Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 28,450 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
(* ========================================================================= *)
(* Definability in arithmetic of important notions.                          *)
(* ========================================================================= *)

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* Pairing operation.                                                        *)
(* ------------------------------------------------------------------------- *)

let NPAIR = new_definition
  `NPAIR x y = (x + y) EXP 2 + x + 1`;;

let NPAIR_NONZERO = prove
 (`!x y. ~(NPAIR x y = 0)`,
  REWRITE_TAC[NPAIR; ADD_EQ_0; ARITH]);;

let NPAIR_INJ_LEMMA = prove
 (`x1 + y1 < x2 + y2 ==> NPAIR x1 y1 < NPAIR x2 y2`,
  STRIP_TAC THEN REWRITE_TAC[NPAIR; EXP_2] THEN
  REWRITE_TAC[ARITH_RULE `x + y + 1 < u + v + 1 <=> x + y < u + v`] THEN
  MATCH_MP_TAC LTE_TRANS THEN
  EXISTS_TAC `SUC(x1 + y1) * SUC(x1 + y1)` THEN CONJ_TAC THENL
   [ARITH_TAC; ASM_MESON_TAC[LE_TRANS; LE_ADD; LE_MULT2; LE_SUC_LT]]);;

let NPAIR_INJ = prove
 (`(NPAIR x y = NPAIR x' y') <=> (x = x') /\ (y = y')`,
  EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `x' + y' = x + y` ASSUME_TAC THENL
   [ASM_MESON_TAC[LT_CASES; NPAIR_INJ_LEMMA; LT_REFL];
    UNDISCH_TAC `NPAIR x y = NPAIR x' y'` THEN
    UNDISCH_TAC `x' + y' = x + y` THEN
    SIMP_TAC[NPAIR; EXP_2] THEN ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Decreasingness.                                                           *)
(* ------------------------------------------------------------------------- *)

let NPAIR_LT = prove
 (`!x y. x < NPAIR x y /\ y < NPAIR x y`,
  REPEAT GEN_TAC THEN REWRITE_TAC[NPAIR] THEN
  REWRITE_TAC[ARITH_RULE `x < a + x + 1`] THEN
  MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `(x + y) + x + 1` THEN
  REWRITE_TAC[LE_ADD_RCANCEL; EXP_2; LE_SQUARE_REFL] THEN
  ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Auxiliary concepts needed. NB: these are Delta so can be negated freely.  *)
(* ------------------------------------------------------------------------- *)

let primepow = new_definition
  `primepow p x <=> prime(p) /\ ?n. x = p EXP n`;;

let divides_DELTA = prove
 (`m divides n <=> ?x. x <= n /\ n = m * x`,
  REWRITE_TAC[divides] THEN ASM_CASES_TAC `m = 0` THENL
   [ASM_REWRITE_TAC[MULT_CLAUSES] THEN MESON_TAC[LE_REFL]; ALL_TAC] THEN
  AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `~(m = 0) ==> 1 <= m`)) THEN
  SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM;
           RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
  MESON_TAC[]);;

let prime_DELTA = prove
 (`prime(p) <=> 2 <= p /\ !n. n < p ==> n divides p ==> n = 1`,
  ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[ARITH; PRIME_0] THEN
  ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[ARITH; PRIME_1] THEN EQ_TAC THENL
   [ASM_MESON_TAC[prime; LT_REFL; PRIME_GE_2];
    ASM_MESON_TAC[prime;  DIVIDES_LE; LE_LT]]);;

let primepow_DELTA = prove
 (`primepow p x <=>
        prime(p) /\ ~(x = 0) /\
        !z. z <= x ==> z divides x ==> z = 1 \/ p divides z`,
  REWRITE_TAC[primepow; TAUT `a ==> b \/ c <=> a /\ ~b ==> c`] THEN
  ASM_CASES_TAC `prime(p)` THEN
  ASM_REWRITE_TAC[] THEN EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN
    ASM_REWRITE_TAC[EXP_EQ_0] THEN
    ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THENL
     [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
    REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `z:num` o MATCH_MP PRIME_COPRIME) THEN
    ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `p divides z` THEN ASM_REWRITE_TAC[] THEN
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN
    DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP COPRIME_EXP) THEN
    ASM_MESON_TAC[COPRIME; DIVIDES_REFL];
    SPEC_TAC(`x:num`,`x:num`) THEN MATCH_MP_TAC num_WF THEN
    REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = 1` THENL
     [EXISTS_TAC `0` THEN ASM_REWRITE_TAC[EXP]; ALL_TAC] THEN
    FIRST_ASSUM(X_CHOOSE_THEN `q:num` MP_TAC o MATCH_MP PRIME_FACTOR) THEN
    STRIP_TAC THEN
    UNDISCH_TAC `!z. z <= x ==> z divides x /\ ~(z = 1) ==> p divides z` THEN
    DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
    DISCH_THEN(MP_TAC o SPEC `q:num`) THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `q = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `q <= x` ASSUME_TAC THENL
     [ASM_MESON_TAC[DIVIDES_LE]; ASM_REWRITE_TAC[]] THEN
    SUBGOAL_THEN `p divides x` MP_TAC THENL
     [ASM_MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN
    REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_TAC `y:num`) THEN
    SUBGOAL_THEN `y < x` (ANTE_RES_THEN MP_TAC) THENL
     [MATCH_MP_TAC PRIME_FACTOR_LT THEN
      EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
    ASM_CASES_TAC `y = 0` THENL
     [UNDISCH_TAC `x = p * y` THEN ASM_REWRITE_TAC[MULT_CLAUSES]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `!z. z <= y ==> z divides y /\ ~(z = 1) ==> p divides z`
    (fun th -> REWRITE_TAC[th]) THENL
     [REPEAT STRIP_TAC THEN
      FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE
        [IMP_IMP]) THEN
      REPEAT CONJ_TAC THENL
       [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `y:num` THEN
        ASM_REWRITE_TAC[] THEN
        GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `y = 1 * y`] THEN
        REWRITE_TAC[LE_MULT_RCANCEL] THEN
        ASM_REWRITE_TAC[GSYM NOT_LT] THEN
        REWRITE_TAC[num_CONV `1`; LT; DE_MORGAN_THM] THEN
        ASM_MESON_TAC[PRIME_0; PRIME_1];
        ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVIDES_LMUL THEN
        ASM_REWRITE_TAC[];
        ASM_REWRITE_TAC[]];
      DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN
      EXISTS_TAC `SUC n` THEN ASM_REWRITE_TAC[EXP]]]);;

(* ------------------------------------------------------------------------- *)
(* Sigma-representability of reflexive transitive closure.                   *)
(* ------------------------------------------------------------------------- *)

let PSEQ = new_recursive_definition num_RECURSION
  `(PSEQ p f m 0 = 0) /\
   (PSEQ p f m (SUC n) = f m + p * PSEQ p f (SUC m) n)`;;

let PSEQ_SPLIT = prove
 (`!f p n m r.
        PSEQ p f m (n + r) = PSEQ p f m n + p EXP n * PSEQ p f (m + n) r`,
  GEN_TAC THEN GEN_TAC THEN
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; EXP; MULT_CLAUSES; PSEQ] THEN
  ASM_REWRITE_TAC[GSYM ADD_ASSOC; EQ_ADD_LCANCEL] THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_AC; ADD_CLAUSES]);;

let PSEQ_1 = prove
 (`PSEQ p f m 1 = f m`,
  REWRITE_TAC[num_CONV `1`; ADD_CLAUSES; MULT_CLAUSES; PSEQ]);;

let PSEQ_BOUND = prove
 (`!n. ~(p = 0) /\ (!i. i < n ==> f i < p) ==> PSEQ p f 0 n < p EXP n`,
  ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THEN
  INDUCT_TAC THENL [REWRITE_TAC[PSEQ; EXP; ARITH]; ALL_TAC] THEN
  DISCH_TAC THEN
  MP_TAC(SPECL [`f:num->num`; `p:num`; `n:num`; `0`; `1`]
               PSEQ_SPLIT) THEN
  SIMP_TAC[ADD1; ADD_CLAUSES] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC LTE_TRANS THEN
  EXISTS_TAC `p EXP n + p EXP n * PSEQ p f n 1` THEN
  ASM_SIMP_TAC[LT_ADD_RCANCEL; ARITH_RULE `i < n ==> i < SUC n`] THEN
  REWRITE_TAC[ARITH_RULE `p + p * q = p * (q + 1)`] THEN
  ASM_REWRITE_TAC[EXP_ADD; LE_MULT_LCANCEL; EXP_EQ_0] THEN
  MATCH_MP_TAC(ARITH_RULE `x < p ==> x + 1 <= p`) THEN
  ASM_SIMP_TAC[EXP_1; PSEQ_1; LT]);;

let RELPOW_LEMMA_1 = prove
 (`(f 0 = x) /\
   (f n = y) /\
   (!i. i < n ==> R (f i) (f(SUC i)))
   ==> ?p. (?i. i <= n /\ p <= SUC(FACT(f i))) /\
           prime p /\
           (?m. m < p EXP (SUC n) /\
                x < p /\ y < p /\
                (?qx. m = x + p * qx) /\
                (?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\
                !q. q < p EXP n
                    ==> primepow p q
                        ==> ?r. r < q /\
                                ?a. a < p /\
                                    ?b. b < p /\
                                        R a b /\
                                        ?s. s <= m /\
                                            (m =
                                             r + q * (a + p * (b + p * s))))`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?j. j <= n /\ !i. i <= n ==> f i <= f j` MP_TAC THENL
   [SPEC_TAC(`n:num`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
    INDUCT_TAC THENL
     [SIMP_TAC[LE] THEN MESON_TAC[LE_REFL]; ALL_TAC] THEN
    FIRST_ASSUM(X_CHOOSE_THEN `j:num` STRIP_ASSUME_TAC) THEN
    DISJ_CASES_TAC(ARITH_RULE `f(SUC n) <= f(j) \/ f(j) <= f(SUC n)`) THENL
     [EXISTS_TAC `j:num` THEN
      ASM_SIMP_TAC[ARITH_RULE `j <= n ==> j <= SUC n`] THEN
      REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN
      ASM_SIMP_TAC[] THEN ASM_MESON_TAC[];
      EXISTS_TAC `SUC n` THEN REWRITE_TAC[LE_REFL] THEN
      REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN
      ASM_SIMP_TAC[LE_REFL] THEN ASM_MESON_TAC[LE_TRANS]];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `ibig:num` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPEC `(f:num->num) ibig` EUCLID_BOUND) THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `p:num` THEN CONJ_TAC THENL
   [EXISTS_TAC `ibig:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
     [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
  CONJ_TAC THENL [FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
  SUBGOAL_THEN `!i. i <= n ==> f i < p` ASSUME_TAC THENL
   [ASM_MESON_TAC[LET_TRANS]; ALL_TAC] THEN
  EXISTS_TAC `PSEQ p f 0 (SUC n)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC PSEQ_BOUND THEN ASM_SIMP_TAC[LT_SUC_LE]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[LE_0]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[LE_REFL]; ALL_TAC] THEN
  REPEAT CONJ_TAC THENL
   [ASM_REWRITE_TAC[PSEQ] THEN MESON_TAC[];
    MP_TAC(SPECL [`f:num->num`; `p:num`; `n:num`; `0`; `1`] PSEQ_SPLIT) THEN
    ASM_SIMP_TAC[ADD1; ADD_CLAUSES] THEN
    DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f 0 n` THEN
    ASM_SIMP_TAC[PSEQ_BOUND; PSEQ_1; LT_IMP_LE];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b ==> a ==> c`] THEN
  ASM_SIMP_TAC[primepow; LEFT_IMP_EXISTS_THM] THEN
  GEN_TAC THEN X_GEN_TAC `i:num` THEN DISCH_THEN(K ALL_TAC) THEN
  ASM_REWRITE_TAC[LT_EXP] THEN STRIP_TAC THEN
  MP_TAC(SPECL [`f:num->num`; `p:num`; `i:num`; `0`; `SUC n - i`]
               PSEQ_SPLIT) THEN
  ASM_SIMP_TAC[ARITH_RULE `i < n ==> (i + SUC n - i = SUC n)`] THEN
  DISCH_THEN(K ALL_TAC) THEN
  EXISTS_TAC `PSEQ p f 0 i` THEN REWRITE_TAC[EQ_ADD_LCANCEL] THEN
  ASM_REWRITE_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; ADD_CLAUSES] THEN
  CONJ_TAC THENL
   [ASM_MESON_TAC[PSEQ_BOUND; LT_TRANS; LT_IMP_LE]; ALL_TAC] THEN
  MP_TAC(SPECL [`f:num->num`; `p:num`; `1`; `i:num`; `n - i`]
               PSEQ_SPLIT) THEN
  ASM_SIMP_TAC[ARITH_RULE `i < n ==> (1 + n - i = SUC n - i)`] THEN
  DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f i 1` THEN
  ASM_REWRITE_TAC[EQ_ADD_LCANCEL; EQ_MULT_LCANCEL; EXP_1] THEN
  ASM_SIMP_TAC[PSEQ_1; LT_IMP_LE] THEN
  MP_TAC(SPECL [`f:num->num`; `p:num`; `1`; `i + 1`; `n - i - 1`]
               PSEQ_SPLIT) THEN
  ASM_SIMP_TAC[ARITH_RULE `i < n ==> (1 + n - i - 1 = n - i)`] THEN
  DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f (i + 1) 1` THEN
  ASM_REWRITE_TAC[EQ_ADD_LCANCEL; EQ_MULT_LCANCEL; EXP_1] THEN
  ASM_SIMP_TAC[PSEQ_1; ARITH_RULE `i < n ==> i + 1 <= n`] THEN
  ASM_SIMP_TAC[GSYM ADD1] THEN REWRITE_TAC[ADD1] THEN
  ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM1] THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_ASSOC; ADD_ASSOC] THEN
  MATCH_MP_TAC(ARITH_RULE `1 * a <= c ==> a <= b + c`) THEN
  REWRITE_TAC[LE_MULT_RCANCEL] THEN DISJ1_TAC THEN
  ASM_REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; MULT_EQ_0; EXP_EQ_0]);;

let RELPOW_LEMMA_2 = prove
 (`prime p /\ x < p /\ y < p /\
   (?qx. m = x + p * qx) /\
   (?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\
   (!q. q < p EXP n
        ==> primepow p q
            ==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
                          r < q /\ a < p /\ b < p /\ R a b)
   ==> RELPOW n R x y`,
  STRIP_TAC THEN REWRITE_TAC[RELPOW_SEQUENCE] THEN
  EXISTS_TAC `\i. (m DIV (p EXP i)) MOD p` THEN
  SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
   [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
  REWRITE_TAC[EXP; DIV_1] THEN REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `qx:num` THEN
    ASM_REWRITE_TAC[ADD_AC; MULT_AC];
    MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN
    REWRITE_TAC[ASSUME `y < p`; MULT_CLAUSES; ADD_CLAUSES] THEN
    MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `ry:num` THEN
    REWRITE_TAC[ASSUME `m = ry + p EXP n * y`] THEN
    ASM_REWRITE_TAC[ADD_AC; MULT_AC];
    ALL_TAC] THEN
  X_GEN_TAC `i:num` THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `p EXP i`) THEN
  ASM_SIMP_TAC[LT_EXP; PRIME_GE_2] THEN
  ASM_REWRITE_TAC[primepow] THEN
  W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
   [MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(REPEAT_TCL CHOOSE_THEN MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC STRIP_ASSUME_TAC) THEN
  UNDISCH_TAC `(R:num->num->bool) a b` THEN
  MATCH_MP_TAC(TAUT `(b <=> a) ==> a ==> b`) THEN BINOP_TAC THENL
   [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `b + p * s` THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `r:num` THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[ADD_AC; MULT_AC];
    MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `s:num` THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `r + a * p EXP i` THEN
    CONJ_TAC THENL
     [REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
      REWRITE_TAC[ADD_AC; MULT_AC]; ALL_TAC] THEN
    MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `p EXP i + a * p EXP i` THEN
    ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN
    REWRITE_TAC[ARITH_RULE `p + q * p = (q + 1) * p`] THEN
    ASM_REWRITE_TAC[LE_MULT_RCANCEL; EXP_EQ_0] THEN
    UNDISCH_TAC `a < p` THEN ARITH_TAC]);;

let RELPOW_LEMMA = prove
 (`RELPOW n R x y <=>
        ?m p. prime p /\ x < p /\ y < p /\
              (?qx. m = x + p * qx) /\
              (?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\
              !q. q < p EXP n
                  ==> primepow p q
                      ==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
                                    r < q /\ a < p /\ b < p /\ R a b`,
  EQ_TAC THENL
   [ALL_TAC; REWRITE_TAC[RELPOW_LEMMA_2; LEFT_IMP_EXISTS_THM]] THEN
  REWRITE_TAC[RELPOW_SEQUENCE] THEN
  DISCH_THEN(CHOOSE_THEN(MP_TAC o GEN_ALL o MATCH_MP RELPOW_LEMMA_1)) THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN
  GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN
  SIMP_TAC[] THEN MESON_TAC[]);;

let RTC_SIGMA = prove
 (`RTC R x y <=>
        ?m p Q. primepow p Q /\ x < p /\ y < p /\
                (?s. m = x + p * s) /\
                (?r. r < Q /\ (m = r + Q * y)) /\
                !q. q < Q
                    ==> primepow p q
                        ==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
                                      r < q /\ a < p /\ b < p /\ R a b`,
  REWRITE_TAC[RTC_RELPOW] THEN EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `n:num` MP_TAC) THEN
    REWRITE_TAC[RELPOW_LEMMA] THEN
    MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
    MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
    DISCH_TAC THEN EXISTS_TAC `p EXP n` THEN ASM_REWRITE_TAC[primepow] THEN
    MESON_TAC[];
    REWRITE_TAC[primepow] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
    REWRITE_TAC[GSYM primepow] THEN
    GEN_REWRITE_TAC (LAND_CONV o funpow 3 BINDER_CONV)
     [LEFT_AND_EXISTS_THM] THEN
    GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o BINDER_CONV)
     [SWAP_EXISTS_THM] THEN
    REWRITE_TAC[UNWIND_THM2] THEN
    GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
    GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
    REWRITE_TAC[GSYM RELPOW_LEMMA]]);;

(* ------------------------------------------------------------------------- *)
(* Partially automate actual definability in object language.                *)
(* ------------------------------------------------------------------------- *)

let arith_pair = new_definition
  `arith_pair s t = (s ++ t) ** (s ++ t) ++ s ++ Suc Z`;;

let ARITH_PAIR = prove
 (`!s t v. termval v (arith_pair s t) = NPAIR (termval v s) (termval v t)`,
  REWRITE_TAC[termval; arith_pair; NPAIR; EXP_2; ARITH_SUC]);;

let FVT_PAIR = prove
 (`FVT(arith_pair s t) = FVT(s) UNION FVT(t)`,
  REWRITE_TAC[arith_pair; FVT] THEN SET_TAC[]);;

let OBJECTIFY =
  let is_add = is_binop `(+):num->num->num`
  and is_mul = is_binop `(*):num->num->num`
  and is_le = is_binop `(<=):num->num->bool`
  and is_lt = is_binop `(<):num->num->bool`
  and zero_tm = `0`
  and suc_tm = `SUC`
  and osuc_tm = `Suc`
  and oz_tm = `Z`
  and ov_tm = `V`
  and oadd_tm = `(++)`
  and omul_tm = `(**)`
  and oeq_tm = `(===)`
  and ole_tm = `(<<=)`
  and olt_tm = `(<<)`
  and oiff_tm = `(<->)`
  and oimp_tm = `(-->)`
  and oand_tm = `(&&)`
  and oor_tm = `(||)`
  and onot_tm = `Not`
  and oall_tm = `!!`
  and oex_tm = `??`
  and numeral_tm = `numeral`
  and assign_tm = `(|->):num->term->(num->term)->(num->term)`
  and term_ty = `:term`
  and form_ty = `:form`
  and num_ty = `:num`
  and formsubst_tm = `formsubst`
  and holdsv_tm = `holds v`
  and v_tm = `v:num->num` in
  let objectify1 fn op env tm = mk_comb(op,fn env (rand tm)) in
  let objectify2 fn op env tm =
    mk_comb(mk_comb(op,fn env (lhand tm)),fn env (rand tm)) in
  fun defs ->
    let defs' = [TERMVAL_NUMERAL; ARITH_PAIR] @ defs in
    let rec objectify_term env tm =
      if is_var tm then mk_comb(ov_tm,apply env tm)
      else if tm = zero_tm then oz_tm
      else if is_numeral tm then mk_comb(numeral_tm,tm)
      else if is_add tm then objectify2 objectify_term oadd_tm env tm
      else if is_mul tm then objectify2 objectify_term omul_tm env tm
      else if is_comb tm && rator tm = suc_tm
        then objectify1 objectify_term osuc_tm env tm
      else
        let f,args = strip_comb tm in
        let args' = map (objectify_term env) args in
        try let dth = find
              (fun th -> fst(strip_comb(rand(snd(strip_forall(concl th))))) = f)
              defs' in
            let l,r = dest_eq(snd(strip_forall(concl dth))) in
            list_mk_comb(fst(strip_comb(rand l)),args')
        with Failure _ ->
            let ty = itlist (mk_fun_ty o type_of) args' form_ty in
            let v = mk_var(fst(dest_var f),ty) in
            list_mk_comb(v,args') in
    let rec objectify_formula env fm =
      if is_forall fm then
        let x,bod = dest_forall fm in
        let n = mk_small_numeral
          (itlist (max o dest_small_numeral) (ran env) 0 + 1) in
        mk_comb(mk_comb(oall_tm,n),objectify_formula ((x |-> n) env) bod)
      else if is_exists fm then
        let x,bod = dest_exists fm in
        let n = mk_small_numeral
          (itlist (max o dest_small_numeral) (ran env) 0 + 1) in
        mk_comb(mk_comb(oex_tm,n),objectify_formula ((x |-> n) env) bod)
      else if is_iff fm then objectify2 objectify_formula oiff_tm env fm
      else if is_imp fm then objectify2 objectify_formula oimp_tm env fm
      else if is_conj fm then objectify2 objectify_formula oand_tm env fm
      else if is_disj fm then objectify2 objectify_formula oor_tm env fm
      else if is_neg fm then objectify1 objectify_formula onot_tm env fm
      else if is_le fm then objectify2 objectify_term ole_tm env fm
      else if is_lt fm then objectify2 objectify_term olt_tm env fm
      else if is_eq fm then objectify2 objectify_term oeq_tm env fm
      else objectify_term env fm in
   fun nam th ->
     let ptm,tm = dest_eq(snd(strip_forall(concl th))) in
     let vs = filter (fun v -> type_of v = num_ty) (snd(strip_comb ptm)) in
     let ns = 1--(length vs) in
     let env = itlist2 (fun v n -> v |-> mk_small_numeral n) vs ns undefined in
     let otm = objectify_formula env tm in
     let vs' = map (fun v -> mk_var(fst(dest_var v),term_ty)) vs in
     let stm = itlist2
       (fun v n a -> mk_comb(mk_comb(mk_comb(assign_tm,mk_small_numeral
         n),v),a))
       vs' ns ov_tm in
     let rside = mk_comb(mk_comb(formsubst_tm,stm),otm) in
     let vs'' = subtract (frees rside) vs' @ vs' in
     let lty = itlist (mk_fun_ty o type_of) vs'' (type_of rside) in
     let lside = list_mk_comb(mk_var(nam,lty),vs'') in
     let def = mk_eq(lside,rside) in
     let dth = new_definition def in
     let clside = lhs(snd(strip_forall(concl dth))) in
     let etm = mk_comb(holdsv_tm,clside) in
     let thm =
       (REWRITE_CONV ([dth; holds; HOLDS_FORMSUBST] @ defs') THENC
        REWRITE_CONV [termval; ARITH_EQ; o_THM; valmod] THENC
        GEN_REWRITE_CONV I [GSYM th]) etm in
     dth,DISCH_ALL (GENL (v_tm::vs') thm);;

(* ------------------------------------------------------------------------- *)
(* Some sort of common tactic for free variables.                            *)
(* ------------------------------------------------------------------------- *)

let FV_TAC ths =
  let ths' = ths @
   [FV; FORMSUBST_FV; FVT; TERMSUBST_FVT; IN_ELIM_THM;
    NOT_IN_EMPTY; IN_UNION; IN_DELETE; IN_SING]
  and tac =
     REWRITE_TAC[DISJ_ACI; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
     REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC; UNWIND_THM2; ARITH_EQ] THEN
     REWRITE_TAC[valmod; ARITH_EQ; FVT] THEN REWRITE_TAC[DISJ_ACI] in
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
  ASM_REWRITE_TAC ths' THEN tac THEN ASM_SIMP_TAC ths' THEN tac;;

(* ------------------------------------------------------------------------- *)
(* So do the formula-level stuff (more) automatically.                       *)
(* ------------------------------------------------------------------------- *)

let arith_divides,ARITH_DIVIDES =
  OBJECTIFY [] "arith_divides" divides_DELTA;;

let FV_DIVIDES = prove
 (`!s t. FV(arith_divides s t) = FVT(s) UNION FVT(t)`,
  FV_TAC[arith_divides]);;

let arith_prime,ARITH_PRIME =
  OBJECTIFY [ARITH_DIVIDES] "arith_prime" prime_DELTA;;

let FV_PRIME = prove
 (`!t. FV(arith_prime t) = FVT(t)`,
  FV_TAC[arith_prime; FVT_NUMERAL; FV_DIVIDES]);;

let arith_primepow,ARITH_PRIMEPOW =
  OBJECTIFY [ARITH_PRIME; ARITH_DIVIDES] "arith_primepow" primepow_DELTA;;

let FV_PRIMEPOW = prove
 (`!s t. FV(arith_primepow s t) = FVT(s) UNION FVT(t)`,
  FV_TAC[arith_primepow; FVT_NUMERAL; FV_DIVIDES; FV_PRIME]);;

let arith_rtc,ARITH_RTC =
  OBJECTIFY
   [ARITH_PRIMEPOW;
    ASSUME `!v s t. holds v (R s t) <=> r (termval v s) (termval v t)`]
   "arith_rtc" RTC_SIGMA;;

let FV_RTC = prove
 (`!R. (!s t. FV(R s t) = FVT(s) UNION FVT(t))
       ==> !s t. FV(arith_rtc R s t) = FVT(s) UNION FVT(t)`,
  FV_TAC[arith_rtc; FV_PRIMEPOW]);;

(* ------------------------------------------------------------------------- *)
(* Automate RTC constructions, including parametrized ones.                  *)
(* ------------------------------------------------------------------------- *)

let OBJECTIFY_RTC =
  let pth = prove
   (`(!v x y. holds v (f x y) <=> f' (termval v x) (termval v y))
     ==> !g. (!n. g n = formsubst ((0 |-> n) V)
                                  (arith_rtc f (numeral 0)
                                               (arith_pair (V 0) (numeral 0))))
             ==> !v n. holds v (g n) <=> RTC f' 0 (NPAIR (termval v n) 0)`,
    DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN SIMP_TAC[HOLDS_FORMSUBST] THEN
    REWRITE_TAC[termval; o_DEF; ARITH_EQ; valmod;
                ARITH_PAIR; TERMVAL_NUMERAL]) in
  fun def nam th ->
    let th1 = MATCH_MP pth def in
    let v = fst(dest_forall(concl th1)) in
    let th2 = SPEC (mk_var(nam,type_of v)) th1 in
    let dth = new_definition (fst(dest_imp(concl th2))) in
    dth,ONCE_REWRITE_RULE[GSYM th] (MATCH_MP th2 dth);;

let RTCP = new_definition
  `RTCP R m x y <=> RTC (R m) x y`;;

let RTCP_SIGMA = REWRITE_RULE[GSYM RTCP]
        (INST [`(R:num->num->num->bool) m`,`R:num->num->bool`] RTC_SIGMA);;

let arith_rtcp,ARITH_RTCP =
  OBJECTIFY
   [ARITH_PRIMEPOW;
    ASSUME `!v m s t. holds v (R m s t) <=>
                   r (termval v m) (termval v s) (termval v t)`]
   "arith_rtcp" RTCP_SIGMA;;

let ARITH_RTC_PARAMETRIZED = REWRITE_RULE[RTCP] ARITH_RTCP;;

let FV_RTCP = prove
 (`!R. (!s t u. FV(R s t u) = FVT(s) UNION FVT(t) UNION FVT(u))
       ==> !s t u. FV(arith_rtcp R s t u) = FVT(s) UNION FVT(t) UNION FVT(u)`,
  FV_TAC[arith_rtcp; FV_PRIMEPOW]);;

let OBJECTIFY_RTCP =
  let pth = prove
   (`(!v m x y. holds v (f m x y) <=>
                f' (termval v m) (termval v x) (termval v y))
     ==> !g. (!m n. g m n = formsubst ((1 |-> m) ((0 |-> n) V))
                                  (arith_rtcp f (V 1) (numeral 0)
                                               (arith_pair (V 0) (numeral 0))))
             ==> !v m n. holds v (g m n) <=>
                          RTC (f' (termval v m)) 0 (NPAIR (termval v n) 0)`,
    DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC_PARAMETRIZED) THEN
    SIMP_TAC[HOLDS_FORMSUBST] THEN
    REWRITE_TAC[termval; o_DEF; ARITH_EQ; valmod;
                ARITH_PAIR; TERMVAL_NUMERAL]) in
  fun def nam th ->
    let th1 = MATCH_MP pth def in
    let v = fst(dest_forall(concl th1)) in
    let th2 = SPEC (mk_var(nam,type_of v)) th1 in
    let dth = new_definition (fst(dest_imp(concl th2))) in
    dth,ONCE_REWRITE_RULE[GSYM th] (MATCH_MP th2 dth);;

(* ------------------------------------------------------------------------- *)
(* Generic result about primitive recursion.                                 *)
(* ------------------------------------------------------------------------- *)

let PRIMREC_SIGMA = prove
 (`(fn 0 = e) /\
   (!n. fn (SUC n) = f (fn n) n)
   ==> !x y. RTC (\x y. ?n r. (x = NPAIR n r) /\ (y = NPAIR (SUC n) (f r n)))
                 (NPAIR 0 e) (NPAIR x y) <=>
             (fn(x) = y)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN
  ONCE_REWRITE_TAC[RTC_CASES_L] THEN ASM_REWRITE_TAC[NPAIR_INJ; NOT_SUC] THEN
  REWRITE_TAC[SUC_INJ; RIGHT_AND_EXISTS_THM] THEN GEN_TAC THEN
  ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
  ASM_REWRITE_TAC[UNWIND_THM2] THEN ASM_MESON_TAC[]);;

let arith_primrecstep = new_definition
 `arith_primrecstep R s t =
        (formsubst ((0 |-> s) ((1 |-> t) V))
                  (?? 2 (?? 3 (?? 4
                  (V 0 === arith_pair (V 2) (V 3) &&
                   V 1 === arith_pair (Suc(V 2)) (V 4) &&
                   R (V 3) (V 2) (V 4))))))`;;

let ARITH_PRIMRECSTEP = prove
 (`(!v x y z. holds v (R x y z) <=>
              (f (termval v x) (termval v y) = termval v z))
    ==> !v s t. holds v (arith_primrecstep R s t) <=>
                ?n r. (termval v s = NPAIR n r) /\
                      (termval v t = NPAIR (SUC n) (f r n))`,
  STRIP_TAC THEN
  ASM_REWRITE_TAC[arith_primrecstep; holds; HOLDS_FORMSUBST] THEN
  ASM_REWRITE_TAC[termval; valmod; o_DEF; ARITH_EQ; ARITH_PAIR] THEN
  MESON_TAC[]);;

let FV_PRIMRECSTEP = prove
 (`!R. (!s t u. FV(R s t u) SUBSET (FVT(s) UNION FVT(t) UNION FVT(u)))
       ==> !s t. FV(arith_primrecstep R s t) = FVT(s) UNION FVT(t)`,
  REWRITE_TAC[SUBSET; IN_UNION] THEN FV_TAC[arith_primrecstep; FVT_PAIR] THEN
  GEN_TAC THEN MATCH_MP_TAC(TAUT `~a ==> (a \/ b <=> b)`) THEN
  DISCH_THEN(CHOOSE_THEN
   (CONJUNCTS_THEN2(ANTE_RES_THEN MP_TAC) ASSUME_TAC)) THEN
  ASM_REWRITE_TAC[FVT; IN_SING]);;

let arith_primrec = new_definition
  `arith_primrec R c s t =
        arith_rtc (arith_primrecstep R)
            (arith_pair Z c) (arith_pair s t)`;;

let ARITH_PRIMREC = prove
 (`!fn e f R c.
        (fn 0 = e) /\ (!n. fn (SUC n) = f (fn n) n) /\
        (!v. termval v c = e) /\
                  (!v x y z. holds v (R x y z) <=>
                             (f (termval v x) (termval v y) = termval v z))
                  ==> !v s t. holds v (arith_primrec R c s t) <=>
                               (fn(termval v s) = termval v t)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP ARITH_PRIMRECSTEP) THEN
  DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN
  CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN
  SIMP_TAC[arith_primrec; ARITH_PAIR; termval] THEN
  ASM_SIMP_TAC[PRIMREC_SIGMA]);;

let FV_PRIMREC = prove
 (`!R c. (FVT c = {}) /\
         (!s t u. FV(R s t u) SUBSET (FVT(s) UNION FVT(t) UNION FVT(u)))
         ==> !s t. FV(arith_primrec R c s t) = FVT(s) UNION FVT(t)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[arith_primrec] THEN
  ASM_SIMP_TAC[FV_RTC; FVT_PAIR; FV_PRIMRECSTEP;
                 UNION_EMPTY; UNION_ACI; FVT]);;