunctions"
text \<open>
We first consider the strict case, then extend to all bicategories using strictification.
\<close>
locale composite_adjunction_in_strict_bicategory =
strict_bicategory V H \<a> \<i> src trg +
fg: adjunction_in_strict_bicategory V H \<a> \<i> src trg f g \<zeta> \<xi> +
hk: adjunction_in_strict_bicategory V H \<a> \<i> src trg h k \<sigma> \<tau>
for V :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<cdot>" 55)
and H :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<star>" 53)
and \<a> :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>[_, _, _]")
and \<i> :: "'a \<Rightarrow> 'a" ("\<i>[_]")
and src :: "'a \<Rightarrow> 'a"
and trg :: "'a \<Rightarrow> 'a"
and f :: "'a"
and g :: "'a"
and \<zeta> :: "'a"
and \<xi> :: "'a"
and h :: "'a"
and k :: "'a"
and \<sigma> :: "'a"
and \<tau> :: "'a" +
assumes composable: "src h = trg f"
begin
abbreviation \<eta>
where "\<eta> \<equiv> (g \<star> \<sigma> \<star> f) \<cdot> \<zeta>"
abbreviation \<epsilon>
where "\<epsilon> \<equiv> \<tau> \<cdot> (h \<star> \<xi> \<star> k)"
interpretation adjunction_data_in_bicategory V H \<a> \<i> src trg \<open>h \<star> f\<close> \<open>g \<star> k\<close> \<eta> \<epsilon>
proof
show "ide (h \<star> f)"
using composable by simp
show "ide (g \<star> k)"
using fg.antipar hk.antipar composable by simp
show "\<guillemotleft>\<eta> : src (h \<star> f) \<Rightarrow> (g \<star> k) \<star> h \<star> f\<guillemotright>"
proof
show "\<guillemotleft>\<zeta> : src (h \<star> f) \<Rightarrow> g \<star> f\<guillemotright>"
using fg.antipar hk.antipar composable \<open>ide (h \<star> f)\<close> by auto
show "\<guillemotleft>g \<star> \<sigma> \<star> f : g \<star> f \<Rightarrow> (g \<star> k) \<star> h \<star> f\<guillemotright>"
proof -
have "\<guillemotleft>g \<star> \<sigma> \<star> f : g \<star> trg f \<star> f \<Rightarrow> g \<star> (k \<star> h) \<star> f\<guillemotright>"
using fg.antipar hk.antipar composable hk.unit_in_hom
apply (intro hcomp_in_vhom) by auto
thus ?thesis
using hcomp_obj_arr hcomp_assoc by fastforce
qed
qed
show "\<guillemotleft>\<epsilon> : (h \<star> f) \<star> g \<star> k \<Rightarrow> src (g \<star> k)\<guillemotright>"
proof
show "\<guillemotleft>h \<star> \<xi> \<star> k : (h \<star> f) \<star> g \<star> k \<Rightarrow> h \<star> k\<guillemotright>"
proof -
have "\<guillemotleft>h \<star> \<xi> \<star> k : h \<star> (f \<star> g) \<star> k \<Rightarrow> h \<star> trg f \<star> k\<guillemotright>"
using composable fg.antipar(1-2) hk.antipar(1) by fastforce
thus ?thesis
using fg.antipar hk.antipar composable hk.unit_in_hom hcomp_obj_arr hcomp_assoc
by simp
qed
show "\<guillemotleft>\<tau> : h \<star> k \<Rightarrow> src (g \<star> k)\<guillemotright>"
using fg.antipar hk.antipar composable hk.unit_in_hom by auto
qed
qed
sublocale adjunction_in_strict_bicategory V H \<a> \<i> src trg \<open>h \<star> f\<close> \<open>g \<star> k\<close> \<eta> \<epsilon>
proof
show "(\<epsilon> \<star> h \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> f, g \<star> k, h \<star> f] \<cdot> ((h \<star> f) \<star> \<eta>) = \<l>\<^sup>-\<^sup>1[h \<star> f] \<cdot> \<r>[h \<star> f]"
proof -
have "(\<epsilon> \<star> h \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[h \<star> f, g \<star> k, h \<star> f] \<cdot> ((h \<star> f) \<star> \<eta>) =
(\<tau> \<cdot> (h \<star> \<xi> \<star> k) \<star> h \<star> f) \<cdot> ((h \<star> f) \<star> (g \<star> \<sigma> \<star> f) \<cdot> \<zeta>)"
using fg.antipar hk.antipar composable strict_assoc comp_ide_arr
ide_left ide_right antipar(1) antipar(2)
by (metis arrI seqE strict_assoc' triangle_in_hom(1))
also have "... = (\<tau> \<star> h \<star> f) \<cdot> ((h \<star> \<xi> \<star> (k \<star> h) \<star> f) \<cdot> (h \<star> (f \<star> g) \<star> \<sigma> \<star> f)) \<cdot> (h \<star> f \<star> \<zeta>)"
using fg.antipar hk.antipar composable whisker_left [of "h \<star> f"] whisker_right
comp_assoc hcomp_assoc
by simp
also have "... = (\<tau> \<star> h \<star> f) \<cdot> (h \<star> (\<xi> \<star> (k \<star> h)) \<cdot> ((f \<star> g) \<star> \<sigma>) \<star> f) \<cdot> (h \<star> f \<star> \<zeta>)"
using fg.antipar hk.antipar composable whisker_left whisker_right hcomp_assoc
by simp
also have "... = (\<tau> \<star> h \<star> f) \<cdot> (h \<star> (trg f \<star> \<sigma>) \<cdot> (\<xi> \<star> trg f) \<star> f) \<cdot> (h \<star> f \<star> \<zeta>)"
using fg.antipar hk.antipar composable comp_arr_dom comp_cod_arr
interchange [of \<xi> "f \<star> g" "k \<star> h" \<sigma>] interchange [of "trg f" \<xi> \<sigma> "trg f"]
by (metis fg.counit_simps(1) fg.counit_simps(2) fg.counit_simps(3)
hk.unit_simps(1) hk.unit_simps(2) hk.unit_simps(3))
also have "... = (\<tau> \<star> h \<star> f) \<cdot> (h \<star> \<sigma> \<cdot> \<xi> \<star> f) \<cdot> (h \<star> f \<star> \<zeta>)"
using fg.antipar hk.antipar composable hcomp_obj_arr hcomp_arr_obj
by (metis fg.counit_simps(1) fg.counit_simps(4) hk.unit_simps(1) hk.unit_simps(5)
obj_src)
also have "... = ((\<tau> \<star> h \<star> f) \<cdot> (h \<star> \<sigma> \<star> f)) \<cdot> ((h \<star> \<xi> \<star> f) \<cdot> (h \<star> f \<star> \<zeta>))"
using fg.antipar hk.antipar composable whisker_left whisker_right comp_assoc
by simp
also have "... = ((\<tau> \<star> h) \<cdot> (h \<star> \<sigma>) \<star> f) \<cdot> (h \<star> (\<xi> \<star> f) \<cdot> (f \<star> \<zeta>))"
using fg.antipar hk.antipar composable whisker_left whisker_right hcomp_assoc
by simp
also have "... = h \<star> f"
using fg.antipar hk.antipar composable fg.triangle_left hk.triangle_left
by simp
also have "... = \<l>\<^sup>-\<^sup>1[h \<star> f] \<cdot> \<r>[h \<star> f]"
using fg.antipar hk.antipar composable strict_lunit' strict_runit by simp
finally show ?thesis by simp
qed
show "((g \<star> k) \<star> \<epsilon>) \<cdot> \<a>[g \<star> k, h \<star> f, g \<star> k] \<cdot> (\<eta> \<star> g \<star> k) = \<r>\<^sup>-\<^sup>1[g \<star> k] \<cdot> \<l>[g \<star> k]"
proof -
have "((g \<star> k) \<star> \<epsilon>) \<cdot> \<a>[g \<star> k, h \<star> f, g \<star> k] \<cdot> (\<eta> \<star> g \<star> k) =
((g \<star> k) \<star> \<tau> \<cdot> (h \<star> \<xi> \<star> k)) \<cdot> ((g \<star> \<sigma> \<star> f) \<cdot> \<zeta> \<star> g \<star> k)"
using fg.antipar hk.antipar composable strict_assoc comp_ide_arr
ide_left ide_right
by (metis antipar(1) antipar(2) arrI seqE triangle_in_hom(2))
also have "... = (g \<star> k \<star> \<tau>) \<cdot> ((g \<star> (k \<star> h) \<star> \<xi> \<star> k) \<cdot> (g \<star> \<sigma> \<star> (f \<star> g) \<star> k)) \<cdot> (\<zeta> \<star> g \<star> k)"
using fg.antipar hk.antipar composable whisker_left [of "g \<star> k"] whisker_right
comp_assoc hcomp_assoc
by simp
also have "... = (g \<star> k \<star> \<tau>) \<cdot> (g \<star> ((k \<star> h) \<star> \<xi>) \<cdot> (\<sigma> \<star> f \<star> g) \<star> k) \<cdot> (\<zeta> \<star> g \<star> k)"
using fg.antipar hk.antipar composable whisker_left whisker_right hcomp_assoc
by simp
also have "... = (g \<star> k \<star> \<tau>) \<cdot> (g \<star> (\<sigma> \<star> src g) \<cdot> (src g \<star> \<xi>) \<star> k) \<cdot> (\<zeta> \<star> g \<star> k)"
using fg.antipar hk.antipar composable interchange [of "k \<star> h" \<sigma> \<xi> "f \<star> g"]
interchange [of \<sigma> "src g" "src g" \<xi>] comp_arr_dom comp_cod_arr
by (metis fg.counit_simps(1) fg.counit_simps(2) fg.counit_simps(3)
hk.unit_simps(1) hk.unit_simps(2) hk.unit_simps(3))
also have "... = (g \<star> k \<star> \<tau>) \<cdot> (g \<star> \<sigma> \<cdot> \<xi> \<star> k) \<cdot> (\<zeta> \<star> g \<star> k)"
using fg.antipar hk.antipar composable hcomp_obj_arr [of "src g" \<xi>]
hcomp_arr_obj [of \<sigma> "src g"]
by simp
also have "... = ((g \<star> k \<star> \<tau>) \<cdot> (g \<star> \<sigma> \<star> k)) \<cdot> (g \<star> \<xi> \<star> k) \<cdot> (\<zeta> \<star> g \<star> k)"
using fg.antipar hk.antipar composable whisker_left whisker_right comp_assoc
by simp
also have "... = (g \<star> (k \<star> \<tau>) \<cdot> (\<sigma> \<star> k)) \<cdot> ((g \<star> \<xi>) \<cdot> (\<zeta> \<star> g) \<star> k)"
using fg.antipar hk.antipar composable whisker_left whisker_right hcomp_assoc
by simp
also have "... = g \<star> k"
using fg.antipar hk.antipar composable fg.triangle_right hk.triangle_right
by simp
also have "... = \<r>\<^sup>-\<^sup>1[g \<star> k] \<cdot> \<l>[g \<star> k]"
using fg.antipar hk.antipar composable strict_lunit strict_runit' by simp
finally show ?thesis by simp
qed
qed
lemma is_adjunction_in_strict_bicategory:
shows "adjunction_in_strict_bicategory V H \<a> \<i> src trg (h \<star> f) (g \<star> k) \<eta> \<epsilon>"
..
end
context strict_bicategory
begin
lemma left_adjoints_compose:
assumes "is_left_adjoint f" and "is_left_adjoint f'" and "src f' = trg f"
shows "is_left_adjoint (f' \<star> f)"
proof -
obtain g \<eta> \<epsilon> where fg: "adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms adjoint_pair_def by auto
interpret fg: adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using fg by auto
obtain g' \<eta>' \<epsilon>' where f'g': "adjunction_in_bicategory V H \<a> \<i> src trg f' g' \<eta>' \<epsilon>'"
using assms adjoint_pair_def by auto
interpret f'g': adjunction_in_bicategory V H \<a> \<i> src trg f' g' \<eta>' \<epsilon>'
using f'g' by auto
interpret f'fgg': composite_adjunction_in_strict_bicategory V H \<a> \<i> src trg
f g \<eta> \<epsilon> f' g' \<eta>' \<epsilon>'
using assms apply unfold_locales by simp
have "adjoint_pair (f' \<star> f) (g \<star> g')"
using adjoint_pair_def f'fgg'.adjunction_in_bicategory_axioms by auto
thus ?thesis by auto
qed
lemma right_adjoints_compose:
assumes "is_right_adjoint g" and "is_right_adjoint g'" and "src g = trg g'"
shows "is_right_adjoint (g \<star> g')"
proof -
obtain f \<eta> \<epsilon> where fg: "adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms adjoint_pair_def by auto
interpret fg: adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using fg by auto
obtain f' \<eta>' \<epsilon>' where f'g': "adjunction_in_bicategory V H \<a> \<i> src trg f' g' \<eta>' \<epsilon>'"
using assms adjoint_pair_def by auto
interpret f'g': adjunction_in_bicategory V H \<a> \<i> src trg f' g' \<eta>' \<epsilon>'
using f'g' by auto
interpret f'fgg': composite_adjunction_in_strict_bicategory V H \<a> \<i> src trg
f g \<eta> \<epsilon> f' g' \<eta>' \<epsilon>'
using assms fg.antipar f'g'.antipar apply unfold_locales by simp
have "adjoint_pair (f' \<star> f) (g \<star> g')"
using adjoint_pair_def f'fgg'.adjunction_in_bicategory_axioms by auto
thus ?thesis by auto
qed
end
text \<open>
We now use strictification to extend the preceding results to an arbitrary bicategory.
We only prove that ``left adjoints compose'' and ``right adjoints compose'';
I did not work out formulas for the unit and counit of the composite adjunction in the
non-strict case.
\<close>
context bicategory
begin
interpretation S: strictified_bicategory V H \<a> \<i> src trg ..
notation S.vcomp (infixr "\<cdot>\<^sub>S" 55)
notation S.hcomp (infixr "\<star>\<^sub>S" 53)
notation S.in_hom ("\<guillemotleft>_ : _ \<Rightarrow>\<^sub>S _\<guillemotright>")
notation S.in_hhom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>S _\<guillemotright>")
interpretation UP: fully_faithful_functor V S.vcomp S.UP
using S.UP_is_fully_faithful_functor by auto
interpretation UP: equivalence_pseudofunctor V H \<a> \<i> src trg
S.vcomp S.hcomp S.\<a> S.\<i> S.src S.trg S.UP S.cmp\<^sub>U\<^sub>P
using S.UP_is_equivalence_pseudofunctor by auto
lemma left_adjoints_compose:
assumes "is_left_adjoint f" and "is_left_adjoint f'" and "src f = trg f'"
shows "is_left_adjoint (f \<star> f')"
proof -
have "S.is_left_adjoint (S.UP f) \<and> S.is_left_adjoint (S.UP f')"
using assms UP.preserves_left_adjoint by simp
moreover have "S.src (S.UP f) = S.trg (S.UP f')"
using assms left_adjoint_is_ide by simp
ultimately have "S.is_left_adjoint (S.hcomp (S.UP f) (S.UP f'))"
using S.left_adjoints_compose by simp
moreover have "S.isomorphic (S.hcomp (S.UP f) (S.UP f')) (S.UP (f \<star> f'))"
proof -
have "\<guillemotleft>S.cmp\<^sub>U\<^sub>P (f, f') : S.hcomp (S.UP f) (S.UP f') \<Rightarrow>\<^sub>S S.UP (f \<star> f')\<guillemotright>"
using assms left_adjoint_is_ide UP.cmp_in_hom by simp
moreover have "S.iso (S.cmp\<^sub>U\<^sub>P (f, f'))"
using assms left_adjoint_is_ide by simp
ultimately show ?thesis
using S.isomorphic_def by blast
qed
ultimately have "S.is_left_adjoint (S.UP (f \<star> f'))"
using S.left_adjoint_preserved_by_iso S.isomorphic_def by blast
thus "is_left_adjoint (f \<star> f')"
using assms left_adjoint_is_ide UP.reflects_left_adjoint by simp
qed
lemma right_adjoints_compose:
assumes "is_right_adjoint g" and "is_right_adjoint g'" and "src g' = trg g"
shows "is_right_adjoint (g' \<star> g)"
proof -
have "S.is_right_adjoint (S.UP g) \<and> S.is_right_adjoint (S.UP g')"
using assms UP.preserves_right_adjoint by simp
moreover have "S.src (S.UP g') = S.trg (S.UP g)"
using assms right_adjoint_is_ide by simp
ultimately have "S.is_right_adjoint (S.hcomp (S.UP g') (S.UP g))"
using S.right_adjoints_compose by simp
moreover have "S.isomorphic (S.hcomp (S.UP g') (S.UP g)) (S.UP (g' \<star> g))"
proof -
have "\<guillemotleft>S.cmp\<^sub>U\<^sub>P (g', g) : S.hcomp (S.UP g') (S.UP g) \<Rightarrow>\<^sub>S S.UP (g' \<star> g)\<guillemotright>"
using assms right_adjoint_is_ide UP.cmp_in_hom by simp
moreover have "S.iso (S.cmp\<^sub>U\<^sub>P (g', g))"
using assms right_adjoint_is_ide by simp
ultimately show ?thesis
using S.isomorphic_def by blast
qed
ultimately have "S.is_right_adjoint (S.UP (g' \<star> g))"
using S.right_adjoint_preserved_by_iso S.isomorphic_def by blast
thus "is_right_adjoint (g' \<star> g)"
using assms right_adjoint_is_ide UP.reflects_right_adjoint by simp
qed
end
subsection "Choosing Right Adjoints"
text \<open>
It will be useful in various situations to suppose that we have made a choice of
right adjoint for each left adjoint ({\it i.e.} each ``map'') in a bicategory.
\<close>
locale chosen_right_adjoints =
bicategory
begin
(* Global notation is evil! *)
no_notation Transitive_Closure.rtrancl ("(_\<^sup>*)" [1000] 999)
definition some_right_adjoint ("_\<^sup>*" [1000] 1000)
where "f\<^sup>* \<equiv> SOME g. adjoint_pair f g"
definition some_unit
where "some_unit f \<equiv> SOME \<eta>. \<exists>\<epsilon>. adjunction_in_bicategory V H \<a> \<i> src trg f f\<^sup>* \<eta> \<epsilon>"
definition some_counit
where "some_counit f \<equiv>
SOME \<epsilon>. adjunction_in_bicategory V H \<a> \<i> src trg f f\<^sup>* (some_unit f) \<epsilon>"
lemma left_adjoint_extends_to_adjunction:
assumes "is_left_adjoint f"
shows "adjunction_in_bicategory V H \<a> \<i> src trg f f\<^sup>* (some_unit f) (some_counit f)"
using assms some_right_adjoint_def adjoint_pair_def some_unit_def some_counit_def
someI_ex [of "\<lambda>g. adjoint_pair f g"]
someI_ex [of "\<lambda>\<eta>. \<exists>\<epsilon>. adjunction_in_bicategory V H \<a> \<i> src trg f f\<^sup>* \<eta> \<epsilon>"]
someI_ex [of "\<lambda>\<epsilon>. adjunction_in_bicategory V H \<a> \<i> src trg f f\<^sup>* (some_unit f) \<epsilon>"]
by auto
lemma left_adjoint_extends_to_adjoint_pair:
assumes "is_left_adjoint f"
shows "adjoint_pair f f\<^sup>*"
using assms adjoint_pair_def left_adjoint_extends_to_adjunction by blast
lemma right_adjoint_in_hom [intro]:
assumes "is_left_adjoint f"
shows "\<guillemotleft>f\<^sup>* : trg f \<rightarrow> src f\<guillemotright>"
and "\<guillemotleft>f\<^sup>* : f\<^sup>* \<Rightarrow> f\<^sup>*\<guillemotright>"
using assms left_adjoint_extends_to_adjoint_pair adjoint_pair_antipar [of f "f\<^sup>*"]
by auto
lemma right_adjoint_simps [simp]:
assumes "is_left_adjoint f"
shows "ide f\<^sup>*"
and "src f\<^sup>* = trg f" and "trg f\<^sup>* = src f"
and "dom f\<^sup>* = f\<^sup>*" and "cod f\<^sup>* = f\<^sup>*"
using assms right_adjoint_in_hom left_adjoint_extends_to_adjoint_pair apply auto
using assms right_adjoint_is_ide [of "f\<^sup>*"] by blast
end
locale map_in_bicategory =
bicategory + chosen_right_adjoints +
fixes f :: 'a
assumes is_map: "is_left_adjoint f"
begin
abbreviation \<eta>
where "\<eta> \<equiv> some_unit f"
abbreviation \<epsilon>
where "\<epsilon> \<equiv> some_counit f"
sublocale adjunction_in_bicategory V H \<a> \<i> src trg f \<open>f\<^sup>*\<close> \<eta> \<epsilon>
using is_map left_adjoint_extends_to_adjunction by simp
end
subsection "Equivalences Refine to Adjoint Equivalences"
text \<open>
In this section, we show that, just as an equivalence between categories can always
be refined to an adjoint equivalence, an internal equivalence in a bicategory can also
always be so refined.
The proof, which follows that of Theorem 3.3 from \cite{nlab-adjoint-equivalence},
makes use of the fact that if an internal equivalence satisfies one of the triangle
identities, then it also satisfies the other.
\<close>
locale adjoint_equivalence_in_bicategory =
equivalence_in_bicategory +
adjunction_in_bicategory
begin
lemma dual_adjoint_equivalence:
shows "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg g f (inv \<epsilon>) (inv \<eta>)"
proof -
interpret gf: equivalence_in_bicategory V H \<a> \<i> src trg g f \<open>inv \<epsilon>\<close> \<open>inv \<eta>\<close>
using dual_equivalence by simp
show ?thesis
proof
show "(inv \<eta> \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[g, f, g] \<cdot> (g \<star> inv \<epsilon>) = \<l>\<^sup>-\<^sup>1[g] \<cdot> \<r>[g]"
proof -
have "(inv \<eta> \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[g, f, g] \<cdot> (g \<star> inv \<epsilon>) =
inv ((g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g))"
using antipar inv_comp isos_compose comp_assoc by simp
also have "... = inv (\<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g])"
using triangle_right by simp
also have "... = \<l>\<^sup>-\<^sup>1[g] \<cdot> \<r>[g]"
using inv_comp by simp
finally show ?thesis
by blast
qed
show "(f \<star> inv \<eta>) \<cdot> \<a>[f, g, f] \<cdot> (inv \<epsilon> \<star> f) = \<r>\<^sup>-\<^sup>1[f] \<cdot> \<l>[f]"
proof -
have "(f \<star> inv \<eta>) \<cdot> \<a>[f, g, f] \<cdot> (inv \<epsilon> \<star> f) =
inv ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>))"
using antipar inv_comp isos_compose comp_assoc by simp
also have "... = inv (\<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f])"
using triangle_left by simp
also have "... = \<r>\<^sup>-\<^sup>1[f] \<cdot> \<l>[f]"
using inv_comp by simp
finally show ?thesis by blast
qed
qed
qed
end
context bicategory
begin
lemma adjoint_equivalence_preserved_by_iso_right:
assumes "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
and "\<guillemotleft>\<phi> : g \<Rightarrow> g'\<guillemotright>" and "iso \<phi>"
shows "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g' ((\<phi> \<star> f) \<cdot> \<eta>) (\<epsilon> \<cdot> (f \<star> inv \<phi>))"
proof -
interpret fg: adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using assms by simp
interpret fg': adjunction_in_bicategory V H \<a> \<i> src trg f g' \<open>(\<phi> \<star> f) \<cdot> \<eta>\<close> \<open>\<epsilon> \<cdot> (f \<star> inv \<phi>)\<close>
using assms fg.adjunction_in_bicategory_axioms adjunction_preserved_by_iso_right
by simp
interpret fg': equivalence_in_bicategory V H \<a> \<i> src trg f g' \<open>(\<phi> \<star> f) \<cdot> \<eta>\<close> \<open>\<epsilon> \<cdot> (f \<star> inv \<phi>)\<close>
using assms fg.equivalence_in_bicategory_axioms equivalence_preserved_by_iso_right
by simp
show ?thesis ..
qed
lemma adjoint_equivalence_preserved_by_iso_left:
assumes "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
and "\<guillemotleft>\<phi> : f \<Rightarrow> f'\<guillemotright>" and "iso \<phi>"
shows "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f' g ((g \<star> \<phi>) \<cdot> \<eta>) (\<epsilon> \<cdot> (inv \<phi> \<star> g))"
proof -
interpret fg: adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using assms by simp
interpret fg': adjunction_in_bicategory V H \<a> \<i> src trg f' g \<open>(g \<star> \<phi>) \<cdot> \<eta>\<close> \<open>\<epsilon> \<cdot> (inv \<phi> \<star> g)\<close>
using assms fg.adjunction_in_bicategory_axioms adjunction_preserved_by_iso_left
by simp
interpret fg': equivalence_in_bicategory V H \<a> \<i> src trg f' g \<open>(g \<star> \<phi>) \<cdot> \<eta>\<close> \<open>\<epsilon> \<cdot> (inv \<phi> \<star> g)\<close>
using assms fg.equivalence_in_bicategory_axioms equivalence_preserved_by_iso_left
by simp
show ?thesis ..
qed
end
context strict_bicategory
begin
notation isomorphic (infix "\<cong>" 50)
lemma equivalence_refines_to_adjoint_equivalence:
assumes "equivalence_map f" and "\<guillemotleft>g : trg f \<rightarrow> src f\<guillemotright>" and "ide g"
and "\<guillemotleft>\<eta> : src f \<Rightarrow> g \<star> f\<guillemotright>" and "iso \<eta>"
shows "\<exists>!\<epsilon>. adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
proof -
obtain g' \<eta>' \<epsilon>' where E': "equivalence_in_bicategory V H \<a> \<i> src trg f g' \<eta>' \<epsilon>'"
using assms equivalence_map_def by auto
interpret E': equivalence_in_bicategory V H \<a> \<i> src trg f g' \<eta>' \<epsilon>'
using E' by auto
let ?a = "src f" and ?b = "trg f"
(* TODO: in_homE cannot be applied automatically to a conjunction. Must break down! *)
have f_in_hhom: "\<guillemotleft>f : ?a \<rightarrow> ?b\<guillemotright>" and ide_f: "ide f"
using assms equivalence_map_def by auto
have g_in_hhom: "\<guillemotleft>g : ?b \<rightarrow> ?a\<guillemotright>" and ide_g: "ide g"
using assms by auto
have g'_in_hhom: "\<guillemotleft>g' : ?b \<rightarrow> ?a\<guillemotright>" and ide_g': "ide g'"
using assms f_in_hhom E'.antipar by auto
have \<eta>_in_hom: "\<guillemotleft>\<eta> : ?a \<Rightarrow> g \<star> f\<guillemotright>" and iso_\<eta>: "iso \<eta>"
using assms by auto
have a: "obj ?a" and b: "obj ?b"
using f_in_hhom by auto
have \<eta>_in_hhom: "\<guillemotleft>\<eta> : ?a \<rightarrow> ?a\<guillemotright>"
using a \<eta>_in_hom
by (metis arrI in_hhom_def obj_simps(2-3) vconn_implies_hpar(1-2))
text \<open>
The following is quoted from \cite{nlab-adjoint-equivalence}:
\begin{quotation}
``Since \<open>g \<cong> gfg' \<cong> g'\<close>, the isomorphism \<open>fg' \<cong> 1\<close> also induces an isomorphism \<open>fg \<cong> 1\<close>,
which we denote \<open>\<xi>\<close>. Now \<open>\<eta>\<close> and \<open>\<xi>\<close> may not satisfy the zigzag identities, but if we
define \<open>\<epsilon>\<close> by \<open>\<xi> \<cdot> (f \<star> \<eta>\<^sup>-\<^sup>1) \<cdot> (f \<star> g \<star> \<xi>\<^sup>-\<^sup>1) : f \<star> g \<Rightarrow> 1\<close>, then we can verify,
using string diagram notation as above,
that \<open>\<epsilon>\<close> satisfies one zigzag identity, and hence (by the previous lemma) also the other.
Finally, if \<open>\<epsilon>': fg \<Rightarrow> 1\<close> is any other isomorphism satisfying the zigzag identities
with \<open>\<eta>\<close>, then we have:
\[
\<open>\<epsilon>' = \<epsilon>' \<cdot> (\<epsilon> f g) \<cdot> (f \<eta> g) = \<epsilon> \<cdot> (f g \<epsilon>') \<cdot> (f \<eta> g) = \<epsilon>\<close>
\]
using the interchange law and two zigzag identities. This shows uniqueness.''
\end{quotation}
\<close>
have 1: "g \<cong> g'"
proof -
have "g \<cong> g \<star> ?b"
using assms hcomp_arr_obj isomorphic_reflexive by auto
also have "... \<cong> g \<star> f \<star> g'"
using assms f_in_hhom g_in_hhom g'_in_hhom E'.counit_in_vhom E'.counit_is_iso
isomorphic_def hcomp_ide_isomorphic isomorphic_symmetric
by (metis E'.counit_simps(5) in_hhomE trg_trg)
also have "... \<cong> ?a \<star> g'"
using assms f_in_hhom g_in_hhom g'_in_hhom ide_g' E'.unit_in_vhom E'.unit_is_iso
isomorphic_def hcomp_isomorphic_ide isomorphic_symmetric
by (metis hcomp_assoc hcomp_isomorphic_ide in_hhomE src_src)
also have "... \<cong> g'"
using assms
by (simp add: E'.antipar(1) hcomp_obj_arr isomorphic_reflexive)
finally show ?thesis by blast
qed
have "f \<star> g' \<cong> ?b"
using E'.counit_is_iso isomorphicI [of \<epsilon>'] by auto
hence 2: "f \<star> g \<cong> ?b"
using assms 1 ide_f hcomp_ide_isomorphic [of f g g'] isomorphic_transitive
isomorphic_symmetric
by (metis in_hhomE)
obtain \<xi> where \<xi>: "\<guillemotleft>\<xi> : f \<star> g \<Rightarrow> ?b\<guillemotright> \<and> iso \<xi>"
using 2 by auto
have \<xi>_in_hom: "\<guillemotleft>\<xi> : f \<star> g \<Rightarrow> ?b\<guillemotright>" and iso_\<xi>: "iso \<xi>"
using \<xi> by auto
have \<xi>_in_hhom: "\<guillemotleft>\<xi> : ?b \<rightarrow> ?b\<guillemotright>"
using b \<xi>_in_hom
by (metis \<xi> in_hhom_def iso_is_arr obj_simps(2-3) vconn_implies_hpar(1-4))
text \<open>
At the time of this writing, the definition of \<open>\<epsilon>\<close> given on nLab
\cite{nlab-adjoint-equivalence} had an apparent typo:
the expression \<open>f \<star> g \<star> \<xi>\<^sup>-\<^sup>1\<close> should read \<open>\<xi>\<^sup>-\<^sup>1 \<star> f \<star> g\<close>, as we have used here.
\<close>
let ?\<epsilon> = "\<xi> \<cdot> (f \<star> inv \<eta> \<star> g) \<cdot> (inv \<xi> \<star> f \<star> g)"
have \<epsilon>_in_hom: "\<guillemotleft>?\<epsilon> : f \<star> g \<Rightarrow> ?b\<guillemotright>"
proof (intro comp_in_homI)
show "\<guillemotleft>f \<star> inv \<eta> \<star> g : f \<star> g \<star> f \<star> g \<Rightarrow> f \<star> g\<guillemotright>"
proof -
have "\<guillemotleft>f \<star> inv \<eta> \<star> g : f \<star> (g \<star> f) \<star> g \<Rightarrow> f \<star> g\<guillemotright>"
proof -
have "\<guillemotleft>f \<star> inv \<eta> \<star> g : f \<star> (g \<star> f) \<star> g \<Rightarrow> f \<star> ?a \<star> g\<guillemotright>"
using assms \<eta>_in_hom iso_\<eta> by (intro hcomp_in_vhom) auto
thus ?thesis
using assms f_in_hhom hcomp_obj_arr by (metis in_hhomE)
qed
moreover have "f \<star> (g \<star> f) \<star> g = f \<star> g \<star> f \<star> g"
using hcomp_assoc by simp
ultimately show ?thesis by simp
qed
show "\<guillemotleft>inv \<xi> \<star> f \<star> g : f \<star> g \<Rightarrow> f \<star> g \<star> f \<star> g\<guillemotright>"
proof -
have "\<guillemotleft>inv \<xi> \<star> f \<star> g : ?b \<star> f \<star> g \<Rightarrow> (f \<star> g) \<star> f \<star> g\<guillemotright>"
using assms \<xi>_in_hom iso_\<xi> by (intro hcomp_in_vhom, auto)
thus ?thesis
using hcomp_assoc f_in_hhom g_in_hhom b hcomp_obj_arr [of ?b "f \<star> g"]
by fastforce
qed
show "\<guillemotleft>\<xi> : f \<star> g \<Rightarrow> ?b\<guillemotright>"
using \<xi>_in_hom by blast
qed
have "iso ?\<epsilon>"
using f_in_hhom g_in_hhom \<eta>_in_hhom ide_f ide_g \<eta>_in_hom iso_\<eta> \<xi>_in_hhom \<xi>_in_hom iso_\<xi>
iso_inv_iso isos_compose
by (metis \<epsilon>_in_hom arrI hseqE ide_is_iso iso_hcomp seqE)
have 4: "\<guillemotleft>inv \<xi> \<star> f : ?b \<star> f \<Rightarrow> f \<star> g \<star> f\<guillemotright>"
proof -
have "\<guillemotleft>inv \<xi> \<star> f : ?b \<star> f \<Rightarrow> (f \<star> g) \<star> f\<guillemotright>"
using \<xi>_in_hom iso_\<xi> f_in_hhom
by (intro hcomp_in_vhom, auto)
thus ?thesis
using hcomp_assoc by simp
qed
text \<open>
First show \<open>?\<epsilon>\<close> and \<open>\<eta>\<close> satisfy the ``left'' triangle identity.
\<close>
have triangle_left: "(?\<epsilon> \<star> f) \<cdot> (f \<star> \<eta>) = f"
proof -
have "(?\<epsilon> \<star> f) \<cdot> (f \<star> \<eta>) = (\<xi> \<star> f) \<cdot> (f \<star> inv \<eta> \<star> g \<star> f) \<cdot> (inv \<xi> \<star> f \<star> g \<star> f) \<cdot> (?b \<star> f \<star> \<eta>)"
proof -
have "f \<star> \<eta> = ?b \<star> f \<star> \<eta>"
using b \<eta>_in_hhom hcomp_obj_arr [of ?b "f \<star> \<eta>"] by fastforce
moreover have "\<xi> \<cdot> (f \<star> inv \<eta> \<star> g) \<cdot> (inv \<xi> \<star> f \<star> g) \<star> f =
(\<xi> \<star> f) \<cdot> ((f \<star> inv \<eta> \<star> g) \<star> f) \<cdot> ((inv \<xi> \<star> f \<star> g) \<star> f)"
using ide_f ide_g \<xi>_in_hhom \<xi>_in_hom iso_\<xi> \<eta>_in_hhom \<eta>_in_hom iso_\<eta> whisker_right
by (metis \<epsilon>_in_hom arrI seqE)
moreover have "... = (\<xi> \<star> f) \<cdot> (f \<star> inv \<eta> \<star> g \<star> f) \<cdot> (inv \<xi> \<star> f \<star> g \<star> f)"
using hcomp_assoc by simp
ultimately show ?thesis
using comp_assoc by simp
qed
also have "... = (\<xi> \<star> f) \<cdot> ((f \<star> inv \<eta> \<star> g \<star> f) \<cdot> (f \<star> g \<star> f \<star> \<eta>)) \<cdot> (inv \<xi> \<star> f)"
proof -
have "(inv \<xi> \<star> f \<star> g \<star> f) \<cdot> (?b \<star> f \<star> \<eta>) = ((inv \<xi> \<star> f) \<star> (g \<star> f)) \<cdot> ((?b \<star> f) \<star> \<eta>)"
using hcomp_assoc by simp
also have "... = (inv \<xi> \<star> f) \<cdot> (?b \<star> f) \<star> (g \<star> f) \<cdot> \<eta>"
proof -
have "seq (inv \<xi> \<star> f) (?b \<star> f)"
using a b 4 ide_f ide_g \<xi>_in_hhom \<xi>_in_hom iso_\<xi> by blast
moreover have "seq (g \<star> f) \<eta>"
using f_in_hhom g_in_hhom ide_g ide_f \<eta>_in_hom by fast
ultimately show ?thesis
using interchange [of "inv \<xi> \<star> f" "?b \<star> f" "g \<star> f" \<eta>] by simp
qed
also have "... = inv \<xi> \<star> f \<star> \<eta>"
using 4 comp_arr_dom comp_cod_arr \<eta>_in_hom hcomp_assoc by (metis in_homE)
also have "... = (f \<star> g) \<cdot> inv \<xi> \<star> (f \<star> \<eta>) \<cdot> (f \<star> ?a)"
proof -
have "(f \<star> g) \<cdot> inv \<xi> = inv \<xi>"
using \<xi>_in_hom iso_\<xi> comp_cod_arr by auto
moreover have "(f \<star> \<eta>) \<cdot> (f \<star> ?a) = f \<star> \<eta>"
proof -
have "\<guillemotleft>f \<star> \<eta> : f \<star> ?a \<Rightarrow> f \<star> g \<star> f\<guillemotright>"
using \<eta>_in_hom by fastforce
thus ?thesis
using comp_arr_dom by blast
qed
ultimately show ?thesis by argo
qed
also have "... = ((f \<star> g) \<star> (f \<star> \<eta>)) \<cdot> (inv \<xi> \<star> (f \<star> ?a))"
proof -
have "seq (f \<star> g) (inv \<xi>)"
using \<xi>_in_hom iso_\<xi> comp_cod_arr by auto
moreover have "seq (f \<star> \<eta>) (f \<star> ?a)"
using f_in_hhom \<eta>_in_hom by force
ultimately show ?thesis
using interchange by simp
qed
also have "... = (f \<star> g \<star> f \<star> \<eta>) \<cdot> (inv \<xi> \<star> f)"
using hcomp_arr_obj hcomp_assoc by auto
finally have "(inv \<xi> \<star> f \<star> g \<star> f) \<cdot> (?b \<star> f \<star> \<eta>) = (f \<star> g \<star> f \<star> \<eta>) \<cdot> (inv \<xi> \<star> f)"
by simp
thus ?thesis
using comp_assoc by simp
qed
also have "... = (\<xi> \<star> f) \<cdot> ((f \<star> ?a \<star> \<eta>) \<cdot> (f \<star> inv \<eta> \<star> ?a)) \<cdot> (inv \<xi> \<star> f)"
proof -
have "(f \<star> inv \<eta> \<star> g \<star> f) \<cdot> (f \<star> (g \<star> f) \<star> \<eta>) = f \<star> (inv \<eta> \<star> g \<star> f) \<cdot> ((g \<star> f) \<star> \<eta>)"
proof -
have "(f \<star> (inv \<eta> \<star> g) \<star> f) \<cdot> (f \<star> (g \<star> f) \<star> \<eta>) = f \<star> ((inv \<eta> \<star> g) \<star> f) \<cdot> ((g \<star> f) \<star> \<eta>)"
proof -
have "seq ((inv \<eta> \<star> g) \<star> f) ((g \<star> f) \<star> \<eta>)"
proof -
have "seq (inv \<eta> \<star> g \<star> f) ((g \<star> f) \<star> \<eta>)"
using f_in_hhom ide_f g_in_hhom ide_g \<eta>_in_hhom \<eta>_in_hom iso_\<eta>
apply (intro seqI hseqI')
apply auto
by fastforce+
thus ?thesis
using hcomp_assoc by simp
qed
thus ?thesis
using whisker_left by simp
qed
thus ?thesis
using hcomp_assoc by simp
qed
also have "... = f \<star> (?a \<star> \<eta>) \<cdot> (inv \<eta> \<star> ?a)"
proof -
have "(inv \<eta> \<star> g \<star> f) \<cdot> ((g \<star> f) \<star> \<eta>) = (?a \<star> \<eta>) \<cdot> (inv \<eta> \<star> ?a)"
proof -
have "(inv \<eta> \<star> g \<star> f) \<cdot> ((g \<star> f) \<star> \<eta>) = inv \<eta> \<cdot> (g \<star> f) \<star> (g \<star> f) \<cdot> \<eta>"
using g_in_hhom ide_g \<eta>_in_hom iso_\<eta>
interchange [of "inv \<eta>" "g \<star> f" "g \<star> f" \<eta>]
by force
also have "... = inv \<eta> \<star> \<eta>"
using \<eta>_in_hom iso_\<eta> comp_arr_dom comp_cod_arr by auto
also have "... = ?a \<cdot> inv \<eta> \<star> \<eta> \<cdot> ?a"
using \<eta>_in_hom iso_\<eta> comp_arr_dom comp_cod_arr by auto
also have "... = (?a \<star> \<eta>) \<cdot> (inv \<eta> \<star> ?a)"
using a \<eta>_in_hom iso_\<eta> interchange [of ?a "inv \<eta>" \<eta> ?a] by blast
finally show ?thesis by simp
qed
thus ?thesis by argo
qed
also have "... = (f \<star> ?a \<star> \<eta>) \<cdot> (f \<star> inv \<eta> \<star> ?a)"
proof -
have "seq (?a \<star> \<eta>) (inv \<eta> \<star> ?a)"
proof (intro seqI')
show "\<guillemotleft>inv \<eta> \<star> ?a : (g \<star> f) \<star> ?a \<Rightarrow> ?a \<star> ?a\<guillemotright>"
using a g_in_hhom \<eta>_in_hom iso_\<eta> hseqI ide_f ide_g
by (intro hcomp_in_vhom) auto
show "\<guillemotleft>?a \<star> \<eta> : ?a \<star> ?a \<Rightarrow> ?a \<star> g \<star> f\<guillemotright>"
using a \<eta>_in_hom hseqI by (intro hcomp_in_vhom) auto
qed
thus ?thesis
using whisker_left by simp
qed
finally show ?thesis
using hcomp_assoc by simp
qed
also have "... = (\<xi> \<star> f) \<cdot> ((f \<star> \<eta>) \<cdot> (f \<star> inv \<eta>)) \<cdot> (inv \<xi> \<star> f)"
using a \<eta>_in_hhom iso_\<eta> hcomp_obj_arr [of ?a \<eta>] hcomp_arr_obj [of "inv \<eta>" ?a] by auto
also have "... = (\<xi> \<star> f) \<cdot> (inv \<xi> \<star> f)"
proof -
have "((f \<star> \<eta>) \<cdot> (f \<star> inv \<eta>)) \<cdot> (inv \<xi> \<star> f) = (f \<star> \<eta> \<cdot> inv \<eta>) \<cdot> (inv \<xi> \<star> f)"
using \<eta>_in_hhom iso_\<eta> whisker_left inv_in_hom by auto
also have "... = (f \<star> g \<star> f) \<cdot> (inv \<xi> \<star> f)"
using \<eta>_in_hom iso_\<eta> comp_arr_inv inv_is_inverse by auto
also have "... = inv \<xi> \<star> f"
using 4 comp_cod_arr by blast
ultimately show ?thesis by simp
qed
also have "... = f"
proof -
have "(\<xi> \<star> f) \<cdot> (inv \<xi> \<star> f) = \<xi> \<cdot> inv \<xi> \<star> f"
using \<xi>_in_hhom iso_\<xi> whisker_right by auto
also have "... = ?b \<star> f"
using \<xi>_in_hom iso_\<xi> comp_arr_inv' by auto
also have "... = f"
using hcomp_obj_arr by auto
finally show ?thesis by blast
qed
finally show ?thesis by blast
qed
(* TODO: Putting this earlier breaks some steps in the proof. *)
interpret E: equivalence_in_strict_bicategory V H \<a> \<i> src trg f g \<eta> ?\<epsilon>
using ide_g \<eta>_in_hom \<epsilon>_in_hom g_in_hhom \<open>iso \<eta>\<close> \<open>iso ?\<epsilon>\<close>
by (unfold_locales, auto)
text \<open>
Apply ``triangle left if and only iff right'' to show the ``right'' triangle identity.
\<close>
have triangle_right: "((g \<star> \<xi> \<cdot> (f \<star> inv \<eta> \<star> g) \<cdot> (inv \<xi> \<star> f \<star> g)) \<cdot> (\<eta> \<star> g) = g)"
using triangle_left E.triangle_left_iff_right by simp
text \<open>
Use the two triangle identities to establish an adjoint equivalence and show that
there is only one choice for the counit.
\<close>
show "\<exists>!\<epsilon>. adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
proof -
have "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> ?\<epsilon>"
proof
show "(?\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]"
proof -
have "(?\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = (?\<epsilon> \<star> f) \<cdot> (f \<star> \<eta>)"
proof -
have "seq \<a>\<^sup>-\<^sup>1[f, g, f] (f \<star> \<eta>)"
using E.antipar
by (intro seqI, auto)
hence "\<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = f \<star> \<eta>"
using ide_f ide_g E.antipar triangle_right strict_assoc' comp_ide_arr
by presburger
thus ?thesis by simp
qed
also have "... = f"
using triangle_left by simp
also have "... = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]"
using strict_lunit strict_runit by simp
finally show ?thesis by simp
qed
show "(g \<star> ?\<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]"
proof -
have "(g \<star> ?\<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = (g \<star> ?\<epsilon>) \<cdot> (\<eta> \<star> g)"
proof -
have "seq \<a>[g, f, g] (\<eta> \<star> g)"
using E.antipar
by (intro seqI, auto)
hence "\<a>[g, f, g] \<cdot> (\<eta> \<star> g) = \<eta> \<star> g"
using ide_f ide_g E.antipar triangle_right strict_assoc comp_ide_arr
by presburger
thus ?thesis by simp
qed
also have "... = g"
using triangle_right by simp
also have "... = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]"
using strict_lunit strict_runit by simp
finally show ?thesis by blast
qed
qed
moreover have "\<And>\<epsilon> \<epsilon>'. \<lbrakk> adjoint_equivalence_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg f g \<eta> \<epsilon>;
adjoint_equivalence_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg f g \<eta> \<epsilon>' \<rbrakk>
\<Longrightarrow> \<epsilon> = \<epsilon>'"
using adjunction_unit_determines_counit
by (meson adjoint_equivalence_in_bicategory.axioms(2))
ultimately show ?thesis by auto
qed
qed
end
text \<open>
We now apply strictification to generalize the preceding result to an arbitrary bicategory.
\<close>
context bicategory
begin
interpretation S: strictified_bicategory V H \<a> \<i> src trg ..
notation S.vcomp (infixr "\<cdot>\<^sub>S" 55)
notation S.hcomp (infixr "\<star>\<^sub>S" 53)
notation S.in_hom ("\<guillemotleft>_ : _ \<Rightarrow>\<^sub>S _\<guillemotright>")
notation S.in_hhom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>S _\<guillemotright>")
interpretation UP: fully_faithful_functor V S.vcomp S.UP
using S.UP_is_fully_faithful_functor by auto
interpretation UP: equivalence_pseudofunctor V H \<a> \<i> src trg
S.vcomp S.hcomp S.\<a> S.\<i> S.src S.trg S.UP S.cmp\<^sub>U\<^sub>P
using S.UP_is_equivalence_pseudofunctor by auto
interpretation UP: pseudofunctor_into_strict_bicategory V H \<a> \<i> src trg
S.vcomp S.hcomp S.\<a> S.\<i> S.src S.trg S.UP S.cmp\<^sub>U\<^sub>P
..
lemma equivalence_refines_to_adjoint_equivalence:
assumes "equivalence_map f" and "\<guillemotleft>g : trg f \<rightarrow> src f\<guillemotright>" and "ide g"
and "\<guillemotleft>\<eta> : src f \<Rightarrow> g \<star> f\<guillemotright>" and "iso \<eta>"
shows "\<exists>!\<epsilon>. adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
proof -
text \<open>
To unpack the consequences of the assumptions, we need to obtain an
interpretation of @{locale equivalence_in_bicategory}, even though we don't
need the associated data other than \<open>f\<close>, \<open>a\<close>, and \<open>b\<close>.
\<close>
obtain g' \<phi> \<psi> where E: "equivalence_in_bicategory V H \<a> \<i> src trg f g' \<phi> \<psi>"
using assms equivalence_map_def by auto
interpret E: equivalence_in_bicategory V H \<a> \<i> src trg f g' \<phi> \<psi>
using E by auto
let ?a = "src f" and ?b = "trg f"
have ide_f: "ide f" by simp
have f_in_hhom: "\<guillemotleft>f : ?a \<rightarrow> ?b\<guillemotright>" by simp
have a: "obj ?a" and b: "obj ?b" by auto
have 1: "S.equivalence_map (S.UP f)"
using assms UP.preserves_equivalence_maps by simp
let ?\<eta>' = "S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta> \<cdot>\<^sub>S UP.unit ?a"
have 2: "\<guillemotleft>S.UP \<eta> : S.UP ?a \<Rightarrow>\<^sub>S S.UP (g \<star> f)\<guillemotright>"
using assms UP.preserves_hom [of \<eta> "src f" "g \<star> f"] by auto
have 3: "\<guillemotleft>?\<eta>' : UP.map\<^sub>0 ?a \<Rightarrow>\<^sub>S S.UP g \<star>\<^sub>S S.UP f\<guillemotright> \<and> S.iso ?\<eta>'"
proof (intro S.comp_in_homI conjI)
show "\<guillemotleft>S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) : S.UP (g \<star> f) \<Rightarrow>\<^sub>S S.UP g \<star>\<^sub>S S.UP f\<guillemotright>"
using assms UP.cmp_in_hom(2) by auto
moreover show "\<guillemotleft>UP.unit ?a : UP.map\<^sub>0 ?a \<Rightarrow>\<^sub>S S.UP ?a\<guillemotright>" by auto
moreover show "\<guillemotleft>S.UP \<eta> : S.UP ?a \<Rightarrow>\<^sub>S S.UP (g \<star> f)\<guillemotright>"
using 2 by simp
ultimately show "S.iso (S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta> \<cdot>\<^sub>S UP.unit ?a)"
using assms UP.cmp_components_are_iso UP.unit_char(2)
by (intro S.isos_compose) auto
qed
have ex_un_\<xi>': "\<exists>!\<xi>'. adjoint_equivalence_in_bicategory S.vcomp S.hcomp S.\<a> S.\<i> S.src S.trg
(S.UP f) (S.UP g) ?\<eta>' \<xi>'"
proof -
have "\<guillemotleft>S.UP g : S.trg (S.UP f) \<rightarrow>\<^sub>S S.src (S.UP f)\<guillemotright>"
using assms(2) by auto
moreover have "S.ide (S.UP g)"
by (simp add: assms(3))
ultimately show ?thesis
using 1 3 S.equivalence_refines_to_adjoint_equivalence S.UP_map\<^sub>0_obj by simp
qed
obtain \<xi>' where \<xi>': "adjoint_equivalence_in_bicategory S.vcomp S.hcomp S.\<a> S.\<i> S.src S.trg
(S.UP f) (S.UP g) ?\<eta>' \<xi>'"
using ex_un_\<xi>' by auto
interpret E': adjoint_equivalence_in_bicategory S.vcomp S.hcomp S.\<a> S.\<i> S.src S.trg
\<open>S.UP f\<close> \<open>S.UP g\<close> ?\<eta>' \<xi>'
using \<xi>' by auto
let ?\<epsilon>' = "UP.unit ?b \<cdot>\<^sub>S \<xi>' \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, g))"
have \<epsilon>': "\<guillemotleft>?\<epsilon>' : S.UP (f \<star> g) \<Rightarrow>\<^sub>S S.UP ?b\<guillemotright>"
using assms(2-3) by auto
have ex_un_\<epsilon>: "\<exists>!\<epsilon>. \<guillemotleft>\<epsilon> : f \<star> g \<Rightarrow> ?b\<guillemotright> \<and> S.UP \<epsilon> = ?\<epsilon>'"
proof -
have "\<exists>\<epsilon>. \<guillemotleft>\<epsilon> : f \<star> g \<Rightarrow> ?b\<guillemotright> \<and> S.UP \<epsilon> = ?\<epsilon>'"
proof -
have "src (f \<star> g) = src ?b \<and> trg (f \<star> g) = trg ?b"
using assms(2) f_in_hhom by auto
moreover have "ide (f \<star> g)"
using assms(2-3) by auto
ultimately show ?thesis
using \<epsilon>' UP.locally_full by auto
qed
moreover have
"\<And>\<mu> \<nu>. \<lbrakk> \<guillemotleft>\<mu> : f \<star> g \<Rightarrow> ?b\<guillemotright>; S.UP \<mu> = ?\<epsilon>'; \<guillemotleft>\<nu> : f \<star> g \<Rightarrow> ?b\<guillemotright>; S.UP \<nu> = ?\<epsilon>' \<rbrakk>
\<Longrightarrow> \<mu> = \<nu>"
proof -
fix \<mu> \<nu>
assume \<mu>: "\<guillemotleft>\<mu> : f \<star> g \<Rightarrow> ?b\<guillemotright>" and \<nu>: "\<guillemotleft>\<nu> : f \<star> g \<Rightarrow> ?b\<guillemotright>"
and 1: "S.UP \<mu> = ?\<epsilon>'" and 2: "S.UP \<nu> = ?\<epsilon>'"
have "par \<mu> \<nu>"
using \<mu> \<nu> by fastforce
thus "\<mu> = \<nu>"
using 1 2 UP.is_faithful [of \<mu> \<nu>] by simp
qed
ultimately show ?thesis by auto
qed
have iso_\<epsilon>': "S.iso ?\<epsilon>'"
proof (intro S.isos_compose)
show "S.iso (S.inv (S.cmp\<^sub>U\<^sub>P (f, g)))"
using assms UP.cmp_components_are_iso by auto
show "S.iso \<xi>'"
using E'.counit_is_iso by blast
show "S.iso (UP.unit ?b)"
using b UP.unit_char(2) by simp
show "S.seq (UP.unit ?b) (\<xi>' \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, g)))"
proof (intro S.seqI')
show "\<guillemotleft>UP.unit ?b : UP.map\<^sub>0 ?b \<Rightarrow>\<^sub>S S.UP ?b\<guillemotright>"
using b UP.unit_char by simp
show "\<guillemotleft>\<xi>' \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, g)) : S.UP (f \<star> g) \<Rightarrow>\<^sub>S UP.map\<^sub>0 ?b\<guillemotright>"
using assms by auto
qed
thus "S.seq \<xi>' (S.inv (S.cmp\<^sub>U\<^sub>P (f, g)))" by auto
qed
obtain \<epsilon> where \<epsilon>: "\<guillemotleft>\<epsilon> : f \<star> g \<Rightarrow> ?b\<guillemotright> \<and> S.UP \<epsilon> = ?\<epsilon>'"
using ex_un_\<epsilon> by auto
interpret E'': equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using assms(1,3-5)
apply unfold_locales
apply simp_all
using assms(2) \<epsilon>
apply auto[1]
using \<epsilon> iso_\<epsilon>' UP.reflects_iso [of \<epsilon>]
by auto
interpret E'': adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
proof
show "(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) = \<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f]"
proof -
have "S.UP ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)) =
S.cmp\<^sub>U\<^sub>P (trg f, f) \<cdot>\<^sub>S (S.UP \<epsilon> \<cdot>\<^sub>S S.cmp\<^sub>U\<^sub>P (f, g) \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, src f))"
using E''.UP_triangle(3) by simp
also have "... = S.cmp\<^sub>U\<^sub>P (trg f, f) \<cdot>\<^sub>S
(UP.unit ?b \<cdot>\<^sub>S \<xi>' \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, g)) \<cdot>\<^sub>S S.cmp\<^sub>U\<^sub>P (f, g) \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, src f))"
using \<epsilon> S.comp_assoc by simp
also have "... = S.cmp\<^sub>U\<^sub>P (trg f, f) \<cdot>\<^sub>S (UP.unit ?b \<cdot>\<^sub>S \<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) \<cdot>\<^sub>S
S.inv (S.cmp\<^sub>U\<^sub>P (f, src f))"
proof -
have "\<xi>' \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, g)) \<cdot>\<^sub>S S.cmp\<^sub>U\<^sub>P (f, g) = \<xi>'"
proof -
have "S.iso (S.cmp\<^sub>U\<^sub>P (f, g))"
using assms by auto
moreover have "S.dom (S.cmp\<^sub>U\<^sub>P (f, g)) = S.UP f \<star>\<^sub>S S.UP g"
using assms by auto
ultimately have "S.inv (S.cmp\<^sub>U\<^sub>P (f, g)) \<cdot>\<^sub>S S.cmp\<^sub>U\<^sub>P (f, g) = S.UP f \<star>\<^sub>S S.UP g"
using S.comp_inv_arr' by simp
thus ?thesis
using S.comp_arr_dom E'.counit_in_hom(2) by simp
qed
thus ?thesis by argo
qed
also have
"... = S.cmp\<^sub>U\<^sub>P (trg f, f) \<cdot>\<^sub>S (UP.unit ?b \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S
((\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f))) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.UP \<eta>)) \<cdot>\<^sub>S
S.inv (S.cmp\<^sub>U\<^sub>P (f, src f))"
proof -
have "UP.unit ?b \<cdot>\<^sub>S \<xi>' \<star>\<^sub>S S.UP f = (UP.unit ?b \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S (\<xi>' \<star>\<^sub>S S.UP f)"
using assms b UP.unit_char S.whisker_right S.UP_map\<^sub>0_obj by auto
moreover have "S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta> =
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f))) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.UP \<eta>)"
using assms S.whisker_left by auto
ultimately show ?thesis
using S.comp_assoc by simp
qed
also have "... = (S.cmp\<^sub>U\<^sub>P (trg f, f) \<cdot>\<^sub>S (UP.unit ?b \<star>\<^sub>S S.UP f)) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (UP.unit (src f))) \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, src f))"
proof -
have "(\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f))) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.UP \<eta>)
= (S.UP f \<star>\<^sub>S S.inv (UP.unit (src f)))"
proof -
have "(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f))) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.UP \<eta>) =
S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>"
using assms S.whisker_left by auto
hence "((\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f))) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.UP \<eta>))
= ((\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>))"
by simp
also have "... = ((\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f)) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>)"
proof -
have "(\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) = \<xi>' \<star>\<^sub>S S.UP f"
proof -
have "\<guillemotleft>\<xi>' \<star>\<^sub>S S.UP f :
(S.UP f \<star>\<^sub>S S.UP g) \<star>\<^sub>S S.UP f \<Rightarrow>\<^sub>S S.trg (S.UP f) \<star>\<^sub>S S.UP f\<guillemotright>"
using assms by auto
moreover have "\<guillemotleft>S.\<a>' (S.UP f) (S.UP g) (S.UP f) :
S.UP f \<star>\<^sub>S S.UP g \<star>\<^sub>S S.UP f \<Rightarrow>\<^sub>S (S.UP f \<star>\<^sub>S S.UP g) \<star>\<^sub>S S.UP f\<guillemotright>"
using assms S.assoc'_in_hom by auto
ultimately show ?thesis
using assms S.strict_assoc' S.iso_assoc S.hcomp_assoc E'.antipar
S.comp_arr_ide S.seqI'
by (metis (no_types, lifting) E'.ide_left E'.ide_right)
qed
thus ?thesis
using S.comp_assoc by simp
qed
also have "... = ((\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>))"
using S.comp_assoc by simp
also have "... = (S.UP f \<star>\<^sub>S S.inv (UP.unit (src f)))"
proof -
have "(\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) =
(S.UP f \<star>\<^sub>S S.inv (UP.unit (src f)))"
proof -
have "(\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S UP.unit ?a) =
S.lunit' (S.UP f) \<cdot>\<^sub>S S.runit (S.UP f)"
proof -
have "(\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S UP.unit ?a) =
(\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta> \<cdot>\<^sub>S UP.unit ?a)"
proof -
have "S.seq (S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) (UP.unit ?a)"
using assms UP.unit_char UP.cmp_components_are_iso
E'.unit_simps(1) S.comp_assoc
by presburger
hence "(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S UP.unit ?a) =
S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta> \<cdot>\<^sub>S UP.unit ?a"
using assms UP.unit_char UP.cmp_components_are_iso S.comp_assoc
S.whisker_left [of "S.UP f" "S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>" "UP.unit ?a"]
by simp
thus ?thesis by simp
qed
thus ?thesis
using assms E'.triangle_left UP.cmp_components_are_iso UP.unit_char
by argo
qed
also have "... = S.UP f"
using S.strict_lunit' S.strict_runit by simp
finally have 1: "((\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>)) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S UP.unit ?a) = S.UP f"
using S.comp_assoc by simp
have "(\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>) =
S.UP f \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S S.inv (UP.unit ?a))"
proof -
have "S.arr (S.UP f)"
using assms by simp
moreover have "S.iso (S.UP f \<star>\<^sub>S UP.unit ?a)"
using assms UP.unit_char S.UP_map\<^sub>0_obj by auto
moreover have "S.inv (S.UP f \<star>\<^sub>S UP.unit ?a) =
S.UP f \<star>\<^sub>S S.inv (UP.unit ?a)"
using assms a UP.unit_char S.UP_map\<^sub>0_obj by auto
ultimately show ?thesis
using assms 1 UP.unit_char UP.cmp_components_are_iso
S.invert_side_of_triangle(2)
[of "S.UP f" "(\<xi>' \<star>\<^sub>S S.UP f) \<cdot>\<^sub>S S.\<a>' (S.UP f) (S.UP g) (S.UP f) \<cdot>\<^sub>S
(S.UP f \<star>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (g, f)) \<cdot>\<^sub>S S.UP \<eta>)"
"S.UP f \<star>\<^sub>S UP.unit ?a"]
by presburger
qed
also have "... = S.UP f \<star>\<^sub>S S.inv (UP.unit ?a)"
proof -
have "\<guillemotleft>S.UP f \<star>\<^sub>S S.inv (UP.unit ?a) :
S.UP f \<star>\<^sub>S S.UP ?a \<Rightarrow>\<^sub>S S.UP f \<star>\<^sub>S UP.map\<^sub>0 ?a\<guillemotright>"
using assms ide_f f_in_hhom UP.unit_char [of ?a] S.inv_in_hom
apply (intro S.hcomp_in_vhom)
apply auto[1]
apply blast
by auto
moreover have "S.UP f \<star>\<^sub>S UP.map\<^sub>0 ?a = S.UP f"
using a S.hcomp_arr_obj S.UP_map\<^sub>0_obj by auto
finally show ?thesis
using S.comp_cod_arr by blast
qed
finally show ?thesis by auto
qed
thus ?thesis
using S.comp_assoc by simp
qed
finally show ?thesis by simp
qed
thus ?thesis
using S.comp_assoc by simp
qed
also have "... = S.UP \<l>\<^sup>-\<^sup>1[f] \<cdot>\<^sub>S S.UP \<r>[f]"
proof -
have "S.cmp\<^sub>U\<^sub>P (trg f, f) \<cdot>\<^sub>S (UP.unit ?b \<star>\<^sub>S S.UP f) = S.UP \<l>\<^sup>-\<^sup>1[f]"
proof -
have "S.UP f = S.UP \<l>[f] \<cdot>\<^sub>S S.cmp\<^sub>U\<^sub>P (trg f, f) \<cdot>\<^sub>S (UP.unit (trg f) \<star>\<^sub>S S.UP f)"
using UP.lunit_coherence iso_lunit S.strict_lunit by simp
thus ?thesis
using UP.image_of_unitor(3) ide_f by presburger
qed
moreover have "(S.UP f \<star>\<^sub>S S.inv (UP.unit (src f))) \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, src f))
= S.UP \<r>[f]"
proof -
have "S.UP \<r>[f] \<cdot>\<^sub>S S.cmp\<^sub>U\<^sub>P (f, src f) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S UP.unit (src f)) = S.UP f"
using UP.runit_coherence [of f] S.strict_runit by simp
moreover have "S.iso (S.cmp\<^sub>U\<^sub>P (f, src f) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S UP.unit (src f)))"
using UP.unit_char UP.cmp_components_are_iso VV.arr_char S.UP_map\<^sub>0_obj
by (intro S.isos_compose) auto
ultimately have
"S.UP \<r>[f] = S.UP f \<cdot>\<^sub>S S.inv (S.cmp\<^sub>U\<^sub>P (f, src f) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S UP.unit (src f)))"
using S.invert_side_of_triangle(2)
[of "S.UP f" "S.UP \<r>[f]" "S.cmp\<^sub>U\<^sub>P (f, src f) \<cdot>\<^sub>S (S.UP f \<star>\<^sub>S UP.unit (src f))"]
ideD(1) ide_f by blast
thus ?thesis
using ide_f UP.image_of_unitor(2) [of f] by argo
qed
ultimately show ?thesis
using S.comp_assoc by simp
qed
also have "... = S.UP (\<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f])"
by simp
finally have "S.UP ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)) = S.UP (\<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f])"
by simp
moreover have "par ((\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>)) (\<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f])"
proof -
have "\<guillemotleft>(\<epsilon> \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[f, g, f] \<cdot> (f \<star> \<eta>) : f \<star> src f \<Rightarrow> trg f \<star> f\<guillemotright>"
using E''.triangle_in_hom(1) by simp
moreover have "\<guillemotleft>\<l>\<^sup>-\<^sup>1[f] \<cdot> \<r>[f] : f \<star> src f \<Rightarrow> trg f \<star> f\<guillemotright>" by auto
ultimately show ?thesis
by (metis in_homE)
qed
ultimately show ?thesis
using UP.is_faithful by blast
qed
thus "(g \<star> \<epsilon>) \<cdot> \<a>[g, f, g] \<cdot> (\<eta> \<star> g) = \<r>\<^sup>-\<^sup>1[g] \<cdot> \<l>[g]"
using E''.triangle_left_implies_right by simp
qed
show ?thesis
using E''.adjoint_equivalence_in_bicategory_axioms E''.adjunction_in_bicategory_axioms
adjunction_unit_determines_counit adjoint_equivalence_in_bicategory_def
by metis
qed
lemma equivalence_map_extends_to_adjoint_equivalence:
assumes "equivalence_map f"
shows "\<exists>g \<eta> \<epsilon>. adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
proof -
obtain g \<eta> \<epsilon>' where E: "equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>'"
using assms equivalence_map_def by auto
interpret E: equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>'
using E by auto
obtain \<epsilon> where A: "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms equivalence_refines_to_adjoint_equivalence [of f g \<eta>]
E.antipar E.unit_is_iso E.unit_in_hom by auto
show ?thesis
using E A by blast
qed
end
subsection "Uniqueness of Adjoints"
text \<open>
Left and right adjoints determine each other up to isomorphism.
\<close>
context strict_bicategory
begin
lemma left_adjoint_determines_right_up_to_iso:
assumes "adjoint_pair f g" and "adjoint_pair f g'"
shows "g \<cong> g'"
proof -
obtain \<eta> \<epsilon> where A: "adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms adjoint_pair_def by auto
interpret A: adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using A by auto
interpret A: adjunction_in_strict_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon> ..
obtain \<eta>' \<epsilon>' where A': "adjunction_in_bicategory V H \<a> \<i> src trg f g' \<eta>' \<epsilon>'"
using assms adjoint_pair_def by auto
interpret A': adjunction_in_bicategory V H \<a> \<i> src trg f g' \<eta>' \<epsilon>'
using A' by auto
interpret A': adjunction_in_strict_bicategory V H \<a> \<i> src trg f g' \<eta>' \<epsilon>' ..
let ?\<phi> = "A'.trnl\<^sub>\<eta> g \<epsilon>"
have "\<guillemotleft>?\<phi>: g \<Rightarrow> g'\<guillemotright>"
using A'.trnl\<^sub>\<eta>_eq A'.adjoint_transpose_left(1) [of "trg f" g] A.antipar A'.antipar
hcomp_arr_obj
by auto
moreover have "iso ?\<phi>"
proof (intro isoI)
let ?\<psi> = "A.trnl\<^sub>\<eta> g' \<epsilon>'"
show "inverse_arrows ?\<phi> ?\<psi>"
proof
show "ide (?\<phi> \<cdot> ?\<psi>)"
proof -
have 1: "ide (trg f) \<and> trg (trg f) = trg f"
by simp
have "?\<phi> \<cdot> ?\<psi> = (g' \<star> \<epsilon>) \<cdot> ((\<eta>' \<star> g) \<cdot> (g \<star> \<epsilon>')) \<cdot> (\<eta> \<star> g')"
using 1 A.antipar A'.antipar A.trnl\<^sub>\<eta>_eq [of "trg f" g' \<epsilon>']
A'.trnl\<^sub>\<eta>_eq [of "trg f" g \<epsilon>] comp_assoc A.counit_in_hom A'.counit_in_hom
by simp
also have "... = ((g' \<star> \<epsilon>) \<cdot> (g' \<star> f \<star> g \<star> \<epsilon>')) \<cdot> ((\<eta>' \<star> g \<star> f \<star> g') \<cdot> (\<eta> \<star> g'))"
proof -
have "(\<eta>' \<star> g) \<cdot> (g \<star> \<epsilon>') = (\<eta>' \<star> g \<star> trg f) \<cdot> (src f \<star> g \<star> \<epsilon>')"
using A.antipar A'.antipar hcomp_arr_obj hcomp_obj_arr [of "src f" "g \<star> \<epsilon>'"]
hseqI'
by (metis A'.counit_simps(1) A'.counit_simps(5) A.ide_right ideD(1)
obj_trg trg_hcomp)
also have "... = \<eta>' \<star> g \<star> \<epsilon>'"
using A.antipar A'.antipar interchange [of \<eta>' "src f" "g \<star> trg f" "g \<star> \<epsilon>'"]
whisker_left comp_arr_dom comp_cod_arr
by simp
also have "... = ((g' \<star> f) \<star> g \<star> \<epsilon>') \<cdot> (\<eta>' \<star> g \<star> (f \<star> g'))"
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar
A'.unit_in_hom A'.counit_in_hom interchange whisker_left
comp_arr_dom comp_cod_arr
by (metis A'.counit_simps(1-2,5) A'.unit_simps(1,3) hseqI' ide_char)
also have "... = (g' \<star> f \<star> g \<star> \<epsilon>') \<cdot> (\<eta>' \<star> g \<star> f \<star> g')"
using hcomp_assoc by simp
finally show ?thesis
using comp_assoc by simp
qed
also have "... = (g' \<star> \<epsilon>') \<cdot> ((g' \<star> (\<epsilon> \<star> f) \<star> g') \<cdot> (g' \<star> (f \<star> \<eta>) \<star> g')) \<cdot> (\<eta>' \<star> g')"
proof -
have "(g' \<star> \<epsilon>) \<cdot> (g' \<star> f \<star> g \<star> \<epsilon>') = (g' \<star> \<epsilon>') \<cdot> (g' \<star> \<epsilon> \<star> f \<star> g')"
proof -
have "(g' \<star> \<epsilon>) \<cdot> (g' \<star> f \<star> g \<star> \<epsilon>') = g' \<star> \<epsilon> \<star> \<epsilon>'"
proof -
have "\<epsilon> \<cdot> (f \<star> g \<star> \<epsilon>') = \<epsilon> \<star> \<epsilon>'"
using A.ide_left A.ide_right A.antipar A'.antipar hcomp_arr_obj comp_arr_dom
comp_cod_arr interchange obj_src trg_src
by (metis A'.counit_simps(1,3) A.counit_simps(1-2,4) hcomp_assoc)
thus ?thesis
using A.antipar A'.antipar whisker_left [of g' \<epsilon> "f \<star> g \<star> \<epsilon>'"]
by (simp add: hcomp_assoc)
qed
also have "... = (g' \<star> \<epsilon>') \<cdot> (g' \<star> \<epsilon> \<star> f \<star> g')"
proof -
have "\<epsilon> \<star> \<epsilon>' = \<epsilon>' \<cdot> (\<epsilon> \<star> f \<star> g')"
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar
hcomp_obj_arr hcomp_arr_obj comp_arr_dom comp_cod_arr interchange
obj_src trg_src
by (metis A'.counit_simps(1-2,5) A.counit_simps(1,3-4) arr_cod
not_arr_null seq_if_composable)
thus ?thesis
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar
whisker_left
by (metis A'.counit_simps(1,5) A.counit_simps(1,4) hseqI')
qed
finally show ?thesis by simp
qed
moreover have "(\<eta>' \<star> g \<star> f \<star> g') \<cdot> (\<eta> \<star> g') = (g' \<star> f \<star> \<eta> \<star> g') \<cdot> (\<eta>' \<star> g')"
proof -
have "(\<eta>' \<star> g \<star> f \<star> g') \<cdot> (\<eta> \<star> g') = \<eta>' \<star> \<eta> \<star> g'"
proof -
have "(\<eta>' \<star> g \<star> f) \<cdot> \<eta> = \<eta>' \<star> \<eta>"
using A.ide_left A.ide_right A.antipar A'.antipar A'.unit_in_hom hcomp_arr_obj
interchange comp_arr_dom comp_cod_arr
by (metis A'.unit_simps(1-2,4) A.unit_simps(1,3,5) hcomp_obj_arr obj_trg)
thus ?thesis
using A.antipar A'.antipar whisker_right [of g' "\<eta>' \<star> g \<star> f" \<eta>]
by (simp add: hcomp_assoc)
qed
also have "... = (g' \<star> f \<star> \<eta> \<star> g') \<cdot> (\<eta>' \<star> g')"
proof -
have "\<eta>' \<star> \<eta> = (g' \<star> f \<star> \<eta>) \<cdot> \<eta>'"
using A.ide_left A.ide_right A.antipar A'.antipar A'.unit_in_hom hcomp_arr_obj
comp_arr_dom comp_cod_arr hcomp_assoc interchange
by (metis A'.unit_simps(1,3-4) A.unit_simps(1-2) obj_src)
thus ?thesis
using A.ide_left A.ide_right A.antipar A'.antipar A'.unit_in_hom hcomp_arr_obj
whisker_right [of g' "g' \<star> f \<star> \<eta>" \<eta>']
by (metis A'.ide_right A'.unit_simps(1,4) A.unit_simps(1,5)
hseqI' hcomp_assoc)
qed
finally show ?thesis by simp
qed
ultimately show ?thesis
using comp_assoc hcomp_assoc by simp
qed
also have "... = (g' \<star> \<epsilon>') \<cdot> ((g' \<star> f) \<star> g') \<cdot> (\<eta>' \<star> g')"
proof -
have "(g' \<star> (\<epsilon> \<star> f) \<star> g') \<cdot> (g' \<star> (f \<star> \<eta>) \<star> g') = g' \<star> f \<star> g'"
proof -
have "(g' \<star> (\<epsilon> \<star> f) \<star> g') \<cdot> (g' \<star> (f \<star> \<eta>) \<star> g') =
g' \<star> ((\<epsilon> \<star> f) \<star> g') \<cdot> ((f \<star> \<eta>) \<star> g')"
using A.ide_left A.ide_right A.antipar A'.antipar A'.unit_in_hom
A'.counit_in_hom whisker_left [of g' "(\<epsilon> \<star> f) \<star> g'" "(f \<star> \<eta>) \<star> g'"]
by (metis A'.ide_right A.triangle_left hseqI' ideD(1) whisker_right)
also have "... = g' \<star> (\<epsilon> \<star> f) \<cdot> (f \<star> \<eta>) \<star> g'"
using A.antipar A'.antipar whisker_right [of g' "\<epsilon> \<star> f" "f \<star> \<eta>"]
by (simp add: A.triangle_left)
also have "... = g' \<star> f \<star> g'"
using A.triangle_left by simp
finally show ?thesis by simp
qed
thus ?thesis
using hcomp_assoc by simp
qed
also have "... = (g' \<star> \<epsilon>') \<cdot> (\<eta>' \<star> g')"
using A.antipar A'.antipar A'.unit_in_hom A'.counit_in_hom comp_cod_arr
by (metis A'.ide_right A'.triangle_in_hom(2) A.ide_left arrI assoc_is_natural_2
ide_char seqE strict_assoc)
also have "... = g'"
using A'.triangle_right by simp
finally have "?\<phi> \<cdot> ?\<psi> = g'" by simp
thus ?thesis by simp
qed
show "ide (?\<psi> \<cdot> ?\<phi>)"
proof -
have 1: "ide (trg f) \<and> trg (trg f) = trg f"
by simp
have "?\<psi> \<cdot> ?\<phi> = (g \<star> \<epsilon>') \<cdot> ((\<eta> \<star> g') \<cdot> (g' \<star> \<epsilon>)) \<cdot> (\<eta>' \<star> g)"
using A.antipar A'.antipar A'.trnl\<^sub>\<eta>_eq [of "trg f" g \<epsilon>]
A.trnl\<^sub>\<eta>_eq [of "trg f" g' \<epsilon>'] comp_assoc A.counit_in_hom A'.counit_in_hom
by simp
also have "... = ((g \<star> \<epsilon>') \<cdot> (g \<star> f \<star> g' \<star> \<epsilon>)) \<cdot> ((\<eta> \<star> g' \<star> f \<star> g) \<cdot> (\<eta>' \<star> g))"
proof -
have "(\<eta> \<star> g') \<cdot> (g' \<star> \<epsilon>) = (\<eta> \<star> g' \<star> trg f) \<cdot> (src f \<star> g' \<star> \<epsilon>)"
using A.antipar A'.antipar hcomp_arr_obj hcomp_obj_arr hseqI'
by (metis A'.ide_right A.unit_simps(1,4) hcomp_assoc hcomp_obj_arr
ideD(1) obj_src)
also have "... = \<eta> \<star> g' \<star> \<epsilon>"
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar A.unit_in_hom
A.counit_in_hom interchange
by (metis "1" A.counit_simps(5) A.unit_simps(4) hseqI' ide_def ide_in_hom(2)
not_arr_null seqI' src.preserves_ide)
also have "... = ((g \<star> f) \<star> g' \<star> \<epsilon>) \<cdot> (\<eta> \<star> g' \<star> (f \<star> g))"
using A'.ide_right A'.antipar interchange ide_char comp_arr_dom comp_cod_arr hseqI'
by (metis A.counit_simps(1-2,5) A.unit_simps(1,3))
also have "... = (g \<star> f \<star> g' \<star> \<epsilon>) \<cdot> (\<eta> \<star> g' \<star> f \<star> g)"
using hcomp_assoc by simp
finally show ?thesis
using comp_assoc by simp
qed
also have "... = (g \<star> \<epsilon>) \<cdot> ((g \<star> (\<epsilon>' \<star> f) \<star> g) \<cdot> (g \<star> (f \<star> \<eta>') \<star> g)) \<cdot> (\<eta> \<star> g)"
proof -
have "(g \<star> \<epsilon>') \<cdot> (g \<star> f \<star> g' \<star> \<epsilon>) = (g \<star> \<epsilon>) \<cdot> (g \<star> \<epsilon>' \<star> f \<star> g)"
proof -
have "(g \<star> \<epsilon>') \<cdot> (g \<star> f \<star> g' \<star> \<epsilon>) = g \<star> \<epsilon>' \<star> \<epsilon>"
proof -
have "\<epsilon>' \<cdot> (f \<star> g' \<star> \<epsilon>) = \<epsilon>' \<star> \<epsilon>"
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar hcomp_arr_obj
comp_arr_dom comp_cod_arr interchange obj_src trg_src hcomp_assoc
by (metis A.counit_simps(1,3) A'.counit_simps(1-2,4))
thus ?thesis
using A.antipar A'.antipar whisker_left [of g \<epsilon>' "f \<star> g' \<star> \<epsilon>"]
by (simp add: hcomp_assoc)
qed
also have "... = (g \<star> \<epsilon>) \<cdot> (g \<star> \<epsilon>' \<star> f \<star> g)"
proof -
have "\<epsilon>' \<star> \<epsilon> = \<epsilon> \<cdot> (\<epsilon>' \<star> f \<star> g)"
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar hcomp_obj_arr
hcomp_arr_obj comp_arr_dom comp_cod_arr interchange obj_src trg_src
by (metis A.counit_simps(1-2,5) A'.counit_simps(1,3-4)
arr_cod not_arr_null seq_if_composable)
thus ?thesis
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar
whisker_left
by (metis A.counit_simps(1,5) A'.counit_simps(1,4) hseqI')
qed
finally show ?thesis by simp
qed
moreover have "(\<eta> \<star> g' \<star> f \<star> g) \<cdot> (\<eta>' \<star> g) = (g \<star> f \<star> \<eta>' \<star> g) \<cdot> (\<eta> \<star> g)"
proof -
have "(\<eta> \<star> g' \<star> f \<star> g) \<cdot> (\<eta>' \<star> g) = \<eta> \<star> \<eta>' \<star> g"
proof -
have "(\<eta> \<star> g' \<star> f) \<cdot> \<eta>' = \<eta> \<star> \<eta>'"
using A.antipar A'.antipar A.unit_in_hom hcomp_arr_obj
comp_arr_dom comp_cod_arr hcomp_obj_arr interchange
by (metis A'.unit_simps(1,3,5) A.unit_simps(1-2,4) obj_trg)
thus ?thesis
using A.antipar A'.antipar whisker_right [of g "\<eta> \<star> g' \<star> f" \<eta>']
by (simp add: hcomp_assoc)
qed
also have "... = ((g \<star> f) \<star> \<eta>' \<star> g) \<cdot> (\<eta> \<star> src f \<star> g)"
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar A.unit_in_hom
A'.unit_in_hom comp_arr_dom comp_cod_arr interchange
by (metis A'.unit_simps(1-2,4) A.unit_simps(1,3) hseqI' ide_char)
also have "... = (g \<star> f \<star> \<eta>' \<star> g) \<cdot> (\<eta> \<star> g)"
using A.antipar A'.antipar hcomp_assoc
by (simp add: hcomp_obj_arr)
finally show ?thesis by simp
qed
ultimately show ?thesis
using comp_assoc hcomp_assoc by simp
qed
also have "... = (g \<star> \<epsilon>) \<cdot> ((g \<star> f) \<star> g) \<cdot> (\<eta> \<star> g)"
proof -
have "(g \<star> (\<epsilon>' \<star> f) \<star> g) \<cdot> (g \<star> (f \<star> \<eta>') \<star> g) = g \<star> f \<star> g"
proof -
have "(g \<star> (\<epsilon>' \<star> f) \<star> g) \<cdot> (g \<star> (f \<star> \<eta>') \<star> g) =
g \<star> ((\<epsilon>' \<star> f) \<star> g) \<cdot> ((f \<star> \<eta>') \<star> g)"
using A.ide_left A.ide_right A'.ide_right A.antipar A'.antipar A.unit_in_hom
A.counit_in_hom whisker_left
by (metis A'.triangle_left hseqI' ideD(1) whisker_right)
also have "... = g \<star> (\<epsilon>' \<star> f) \<cdot> (f \<star> \<eta>') \<star> g"
using A.antipar A'.antipar whisker_right [of g "\<epsilon>' \<star> f" "f \<star> \<eta>'"]
by (simp add: A'.triangle_left)
also have "... = g \<star> f \<star> g"
using A'.triangle_left by simp
finally show ?thesis by simp
qed
thus ?thesis
using hcomp_assoc by simp
qed
also have "... = (g \<star> \<epsilon>) \<cdot> (\<eta> \<star> g)"
using A.antipar A'.antipar A.unit_in_hom A.counit_in_hom comp_cod_arr
by (metis A.ide_left A.ide_right A.triangle_in_hom(2) arrI assoc_is_natural_2
ide_char seqE strict_assoc)
also have "... = g"
using A.triangle_right by simp
finally have "?\<psi> \<cdot> ?\<phi> = g" by simp
moreover have "ide g"
by simp
ultimately show ?thesis by simp
qed
qed
qed
ultimately show ?thesis
using isomorphic_def by auto
qed
end
text \<open>
We now use strictification to extend to arbitrary bicategories.
\<close>
context bicategory
begin
interpretation S: strictified_bicategory V H \<a> \<i> src trg ..
notation S.vcomp (infixr "\<cdot>\<^sub>S" 55)
notation S.hcomp (infixr "\<star>\<^sub>S" 53)
notation S.in_hom ("\<guillemotleft>_ : _ \<Rightarrow>\<^sub>S _\<guillemotright>")
notation S.in_hhom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>S _\<guillemotright>")
interpretation UP: equivalence_pseudofunctor V H \<a> \<i> src trg
S.vcomp S.hcomp S.\<a> S.\<i> S.src S.trg S.UP S.cmp\<^sub>U\<^sub>P
using S.UP_is_equivalence_pseudofunctor by auto
interpretation UP: pseudofunctor_into_strict_bicategory V H \<a> \<i> src trg
S.vcomp S.hcomp S.\<a> S.\<i> S.src S.trg S.UP S.cmp\<^sub>U\<^sub>P
..
interpretation UP: fully_faithful_functor V S.vcomp S.UP
using S.UP_is_fully_faithful_functor by auto
lemma left_adjoint_determines_right_up_to_iso:
assumes "adjoint_pair f g" and "adjoint_pair f g'"
shows "g \<cong> g'"
proof -
have 0: "ide g \<and> ide g'"
using assms adjoint_pair_def adjunction_in_bicategory_def
adjunction_data_in_bicategory_def adjunction_data_in_bicategory_axioms_def
by metis
have 1: "S.adjoint_pair (S.UP f) (S.UP g) \<and> S.adjoint_pair (S.UP f) (S.UP g')"
using assms UP.preserves_adjoint_pair by simp
obtain \<nu> where \<nu>: "\<guillemotleft>\<nu> : S.UP g \<Rightarrow>\<^sub>S S.UP g'\<guillemotright> \<and> S.iso \<nu>"
using 1 S.left_adjoint_determines_right_up_to_iso S.isomorphic_def by blast
obtain \<mu> where \<mu>: "\<guillemotleft>\<mu> : g \<Rightarrow> g'\<guillemotright> \<and> S.UP \<mu> = \<nu>"
using 0 \<nu> UP.is_full [of g' g \<nu>] by auto
have "\<guillemotleft>\<mu> : g \<Rightarrow> g'\<guillemotright> \<and> iso \<mu>"
using \<mu> \<nu> UP.reflects_iso by auto
thus ?thesis
using isomorphic_def by auto
qed
lemma right_adjoint_determines_left_up_to_iso:
assumes "adjoint_pair f g" and "adjoint_pair f' g"
shows "f \<cong> f'"
proof -
obtain \<eta> \<epsilon> where A: "adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms adjoint_pair_def by auto
interpret A: adjunction_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using A by auto
obtain \<eta>' \<epsilon>' where A': "adjunction_in_bicategory V H \<a> \<i> src trg f' g \<eta>' \<epsilon>'"
using assms adjoint_pair_def by auto
interpret A': adjunction_in_bicategory V H \<a> \<i> src trg f' g \<eta>' \<epsilon>'
using A' by auto
interpret Cop: op_bicategory V H \<a> \<i> src trg ..
interpret Aop: adjunction_in_bicategory V Cop.H Cop.\<a> \<i> Cop.src Cop.trg g f \<eta> \<epsilon>
using A.antipar A.triangle_left A.triangle_right Cop.assoc_ide_simp
Cop.lunit_ide_simp Cop.runit_ide_simp
by (unfold_locales, auto)
interpret Aop': adjunction_in_bicategory V Cop.H Cop.\<a> \<i> Cop.src Cop.trg g f' \<eta>' \<epsilon>'
using A'.antipar A'.triangle_left A'.triangle_right Cop.assoc_ide_simp
Cop.lunit_ide_simp Cop.runit_ide_simp
by (unfold_locales, auto)
show ?thesis
using Aop.adjunction_in_bicategory_axioms Aop'.adjunction_in_bicategory_axioms
Cop.left_adjoint_determines_right_up_to_iso Cop.adjoint_pair_def
by blast
qed
end
context chosen_right_adjoints
begin
lemma isomorphic_to_left_adjoint_implies_isomorphic_right_adjoint:
assumes "is_left_adjoint f" and "f \<cong> h"
shows "f\<^sup>* \<cong> h\<^sup>*"
proof -
have 1: "adjoint_pair f f\<^sup>*"
using assms left_adjoint_extends_to_adjoint_pair by blast
moreover have "adjoint_pair h f\<^sup>*"
using assms 1 adjoint_pair_preserved_by_iso isomorphic_symmetric isomorphic_reflexive
by (meson isomorphic_def right_adjoint_simps(1))
thus ?thesis
using left_adjoint_determines_right_up_to_iso left_adjoint_extends_to_adjoint_pair
by blast
qed
end
context bicategory
begin
lemma equivalence_is_adjoint:
assumes "equivalence_map f"
shows equivalence_is_left_adjoint: "is_left_adjoint f"
and equivalence_is_right_adjoint: "is_right_adjoint f"
proof -
obtain g \<eta> \<epsilon> where fg: "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms equivalence_map_extends_to_adjoint_equivalence by blast
interpret fg: adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using fg by simp
interpret gf: adjoint_equivalence_in_bicategory V H \<a> \<i> src trg g f \<open>inv \<epsilon>\<close> \<open>inv \<eta>\<close>
using fg.dual_adjoint_equivalence by simp
show "is_left_adjoint f"
using fg.adjunction_in_bicategory_axioms adjoint_pair_def by auto
show "is_right_adjoint f"
using gf.adjunction_in_bicategory_axioms adjoint_pair_def by auto
qed
lemma right_adjoint_to_equivalence_is_equivalence:
assumes "equivalence_map f" and "adjoint_pair f g"
shows "equivalence_map g"
proof -
obtain \<eta> \<epsilon> where fg: "adjunction_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms adjoint_pair_def by auto
interpret fg: adjunction_in_bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg f g \<eta> \<epsilon>
using fg by simp
obtain g' \<phi> \<psi> where fg': "equivalence_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg f g' \<phi> \<psi>"
using assms equivalence_map_def by auto
interpret fg': equivalence_in_bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg f g' \<phi> \<psi>
using fg' by auto
obtain \<psi>' where \<psi>': "adjoint_equivalence_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg f g' \<phi> \<psi>'"
using assms equivalence_refines_to_adjoint_equivalence [of f g' \<phi>]
fg'.antipar fg'.unit_in_hom fg'.unit_is_iso
by auto
interpret \<psi>': adjoint_equivalence_in_bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg f g' \<phi> \<psi>'
using \<psi>' by simp
have 1: "g \<cong> g'"
using fg.adjunction_in_bicategory_axioms \<psi>'.adjunction_in_bicategory_axioms
left_adjoint_determines_right_up_to_iso adjoint_pair_def
by blast
obtain \<gamma> where \<gamma>: "\<guillemotleft>\<gamma> : g' \<Rightarrow> g\<guillemotright> \<and> iso \<gamma>"
using 1 isomorphic_def isomorphic_symmetric by metis
have "equivalence_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg f g ((\<gamma> \<star> f) \<cdot> \<phi>) (\<psi>' \<cdot> (f \<star> inv \<gamma>))"
using \<gamma> equivalence_preserved_by_iso_right \<psi>'.equivalence_in_bicategory_axioms by simp
hence "quasi_inverses f g"
using quasi_inverses_def by blast
thus ?thesis
using equivalence_mapI quasi_inverses_symmetric by blast
qed
lemma left_adjoint_to_equivalence_is_equivalence:
assumes "equivalence_map f" and "adjoint_pair g f"
shows "equivalence_map g"
proof -
obtain \<eta> \<epsilon> where gf: "adjunction_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg g f \<eta> \<epsilon>"
using assms adjoint_pair_def by auto
interpret gf: adjunction_in_bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg g f \<eta> \<epsilon>
using gf by simp
obtain g' where 1: "quasi_inverses g' f"
using assms equivalence_mapE quasi_inverses_symmetric by blast
obtain \<phi> \<psi> where g'f: "equivalence_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg g' f \<phi> \<psi>"
using assms 1 quasi_inverses_def by auto
interpret g'f: equivalence_in_bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg g' f \<phi> \<psi>
using g'f by auto
obtain \<psi>' where \<psi>': "adjoint_equivalence_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg g' f \<phi> \<psi>'"
using assms 1 equivalence_refines_to_adjoint_equivalence [of g' f \<phi>]
g'f.antipar g'f.unit_in_hom g'f.unit_is_iso quasi_inverses_def
equivalence_map_def
by auto
interpret \<psi>': adjoint_equivalence_in_bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg g' f \<phi> \<psi>'
using \<psi>' by simp
have 1: "g \<cong> g'"
using gf.adjunction_in_bicategory_axioms \<psi>'.adjunction_in_bicategory_axioms
right_adjoint_determines_left_up_to_iso adjoint_pair_def
by blast
obtain \<gamma> where \<gamma>: "\<guillemotleft>\<gamma> : g' \<Rightarrow> g\<guillemotright> \<and> iso \<gamma>"
using 1 isomorphic_def isomorphic_symmetric by metis
have "equivalence_in_bicategory (\<cdot>) (\<star>) \<a> \<i> src trg g f ((f \<star> \<gamma>) \<cdot> \<phi>) (\<psi>' \<cdot> (inv \<gamma> \<star> f))"
using \<gamma> equivalence_preserved_by_iso_left \<psi>'.equivalence_in_bicategory_axioms by simp
hence "quasi_inverses g f"
using quasi_inverses_def by auto
thus ?thesis
using quasi_inverses_symmetric quasi_inverses_def equivalence_map_def by blast
qed
lemma quasi_inverses_are_adjoint_pair:
assumes "quasi_inverses f g"
shows "adjoint_pair f g"
proof -
obtain \<eta> \<epsilon> where \<eta>\<epsilon>: "equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>"
using assms quasi_inverses_def by auto
interpret \<eta>\<epsilon>: equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>
using \<eta>\<epsilon> by auto
obtain \<epsilon>' where \<eta>\<epsilon>': "adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>'"
using \<eta>\<epsilon> equivalence_map_def \<eta>\<epsilon>.antipar \<eta>\<epsilon>.unit_in_hom \<eta>\<epsilon>.unit_is_iso
\<eta>\<epsilon>.ide_right equivalence_refines_to_adjoint_equivalence [of f g \<eta>]
by force
interpret \<eta>\<epsilon>': adjoint_equivalence_in_bicategory V H \<a> \<i> src trg f g \<eta> \<epsilon>'
using \<eta>\<epsilon>' by auto
show ?thesis
using \<eta>\<epsilon>' adjoint_pair_def \<eta>\<epsilon>'.adjunction_in_bicategory_axioms by auto
qed
lemma quasi_inverses_isomorphic_right:
assumes "quasi_inverses f g"
shows "quasi_inverses f g' \<longleftrightarrow> g \<cong> g'"
proof
show "g \<cong> g' \<Longrightarrow> quasi_inverses f g'"
using assms quasi_inverses_def isomorphic_def equivalence_preserved_by_iso_right
by metis
assume g': "quasi_inverses f g'"
show "g \<cong> g'"
using assms g' quasi_inverses_are_adjoint_pair left_adjoint_determines_right_up_to_iso
by blast
qed
lemma quasi_inverses_isomorphic_left:
assumes "quasi_inverses f g"
shows "quasi_inverses f' g \<longleftrightarrow> f \<cong> f'"
proof
show "f \<cong> f' \<Longrightarrow> quasi_inverses f' g"
using assms quasi_inverses_def isomorphic_def equivalence_preserved_by_iso_left
by metis
assume f': "quasi_inverses f' g"
show "f \<cong> f'"
using assms f' quasi_inverses_are_adjoint_pair right_adjoint_determines_left_up_to_iso
by blast
qed
end
end
|