Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 28,450 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
(* ========================================================================= *)
(* Definability in arithmetic of important notions. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Pairing operation. *)
(* ------------------------------------------------------------------------- *)
let NPAIR = new_definition
`NPAIR x y = (x + y) EXP 2 + x + 1`;;
let NPAIR_NONZERO = prove
(`!x y. ~(NPAIR x y = 0)`,
REWRITE_TAC[NPAIR; ADD_EQ_0; ARITH]);;
let NPAIR_INJ_LEMMA = prove
(`x1 + y1 < x2 + y2 ==> NPAIR x1 y1 < NPAIR x2 y2`,
STRIP_TAC THEN REWRITE_TAC[NPAIR; EXP_2] THEN
REWRITE_TAC[ARITH_RULE `x + y + 1 < u + v + 1 <=> x + y < u + v`] THEN
MATCH_MP_TAC LTE_TRANS THEN
EXISTS_TAC `SUC(x1 + y1) * SUC(x1 + y1)` THEN CONJ_TAC THENL
[ARITH_TAC; ASM_MESON_TAC[LE_TRANS; LE_ADD; LE_MULT2; LE_SUC_LT]]);;
let NPAIR_INJ = prove
(`(NPAIR x y = NPAIR x' y') <=> (x = x') /\ (y = y')`,
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `x' + y' = x + y` ASSUME_TAC THENL
[ASM_MESON_TAC[LT_CASES; NPAIR_INJ_LEMMA; LT_REFL];
UNDISCH_TAC `NPAIR x y = NPAIR x' y'` THEN
UNDISCH_TAC `x' + y' = x + y` THEN
SIMP_TAC[NPAIR; EXP_2] THEN ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Decreasingness. *)
(* ------------------------------------------------------------------------- *)
let NPAIR_LT = prove
(`!x y. x < NPAIR x y /\ y < NPAIR x y`,
REPEAT GEN_TAC THEN REWRITE_TAC[NPAIR] THEN
REWRITE_TAC[ARITH_RULE `x < a + x + 1`] THEN
MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `(x + y) + x + 1` THEN
REWRITE_TAC[LE_ADD_RCANCEL; EXP_2; LE_SQUARE_REFL] THEN
ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Auxiliary concepts needed. NB: these are Delta so can be negated freely. *)
(* ------------------------------------------------------------------------- *)
let primepow = new_definition
`primepow p x <=> prime(p) /\ ?n. x = p EXP n`;;
let divides_DELTA = prove
(`m divides n <=> ?x. x <= n /\ n = m * x`,
REWRITE_TAC[divides] THEN ASM_CASES_TAC `m = 0` THENL
[ASM_REWRITE_TAC[MULT_CLAUSES] THEN MESON_TAC[LE_REFL]; ALL_TAC] THEN
AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `~(m = 0) ==> 1 <= m`)) THEN
SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM;
RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
MESON_TAC[]);;
let prime_DELTA = prove
(`prime(p) <=> 2 <= p /\ !n. n < p ==> n divides p ==> n = 1`,
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[ARITH; PRIME_0] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[ARITH; PRIME_1] THEN EQ_TAC THENL
[ASM_MESON_TAC[prime; LT_REFL; PRIME_GE_2];
ASM_MESON_TAC[prime; DIVIDES_LE; LE_LT]]);;
let primepow_DELTA = prove
(`primepow p x <=>
prime(p) /\ ~(x = 0) /\
!z. z <= x ==> z divides x ==> z = 1 \/ p divides z`,
REWRITE_TAC[primepow; TAUT `a ==> b \/ c <=> a /\ ~b ==> c`] THEN
ASM_CASES_TAC `prime(p)` THEN
ASM_REWRITE_TAC[] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN
ASM_REWRITE_TAC[EXP_EQ_0] THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `z:num` o MATCH_MP PRIME_COPRIME) THEN
ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `p divides z` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN
DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP COPRIME_EXP) THEN
ASM_MESON_TAC[COPRIME; DIVIDES_REFL];
SPEC_TAC(`x:num`,`x:num`) THEN MATCH_MP_TAC num_WF THEN
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = 1` THENL
[EXISTS_TAC `0` THEN ASM_REWRITE_TAC[EXP]; ALL_TAC] THEN
FIRST_ASSUM(X_CHOOSE_THEN `q:num` MP_TAC o MATCH_MP PRIME_FACTOR) THEN
STRIP_TAC THEN
UNDISCH_TAC `!z. z <= x ==> z divides x /\ ~(z = 1) ==> p divides z` THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(MP_TAC o SPEC `q:num`) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `q = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `q <= x` ASSUME_TAC THENL
[ASM_MESON_TAC[DIVIDES_LE]; ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN `p divides x` MP_TAC THENL
[ASM_MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN
REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_TAC `y:num`) THEN
SUBGOAL_THEN `y < x` (ANTE_RES_THEN MP_TAC) THENL
[MATCH_MP_TAC PRIME_FACTOR_LT THEN
EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `y = 0` THENL
[UNDISCH_TAC `x = p * y` THEN ASM_REWRITE_TAC[MULT_CLAUSES]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `!z. z <= y ==> z divides y /\ ~(z = 1) ==> p divides z`
(fun th -> REWRITE_TAC[th]) THENL
[REPEAT STRIP_TAC THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE
[IMP_IMP]) THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `y:num` THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `y = 1 * y`] THEN
REWRITE_TAC[LE_MULT_RCANCEL] THEN
ASM_REWRITE_TAC[GSYM NOT_LT] THEN
REWRITE_TAC[num_CONV `1`; LT; DE_MORGAN_THM] THEN
ASM_MESON_TAC[PRIME_0; PRIME_1];
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVIDES_LMUL THEN
ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[]];
DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN
EXISTS_TAC `SUC n` THEN ASM_REWRITE_TAC[EXP]]]);;
(* ------------------------------------------------------------------------- *)
(* Sigma-representability of reflexive transitive closure. *)
(* ------------------------------------------------------------------------- *)
let PSEQ = new_recursive_definition num_RECURSION
`(PSEQ p f m 0 = 0) /\
(PSEQ p f m (SUC n) = f m + p * PSEQ p f (SUC m) n)`;;
let PSEQ_SPLIT = prove
(`!f p n m r.
PSEQ p f m (n + r) = PSEQ p f m n + p EXP n * PSEQ p f (m + n) r`,
GEN_TAC THEN GEN_TAC THEN
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; EXP; MULT_CLAUSES; PSEQ] THEN
ASM_REWRITE_TAC[GSYM ADD_ASSOC; EQ_ADD_LCANCEL] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_AC; ADD_CLAUSES]);;
let PSEQ_1 = prove
(`PSEQ p f m 1 = f m`,
REWRITE_TAC[num_CONV `1`; ADD_CLAUSES; MULT_CLAUSES; PSEQ]);;
let PSEQ_BOUND = prove
(`!n. ~(p = 0) /\ (!i. i < n ==> f i < p) ==> PSEQ p f 0 n < p EXP n`,
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THEN
INDUCT_TAC THENL [REWRITE_TAC[PSEQ; EXP; ARITH]; ALL_TAC] THEN
DISCH_TAC THEN
MP_TAC(SPECL [`f:num->num`; `p:num`; `n:num`; `0`; `1`]
PSEQ_SPLIT) THEN
SIMP_TAC[ADD1; ADD_CLAUSES] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC LTE_TRANS THEN
EXISTS_TAC `p EXP n + p EXP n * PSEQ p f n 1` THEN
ASM_SIMP_TAC[LT_ADD_RCANCEL; ARITH_RULE `i < n ==> i < SUC n`] THEN
REWRITE_TAC[ARITH_RULE `p + p * q = p * (q + 1)`] THEN
ASM_REWRITE_TAC[EXP_ADD; LE_MULT_LCANCEL; EXP_EQ_0] THEN
MATCH_MP_TAC(ARITH_RULE `x < p ==> x + 1 <= p`) THEN
ASM_SIMP_TAC[EXP_1; PSEQ_1; LT]);;
let RELPOW_LEMMA_1 = prove
(`(f 0 = x) /\
(f n = y) /\
(!i. i < n ==> R (f i) (f(SUC i)))
==> ?p. (?i. i <= n /\ p <= SUC(FACT(f i))) /\
prime p /\
(?m. m < p EXP (SUC n) /\
x < p /\ y < p /\
(?qx. m = x + p * qx) /\
(?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\
!q. q < p EXP n
==> primepow p q
==> ?r. r < q /\
?a. a < p /\
?b. b < p /\
R a b /\
?s. s <= m /\
(m =
r + q * (a + p * (b + p * s))))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?j. j <= n /\ !i. i <= n ==> f i <= f j` MP_TAC THENL
[SPEC_TAC(`n:num`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
INDUCT_TAC THENL
[SIMP_TAC[LE] THEN MESON_TAC[LE_REFL]; ALL_TAC] THEN
FIRST_ASSUM(X_CHOOSE_THEN `j:num` STRIP_ASSUME_TAC) THEN
DISJ_CASES_TAC(ARITH_RULE `f(SUC n) <= f(j) \/ f(j) <= f(SUC n)`) THENL
[EXISTS_TAC `j:num` THEN
ASM_SIMP_TAC[ARITH_RULE `j <= n ==> j <= SUC n`] THEN
REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[];
EXISTS_TAC `SUC n` THEN REWRITE_TAC[LE_REFL] THEN
REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[LE_REFL] THEN ASM_MESON_TAC[LE_TRANS]];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `ibig:num` STRIP_ASSUME_TAC) THEN
MP_TAC(SPEC `(f:num->num) ibig` EUCLID_BOUND) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `p:num` THEN CONJ_TAC THENL
[EXISTS_TAC `ibig:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
CONJ_TAC THENL [FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
SUBGOAL_THEN `!i. i <= n ==> f i < p` ASSUME_TAC THENL
[ASM_MESON_TAC[LET_TRANS]; ALL_TAC] THEN
EXISTS_TAC `PSEQ p f 0 (SUC n)` THEN CONJ_TAC THENL
[MATCH_MP_TAC PSEQ_BOUND THEN ASM_SIMP_TAC[LT_SUC_LE]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[LE_0]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[LE_REFL]; ALL_TAC] THEN
REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[PSEQ] THEN MESON_TAC[];
MP_TAC(SPECL [`f:num->num`; `p:num`; `n:num`; `0`; `1`] PSEQ_SPLIT) THEN
ASM_SIMP_TAC[ADD1; ADD_CLAUSES] THEN
DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f 0 n` THEN
ASM_SIMP_TAC[PSEQ_BOUND; PSEQ_1; LT_IMP_LE];
ALL_TAC] THEN
ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b ==> a ==> c`] THEN
ASM_SIMP_TAC[primepow; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN X_GEN_TAC `i:num` THEN DISCH_THEN(K ALL_TAC) THEN
ASM_REWRITE_TAC[LT_EXP] THEN STRIP_TAC THEN
MP_TAC(SPECL [`f:num->num`; `p:num`; `i:num`; `0`; `SUC n - i`]
PSEQ_SPLIT) THEN
ASM_SIMP_TAC[ARITH_RULE `i < n ==> (i + SUC n - i = SUC n)`] THEN
DISCH_THEN(K ALL_TAC) THEN
EXISTS_TAC `PSEQ p f 0 i` THEN REWRITE_TAC[EQ_ADD_LCANCEL] THEN
ASM_REWRITE_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; ADD_CLAUSES] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[PSEQ_BOUND; LT_TRANS; LT_IMP_LE]; ALL_TAC] THEN
MP_TAC(SPECL [`f:num->num`; `p:num`; `1`; `i:num`; `n - i`]
PSEQ_SPLIT) THEN
ASM_SIMP_TAC[ARITH_RULE `i < n ==> (1 + n - i = SUC n - i)`] THEN
DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f i 1` THEN
ASM_REWRITE_TAC[EQ_ADD_LCANCEL; EQ_MULT_LCANCEL; EXP_1] THEN
ASM_SIMP_TAC[PSEQ_1; LT_IMP_LE] THEN
MP_TAC(SPECL [`f:num->num`; `p:num`; `1`; `i + 1`; `n - i - 1`]
PSEQ_SPLIT) THEN
ASM_SIMP_TAC[ARITH_RULE `i < n ==> (1 + n - i - 1 = n - i)`] THEN
DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f (i + 1) 1` THEN
ASM_REWRITE_TAC[EQ_ADD_LCANCEL; EQ_MULT_LCANCEL; EXP_1] THEN
ASM_SIMP_TAC[PSEQ_1; ARITH_RULE `i < n ==> i + 1 <= n`] THEN
ASM_SIMP_TAC[GSYM ADD1] THEN REWRITE_TAC[ADD1] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM1] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_ASSOC; ADD_ASSOC] THEN
MATCH_MP_TAC(ARITH_RULE `1 * a <= c ==> a <= b + c`) THEN
REWRITE_TAC[LE_MULT_RCANCEL] THEN DISJ1_TAC THEN
ASM_REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; MULT_EQ_0; EXP_EQ_0]);;
let RELPOW_LEMMA_2 = prove
(`prime p /\ x < p /\ y < p /\
(?qx. m = x + p * qx) /\
(?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\
(!q. q < p EXP n
==> primepow p q
==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
r < q /\ a < p /\ b < p /\ R a b)
==> RELPOW n R x y`,
STRIP_TAC THEN REWRITE_TAC[RELPOW_SEQUENCE] THEN
EXISTS_TAC `\i. (m DIV (p EXP i)) MOD p` THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
REWRITE_TAC[EXP; DIV_1] THEN REPEAT CONJ_TAC THENL
[MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `qx:num` THEN
ASM_REWRITE_TAC[ADD_AC; MULT_AC];
MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN
REWRITE_TAC[ASSUME `y < p`; MULT_CLAUSES; ADD_CLAUSES] THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `ry:num` THEN
REWRITE_TAC[ASSUME `m = ry + p EXP n * y`] THEN
ASM_REWRITE_TAC[ADD_AC; MULT_AC];
ALL_TAC] THEN
X_GEN_TAC `i:num` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p EXP i`) THEN
ASM_SIMP_TAC[LT_EXP; PRIME_GE_2] THEN
ASM_REWRITE_TAC[primepow] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(REPEAT_TCL CHOOSE_THEN MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `(R:num->num->bool) a b` THEN
MATCH_MP_TAC(TAUT `(b <=> a) ==> a ==> b`) THEN BINOP_TAC THENL
[MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `b + p * s` THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `r:num` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[ADD_AC; MULT_AC];
MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `s:num` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `r + a * p EXP i` THEN
CONJ_TAC THENL
[REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[ADD_AC; MULT_AC]; ALL_TAC] THEN
MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `p EXP i + a * p EXP i` THEN
ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN
REWRITE_TAC[ARITH_RULE `p + q * p = (q + 1) * p`] THEN
ASM_REWRITE_TAC[LE_MULT_RCANCEL; EXP_EQ_0] THEN
UNDISCH_TAC `a < p` THEN ARITH_TAC]);;
let RELPOW_LEMMA = prove
(`RELPOW n R x y <=>
?m p. prime p /\ x < p /\ y < p /\
(?qx. m = x + p * qx) /\
(?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\
!q. q < p EXP n
==> primepow p q
==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
r < q /\ a < p /\ b < p /\ R a b`,
EQ_TAC THENL
[ALL_TAC; REWRITE_TAC[RELPOW_LEMMA_2; LEFT_IMP_EXISTS_THM]] THEN
REWRITE_TAC[RELPOW_SEQUENCE] THEN
DISCH_THEN(CHOOSE_THEN(MP_TAC o GEN_ALL o MATCH_MP RELPOW_LEMMA_1)) THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN
GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN
SIMP_TAC[] THEN MESON_TAC[]);;
let RTC_SIGMA = prove
(`RTC R x y <=>
?m p Q. primepow p Q /\ x < p /\ y < p /\
(?s. m = x + p * s) /\
(?r. r < Q /\ (m = r + Q * y)) /\
!q. q < Q
==> primepow p q
==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\
r < q /\ a < p /\ b < p /\ R a b`,
REWRITE_TAC[RTC_RELPOW] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `n:num` MP_TAC) THEN
REWRITE_TAC[RELPOW_LEMMA] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
DISCH_TAC THEN EXISTS_TAC `p EXP n` THEN ASM_REWRITE_TAC[primepow] THEN
MESON_TAC[];
REWRITE_TAC[primepow] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
REWRITE_TAC[GSYM primepow] THEN
GEN_REWRITE_TAC (LAND_CONV o funpow 3 BINDER_CONV)
[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o BINDER_CONV)
[SWAP_EXISTS_THM] THEN
REWRITE_TAC[UNWIND_THM2] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
REWRITE_TAC[GSYM RELPOW_LEMMA]]);;
(* ------------------------------------------------------------------------- *)
(* Partially automate actual definability in object language. *)
(* ------------------------------------------------------------------------- *)
let arith_pair = new_definition
`arith_pair s t = (s ++ t) ** (s ++ t) ++ s ++ Suc Z`;;
let ARITH_PAIR = prove
(`!s t v. termval v (arith_pair s t) = NPAIR (termval v s) (termval v t)`,
REWRITE_TAC[termval; arith_pair; NPAIR; EXP_2; ARITH_SUC]);;
let FVT_PAIR = prove
(`FVT(arith_pair s t) = FVT(s) UNION FVT(t)`,
REWRITE_TAC[arith_pair; FVT] THEN SET_TAC[]);;
let OBJECTIFY =
let is_add = is_binop `(+):num->num->num`
and is_mul = is_binop `(*):num->num->num`
and is_le = is_binop `(<=):num->num->bool`
and is_lt = is_binop `(<):num->num->bool`
and zero_tm = `0`
and suc_tm = `SUC`
and osuc_tm = `Suc`
and oz_tm = `Z`
and ov_tm = `V`
and oadd_tm = `(++)`
and omul_tm = `(**)`
and oeq_tm = `(===)`
and ole_tm = `(<<=)`
and olt_tm = `(<<)`
and oiff_tm = `(<->)`
and oimp_tm = `(-->)`
and oand_tm = `(&&)`
and oor_tm = `(||)`
and onot_tm = `Not`
and oall_tm = `!!`
and oex_tm = `??`
and numeral_tm = `numeral`
and assign_tm = `(|->):num->term->(num->term)->(num->term)`
and term_ty = `:term`
and form_ty = `:form`
and num_ty = `:num`
and formsubst_tm = `formsubst`
and holdsv_tm = `holds v`
and v_tm = `v:num->num` in
let objectify1 fn op env tm = mk_comb(op,fn env (rand tm)) in
let objectify2 fn op env tm =
mk_comb(mk_comb(op,fn env (lhand tm)),fn env (rand tm)) in
fun defs ->
let defs' = [TERMVAL_NUMERAL; ARITH_PAIR] @ defs in
let rec objectify_term env tm =
if is_var tm then mk_comb(ov_tm,apply env tm)
else if tm = zero_tm then oz_tm
else if is_numeral tm then mk_comb(numeral_tm,tm)
else if is_add tm then objectify2 objectify_term oadd_tm env tm
else if is_mul tm then objectify2 objectify_term omul_tm env tm
else if is_comb tm && rator tm = suc_tm
then objectify1 objectify_term osuc_tm env tm
else
let f,args = strip_comb tm in
let args' = map (objectify_term env) args in
try let dth = find
(fun th -> fst(strip_comb(rand(snd(strip_forall(concl th))))) = f)
defs' in
let l,r = dest_eq(snd(strip_forall(concl dth))) in
list_mk_comb(fst(strip_comb(rand l)),args')
with Failure _ ->
let ty = itlist (mk_fun_ty o type_of) args' form_ty in
let v = mk_var(fst(dest_var f),ty) in
list_mk_comb(v,args') in
let rec objectify_formula env fm =
if is_forall fm then
let x,bod = dest_forall fm in
let n = mk_small_numeral
(itlist (max o dest_small_numeral) (ran env) 0 + 1) in
mk_comb(mk_comb(oall_tm,n),objectify_formula ((x |-> n) env) bod)
else if is_exists fm then
let x,bod = dest_exists fm in
let n = mk_small_numeral
(itlist (max o dest_small_numeral) (ran env) 0 + 1) in
mk_comb(mk_comb(oex_tm,n),objectify_formula ((x |-> n) env) bod)
else if is_iff fm then objectify2 objectify_formula oiff_tm env fm
else if is_imp fm then objectify2 objectify_formula oimp_tm env fm
else if is_conj fm then objectify2 objectify_formula oand_tm env fm
else if is_disj fm then objectify2 objectify_formula oor_tm env fm
else if is_neg fm then objectify1 objectify_formula onot_tm env fm
else if is_le fm then objectify2 objectify_term ole_tm env fm
else if is_lt fm then objectify2 objectify_term olt_tm env fm
else if is_eq fm then objectify2 objectify_term oeq_tm env fm
else objectify_term env fm in
fun nam th ->
let ptm,tm = dest_eq(snd(strip_forall(concl th))) in
let vs = filter (fun v -> type_of v = num_ty) (snd(strip_comb ptm)) in
let ns = 1--(length vs) in
let env = itlist2 (fun v n -> v |-> mk_small_numeral n) vs ns undefined in
let otm = objectify_formula env tm in
let vs' = map (fun v -> mk_var(fst(dest_var v),term_ty)) vs in
let stm = itlist2
(fun v n a -> mk_comb(mk_comb(mk_comb(assign_tm,mk_small_numeral
n),v),a))
vs' ns ov_tm in
let rside = mk_comb(mk_comb(formsubst_tm,stm),otm) in
let vs'' = subtract (frees rside) vs' @ vs' in
let lty = itlist (mk_fun_ty o type_of) vs'' (type_of rside) in
let lside = list_mk_comb(mk_var(nam,lty),vs'') in
let def = mk_eq(lside,rside) in
let dth = new_definition def in
let clside = lhs(snd(strip_forall(concl dth))) in
let etm = mk_comb(holdsv_tm,clside) in
let thm =
(REWRITE_CONV ([dth; holds; HOLDS_FORMSUBST] @ defs') THENC
REWRITE_CONV [termval; ARITH_EQ; o_THM; valmod] THENC
GEN_REWRITE_CONV I [GSYM th]) etm in
dth,DISCH_ALL (GENL (v_tm::vs') thm);;
(* ------------------------------------------------------------------------- *)
(* Some sort of common tactic for free variables. *)
(* ------------------------------------------------------------------------- *)
let FV_TAC ths =
let ths' = ths @
[FV; FORMSUBST_FV; FVT; TERMSUBST_FVT; IN_ELIM_THM;
NOT_IN_EMPTY; IN_UNION; IN_DELETE; IN_SING]
and tac =
REWRITE_TAC[DISJ_ACI; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC; UNWIND_THM2; ARITH_EQ] THEN
REWRITE_TAC[valmod; ARITH_EQ; FVT] THEN REWRITE_TAC[DISJ_ACI] in
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN
ASM_REWRITE_TAC ths' THEN tac THEN ASM_SIMP_TAC ths' THEN tac;;
(* ------------------------------------------------------------------------- *)
(* So do the formula-level stuff (more) automatically. *)
(* ------------------------------------------------------------------------- *)
let arith_divides,ARITH_DIVIDES =
OBJECTIFY [] "arith_divides" divides_DELTA;;
let FV_DIVIDES = prove
(`!s t. FV(arith_divides s t) = FVT(s) UNION FVT(t)`,
FV_TAC[arith_divides]);;
let arith_prime,ARITH_PRIME =
OBJECTIFY [ARITH_DIVIDES] "arith_prime" prime_DELTA;;
let FV_PRIME = prove
(`!t. FV(arith_prime t) = FVT(t)`,
FV_TAC[arith_prime; FVT_NUMERAL; FV_DIVIDES]);;
let arith_primepow,ARITH_PRIMEPOW =
OBJECTIFY [ARITH_PRIME; ARITH_DIVIDES] "arith_primepow" primepow_DELTA;;
let FV_PRIMEPOW = prove
(`!s t. FV(arith_primepow s t) = FVT(s) UNION FVT(t)`,
FV_TAC[arith_primepow; FVT_NUMERAL; FV_DIVIDES; FV_PRIME]);;
let arith_rtc,ARITH_RTC =
OBJECTIFY
[ARITH_PRIMEPOW;
ASSUME `!v s t. holds v (R s t) <=> r (termval v s) (termval v t)`]
"arith_rtc" RTC_SIGMA;;
let FV_RTC = prove
(`!R. (!s t. FV(R s t) = FVT(s) UNION FVT(t))
==> !s t. FV(arith_rtc R s t) = FVT(s) UNION FVT(t)`,
FV_TAC[arith_rtc; FV_PRIMEPOW]);;
(* ------------------------------------------------------------------------- *)
(* Automate RTC constructions, including parametrized ones. *)
(* ------------------------------------------------------------------------- *)
let OBJECTIFY_RTC =
let pth = prove
(`(!v x y. holds v (f x y) <=> f' (termval v x) (termval v y))
==> !g. (!n. g n = formsubst ((0 |-> n) V)
(arith_rtc f (numeral 0)
(arith_pair (V 0) (numeral 0))))
==> !v n. holds v (g n) <=> RTC f' 0 (NPAIR (termval v n) 0)`,
DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN SIMP_TAC[HOLDS_FORMSUBST] THEN
REWRITE_TAC[termval; o_DEF; ARITH_EQ; valmod;
ARITH_PAIR; TERMVAL_NUMERAL]) in
fun def nam th ->
let th1 = MATCH_MP pth def in
let v = fst(dest_forall(concl th1)) in
let th2 = SPEC (mk_var(nam,type_of v)) th1 in
let dth = new_definition (fst(dest_imp(concl th2))) in
dth,ONCE_REWRITE_RULE[GSYM th] (MATCH_MP th2 dth);;
let RTCP = new_definition
`RTCP R m x y <=> RTC (R m) x y`;;
let RTCP_SIGMA = REWRITE_RULE[GSYM RTCP]
(INST [`(R:num->num->num->bool) m`,`R:num->num->bool`] RTC_SIGMA);;
let arith_rtcp,ARITH_RTCP =
OBJECTIFY
[ARITH_PRIMEPOW;
ASSUME `!v m s t. holds v (R m s t) <=>
r (termval v m) (termval v s) (termval v t)`]
"arith_rtcp" RTCP_SIGMA;;
let ARITH_RTC_PARAMETRIZED = REWRITE_RULE[RTCP] ARITH_RTCP;;
let FV_RTCP = prove
(`!R. (!s t u. FV(R s t u) = FVT(s) UNION FVT(t) UNION FVT(u))
==> !s t u. FV(arith_rtcp R s t u) = FVT(s) UNION FVT(t) UNION FVT(u)`,
FV_TAC[arith_rtcp; FV_PRIMEPOW]);;
let OBJECTIFY_RTCP =
let pth = prove
(`(!v m x y. holds v (f m x y) <=>
f' (termval v m) (termval v x) (termval v y))
==> !g. (!m n. g m n = formsubst ((1 |-> m) ((0 |-> n) V))
(arith_rtcp f (V 1) (numeral 0)
(arith_pair (V 0) (numeral 0))))
==> !v m n. holds v (g m n) <=>
RTC (f' (termval v m)) 0 (NPAIR (termval v n) 0)`,
DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC_PARAMETRIZED) THEN
SIMP_TAC[HOLDS_FORMSUBST] THEN
REWRITE_TAC[termval; o_DEF; ARITH_EQ; valmod;
ARITH_PAIR; TERMVAL_NUMERAL]) in
fun def nam th ->
let th1 = MATCH_MP pth def in
let v = fst(dest_forall(concl th1)) in
let th2 = SPEC (mk_var(nam,type_of v)) th1 in
let dth = new_definition (fst(dest_imp(concl th2))) in
dth,ONCE_REWRITE_RULE[GSYM th] (MATCH_MP th2 dth);;
(* ------------------------------------------------------------------------- *)
(* Generic result about primitive recursion. *)
(* ------------------------------------------------------------------------- *)
let PRIMREC_SIGMA = prove
(`(fn 0 = e) /\
(!n. fn (SUC n) = f (fn n) n)
==> !x y. RTC (\x y. ?n r. (x = NPAIR n r) /\ (y = NPAIR (SUC n) (f r n)))
(NPAIR 0 e) (NPAIR x y) <=>
(fn(x) = y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN
ONCE_REWRITE_TAC[RTC_CASES_L] THEN ASM_REWRITE_TAC[NPAIR_INJ; NOT_SUC] THEN
REWRITE_TAC[SUC_INJ; RIGHT_AND_EXISTS_THM] THEN GEN_TAC THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
ASM_REWRITE_TAC[UNWIND_THM2] THEN ASM_MESON_TAC[]);;
let arith_primrecstep = new_definition
`arith_primrecstep R s t =
(formsubst ((0 |-> s) ((1 |-> t) V))
(?? 2 (?? 3 (?? 4
(V 0 === arith_pair (V 2) (V 3) &&
V 1 === arith_pair (Suc(V 2)) (V 4) &&
R (V 3) (V 2) (V 4))))))`;;
let ARITH_PRIMRECSTEP = prove
(`(!v x y z. holds v (R x y z) <=>
(f (termval v x) (termval v y) = termval v z))
==> !v s t. holds v (arith_primrecstep R s t) <=>
?n r. (termval v s = NPAIR n r) /\
(termval v t = NPAIR (SUC n) (f r n))`,
STRIP_TAC THEN
ASM_REWRITE_TAC[arith_primrecstep; holds; HOLDS_FORMSUBST] THEN
ASM_REWRITE_TAC[termval; valmod; o_DEF; ARITH_EQ; ARITH_PAIR] THEN
MESON_TAC[]);;
let FV_PRIMRECSTEP = prove
(`!R. (!s t u. FV(R s t u) SUBSET (FVT(s) UNION FVT(t) UNION FVT(u)))
==> !s t. FV(arith_primrecstep R s t) = FVT(s) UNION FVT(t)`,
REWRITE_TAC[SUBSET; IN_UNION] THEN FV_TAC[arith_primrecstep; FVT_PAIR] THEN
GEN_TAC THEN MATCH_MP_TAC(TAUT `~a ==> (a \/ b <=> b)`) THEN
DISCH_THEN(CHOOSE_THEN
(CONJUNCTS_THEN2(ANTE_RES_THEN MP_TAC) ASSUME_TAC)) THEN
ASM_REWRITE_TAC[FVT; IN_SING]);;
let arith_primrec = new_definition
`arith_primrec R c s t =
arith_rtc (arith_primrecstep R)
(arith_pair Z c) (arith_pair s t)`;;
let ARITH_PRIMREC = prove
(`!fn e f R c.
(fn 0 = e) /\ (!n. fn (SUC n) = f (fn n) n) /\
(!v. termval v c = e) /\
(!v x y z. holds v (R x y z) <=>
(f (termval v x) (termval v y) = termval v z))
==> !v s t. holds v (arith_primrec R c s t) <=>
(fn(termval v s) = termval v t)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ARITH_PRIMRECSTEP) THEN
DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN
SIMP_TAC[arith_primrec; ARITH_PAIR; termval] THEN
ASM_SIMP_TAC[PRIMREC_SIGMA]);;
let FV_PRIMREC = prove
(`!R c. (FVT c = {}) /\
(!s t u. FV(R s t u) SUBSET (FVT(s) UNION FVT(t) UNION FVT(u)))
==> !s t. FV(arith_primrec R c s t) = FVT(s) UNION FVT(t)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[arith_primrec] THEN
ASM_SIMP_TAC[FV_RTC; FVT_PAIR; FV_PRIMRECSTEP;
UNION_EMPTY; UNION_ACI; FVT]);;
|