Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 40,300 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
(* ========================================================================= *)
(* Derived properties of provability. *)
(* ========================================================================= *)
let negativef = new_definition
`negativef p = ?q. p = q --> False`;;
let negatef = new_definition
`negatef p = if negativef p then @q. p = q --> False else p --> False`;;
(* ------------------------------------------------------------------------- *)
(* The primitive basis, separated into its named components. *)
(* ------------------------------------------------------------------------- *)
let axiom_addimp = prove
(`!A p q. A |-- p --> (q --> p)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_distribimp = prove
(`!A p q r. A |-- (p --> q --> r) --> (p --> q) --> (p --> r)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_doubleneg = prove
(`!A p. A |-- ((p --> False) --> False) --> p`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_allimp = prove
(`!A x p q. A |-- (!!x (p --> q)) --> (!!x p) --> (!!x q)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_impall = prove
(`!A x p. ~(x IN FV p) ==> A |-- p --> !!x p`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_existseq = prove
(`!A x t. ~(x IN FVT t) ==> A |-- ??x (V x === t)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_eqrefl = prove
(`!A t. A |-- t === t`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_funcong = prove
(`(!A s t. A |-- s === t --> Suc s === Suc t) /\
(!A s t u v. A |-- s === t --> u === v --> s ++ u === t ++ v) /\
(!A s t u v. A |-- s === t --> u === v --> s ** u === t ** v)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_predcong = prove
(`(!A s t u v. A |-- s === t --> u === v --> s === u --> t === v) /\
(!A s t u v. A |-- s === t --> u === v --> s << u --> t << v) /\
(!A s t u v. A |-- s === t --> u === v --> s <<= u --> t <<= v)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_iffimp1 = prove
(`!A p q. A |-- (p <-> q) --> p --> q`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_iffimp2 = prove
(`!A p q. A |-- (p <-> q) --> q --> p`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_impiff = prove
(`!A p q. A |-- (p --> q) --> (q --> p) --> (p <-> q)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_true = prove
(`A |-- True <-> (False --> False)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_not = prove
(`!A p. A |-- Not p <-> (p --> False)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_and = prove
(`!A p q. A |-- (p && q) <-> (p --> q --> False) --> False`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_or = prove
(`!A p q. A |-- (p || q) <-> Not(Not p && Not q)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_exists = prove
(`!A x p. A |-- (??x p) <-> Not(!!x (Not p))`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let assume = prove
(`!A p. p IN A ==> A |-- p`,
MESON_TAC[proves_RULES]);;
let modusponens = prove
(`!A p. A |-- (p --> q) /\ A |-- p ==> A |-- q`,
MESON_TAC[proves_RULES]);;
let gen = prove
(`!A p x. A |-- p ==> A |-- !!x p`,
MESON_TAC[proves_RULES]);;
(* ------------------------------------------------------------------------- *)
(* Some purely propositional schemas and derived rules. *)
(* ------------------------------------------------------------------------- *)
let iff_imp1 = prove
(`!A p q. A |-- p <-> q ==> A |-- p --> q`,
MESON_TAC[modusponens; axiom_iffimp1]);;
let iff_imp2 = prove
(`!A p q. A |-- p <-> q ==> A |-- q --> p`,
MESON_TAC[modusponens; axiom_iffimp2]);;
let imp_antisym = prove
(`!A p q. A |-- p --> q /\ A |-- q --> p ==> A |-- p <-> q`,
MESON_TAC[modusponens; axiom_impiff]);;
let add_assum = prove
(`!A p q. A |-- q ==> A |-- p --> q`,
MESON_TAC[modusponens; axiom_addimp]);;
let imp_refl = prove
(`!A p. A |-- p --> p`,
MESON_TAC[modusponens; axiom_distribimp; axiom_addimp]);;
let imp_add_assum = prove
(`!A p q r. A |-- q --> r ==> A |-- (p --> q) --> (p --> r)`,
MESON_TAC[modusponens; axiom_distribimp; add_assum]);;
let imp_unduplicate = prove
(`!A p q. A |-- p --> p --> q ==> A |-- p --> q`,
MESON_TAC[modusponens; axiom_distribimp; imp_refl]);;
let imp_trans = prove
(`!A p q. A |-- p --> q /\ A |-- q --> r ==> A |-- p --> r`,
MESON_TAC[modusponens; imp_add_assum]);;
let imp_swap = prove
(`!A p q r. A |-- p --> q --> r ==> A |-- q --> p --> r`,
MESON_TAC[imp_trans; axiom_addimp; modusponens; axiom_distribimp]);;
let imp_trans_chain_2 = prove
(`!A p q1 q2 r. A |-- p --> q1 /\ A |-- p --> q2 /\ A |-- q1 --> q2 --> r
==> A |-- p --> r`,
ASM_MESON_TAC[imp_trans; imp_swap; imp_unduplicate]);;
let imp_trans_th = prove
(`!A p q r. A |-- (q --> r) --> (p --> q) --> (p --> r)`,
MESON_TAC[imp_trans; axiom_addimp; axiom_distribimp]);;
let imp_add_concl = prove
(`!A p q r. A |-- p --> q ==> A |-- (q --> r) --> (p --> r)`,
MESON_TAC[modusponens; imp_swap; imp_trans_th]);;
let imp_trans2 = prove
(`!A p q r s. A |-- p --> q --> r /\ A |-- r --> s ==> A |-- p --> q --> s`,
MESON_TAC[imp_add_assum; modusponens; imp_trans_th]);;
let imp_swap_th = prove
(`!A p q r. A |-- (p --> q --> r) --> (q --> p --> r)`,
MESON_TAC[imp_trans; axiom_distribimp; imp_add_concl; axiom_addimp]);;
let contrapos = prove
(`!A p q. A |-- p --> q ==> A |-- Not q --> Not p`,
MESON_TAC[imp_trans; iff_imp1; axiom_not; imp_add_concl; iff_imp2]);;
let imp_truefalse = prove
(`!p q. A |-- (q --> False) --> p --> (p --> q) --> False`,
MESON_TAC[imp_trans; imp_trans_th; imp_swap_th]);;
let imp_insert = prove
(`!A p q r. A |-- p --> r ==> A |-- p --> q --> r`,
MESON_TAC[imp_trans; axiom_addimp]);;
let imp_mono_th = prove
(`A |-- (p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q')`,
MESON_TAC[imp_trans; imp_swap; imp_trans_th]);;
let ex_falso = prove
(`!A p. A |-- False --> p`,
MESON_TAC[imp_trans; axiom_addimp; axiom_doubleneg]);;
let imp_contr = prove
(`!A p q. A |-- (p --> False) --> (p --> r)`,
MESON_TAC[imp_add_assum; ex_falso]);;
let imp_contrf = prove
(`!A p r. A |-- p --> negatef p --> r`,
REPEAT GEN_TAC THEN REWRITE_TAC[negatef; negativef] THEN
COND_CASES_TAC THEN POP_ASSUM STRIP_ASSUME_TAC THEN
ASM_REWRITE_TAC[form_INJ] THEN
ASM_MESON_TAC[imp_contr; imp_swap]);;
let contrad = prove
(`!A p. A |-- (p --> False) --> p ==> A |-- p`,
MESON_TAC[modusponens; axiom_distribimp; imp_refl; axiom_doubleneg]);;
let bool_cases = prove
(`!p q. A |-- p --> q /\ A |-- (p --> False) --> q ==> A |-- q`,
MESON_TAC[contrad; imp_trans; imp_add_concl]);;
let imp_false_rule = prove
(`!p q r. A |-- (q --> False) --> p --> r
==> A |-- ((p --> q) --> False) --> r`,
MESON_TAC[imp_add_concl; imp_add_assum; ex_falso; axiom_addimp; imp_swap;
imp_trans; axiom_doubleneg; imp_unduplicate]);;
let imp_true_rule = prove
(`!A p q r. A |-- (p --> False) --> r /\ A |-- q --> r
==> A |-- (p --> q) --> r`,
MESON_TAC[imp_insert; imp_swap; modusponens; imp_trans_th; bool_cases]);;
let truth = prove
(`!A. A |-- True`,
MESON_TAC[modusponens; axiom_true; imp_refl; iff_imp2]);;
let and_left = prove
(`!A p q. A |-- p && q --> p`,
MESON_TAC[imp_add_assum; axiom_addimp; imp_trans; imp_add_concl;
axiom_doubleneg; imp_trans; iff_imp1; axiom_and]);;
let and_right = prove
(`!A p q. A |-- p && q --> q`,
MESON_TAC[axiom_addimp; imp_trans; imp_add_concl; axiom_doubleneg;
iff_imp1; axiom_and]);;
let and_pair = prove
(`!A p q. A |-- p --> q --> p && q`,
MESON_TAC[iff_imp2; axiom_and; imp_swap_th; imp_add_assum; imp_trans2;
modusponens; imp_swap; imp_refl]);;
let META_AND = prove
(`!A p q. A |-- p && q <=> A |-- p /\ A |-- q`,
MESON_TAC[and_left; and_right; and_pair; modusponens]);;
let shunt = prove
(`!A p q r. A |-- p && q --> r ==> A |-- p --> q --> r`,
MESON_TAC[modusponens; imp_add_assum; and_pair]);;
let ante_conj = prove
(`!A p q r. A |-- p --> q --> r ==> A |-- p && q --> r`,
MESON_TAC[imp_trans_chain_2; and_left; and_right]);;
let not_not_false = prove
(`!A p. A |-- (p --> False) --> False <-> p`,
MESON_TAC[imp_antisym; axiom_doubleneg; imp_swap; imp_refl]);;
let iff_sym = prove
(`!A p q. A |-- p <-> q <=> A |-- q <-> p`,
MESON_TAC[iff_imp1; iff_imp2; imp_antisym]);;
let iff_trans = prove
(`!A p q r. A |-- p <-> q /\ A |-- q <-> r ==> A |-- p <-> r`,
MESON_TAC[iff_imp1; iff_imp2; imp_trans; imp_antisym]);;
let not_not = prove
(`!A p. A |-- Not(Not p) <-> p`,
MESON_TAC[iff_trans; not_not_false; axiom_not; imp_antisym; imp_add_concl;
iff_imp1; iff_imp2]);;
let contrapos_eq = prove
(`!A p q. A |-- Not p --> Not q <=> A |-- q --> p`,
MESON_TAC[contrapos; not_not; iff_imp1; iff_imp2; imp_trans]);;
let or_left = prove
(`!A p q. A |-- q --> p || q`,
MESON_TAC[imp_trans; not_not; iff_imp2; and_right; contrapos; axiom_or]);;
let or_right = prove
(`!A p q. A |-- p --> p || q`,
MESON_TAC[imp_trans; not_not; iff_imp2; and_left; contrapos; axiom_or]);;
let ante_disj = prove
(`!A p q r. A |-- p --> r /\ A |-- q --> r
==> A |-- p || q --> r`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM contrapos_eq] THEN
MESON_TAC[imp_trans; imp_trans_chain_2; and_pair; contrapos_eq; not_not;
axiom_or; iff_imp1; iff_imp2; imp_trans]);;
let iff_def = prove
(`!A p q. A |-- (p <-> q) <-> (p --> q) && (q --> p)`,
MESON_TAC[imp_antisym; imp_trans_chain_2; axiom_iffimp1; axiom_iffimp2;
and_pair; axiom_impiff; imp_trans_chain_2; and_left; and_right]);;
let iff_refl = prove
(`!A p. A |-- p <-> p`,
MESON_TAC[imp_antisym; imp_refl]);;
(* ------------------------------------------------------------------------- *)
(* Equality rules. *)
(* ------------------------------------------------------------------------- *)
let eq_sym = prove
(`!A s t. A |-- s === t --> t === s`,
MESON_TAC[axiom_eqrefl; modusponens; imp_swap; axiom_predcong]);;
let icongruence_general = prove
(`!A p x s t tm.
A |-- s === t -->
termsubst ((x |-> s) v) tm === termsubst ((x |-> t) v) tm`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN
REPEAT CONJ_TAC THENL
[MESON_TAC[axiom_eqrefl; add_assum];
GEN_TAC THEN REWRITE_TAC[valmod] THEN
COND_CASES_TAC THEN REWRITE_TAC[imp_refl] THEN
MESON_TAC[axiom_eqrefl; add_assum];
MESON_TAC[imp_trans; axiom_funcong];
MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate];
MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate]]);;
let icongruence = prove
(`!A x s t tm.
A |-- s === t --> termsubst (x |=> s) tm === termsubst (x |=> t) tm`,
REWRITE_TAC[assign; icongruence_general]);;
let icongruence_var = prove
(`!A x t tm.
A |-- V x === t --> tm === termsubst (x |=> t) tm`,
MESON_TAC[icongruence; TERMSUBST_TRIV; ASSIGN_TRIV]);;
(* ------------------------------------------------------------------------- *)
(* First-order rules. *)
(* ------------------------------------------------------------------------- *)
let gen_right = prove
(`!A x p q. ~(x IN FV(p)) /\ A |-- p --> q
==> A |-- p --> !!x q`,
MESON_TAC[axiom_allimp; modusponens; gen; imp_trans; axiom_impall]);;
let genimp = prove
(`!x p q. A |-- p --> q ==> A |-- (!!x p) --> (!!x q)`,
MESON_TAC[modusponens; axiom_allimp; gen]);;
let eximp = prove
(`!x p q. A |-- p --> q ==> A |-- (??x p) --> (??x q)`,
MESON_TAC[contrapos; genimp; contrapos; imp_trans; iff_imp1; iff_imp2;
axiom_exists]);;
let exists_imp = prove
(`!A x p q. A |-- ??x (p --> q) /\ ~(x IN FV(q)) ==> A |-- (!!x p) --> q`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `A |-- (q --> False) --> !!x (p --> Not(p --> q))`
ASSUME_TAC THENL
[MATCH_MP_TAC gen_right THEN
ASM_REWRITE_TAC[FV; IN_UNION; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[iff_imp2; axiom_not; imp_trans2; imp_truefalse];
ALL_TAC] THEN
SUBGOAL_THEN `A |-- (q --> False) --> !!x p --> !!x (Not(p --> q))`
ASSUME_TAC THENL
[ASM_MESON_TAC[imp_trans; axiom_allimp]; ALL_TAC] THEN
SUBGOAL_THEN `A |-- ((q --> False) --> !!x (Not(p --> q)))
--> (q --> False) --> False`
ASSUME_TAC THENL
[ASM_MESON_TAC[modusponens; iff_imp1; axiom_exists; axiom_not; imp_trans_th];
ALL_TAC] THEN
ASM_MESON_TAC[imp_trans; imp_swap; axiom_doubleneg]);;
let subspec = prove
(`!A x t p q. ~(x IN FVT(t)) /\ ~(x IN FV(q)) /\ A |-- V x === t --> p --> q
==> A |-- (!!x p) --> q`,
MESON_TAC[exists_imp; modusponens; eximp; axiom_existseq]);;
let subalpha = prove
(`!A x y p q. ((x = y) \/ ~(x IN FV(q)) /\ ~(y IN FV(p))) /\
A |-- V x === V y --> p --> q
==> A |-- (!!x p) --> (!!y q)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x = y:num` THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_MESON_TAC[genimp; modusponens; axiom_eqrefl];
ALL_TAC] THEN
MATCH_MP_TAC gen_right THEN ASM_REWRITE_TAC[FV; IN_DELETE] THEN
MATCH_MP_TAC subspec THEN EXISTS_TAC `V y` THEN
ASM_REWRITE_TAC[FVT; IN_SING]);;
(* ------------------------------------------------------------------------- *)
(* We'll perform induction on this measure. *)
(* ------------------------------------------------------------------------- *)
let complexity = new_recursive_definition form_RECURSION
`(complexity False = 1) /\
(complexity True = 1) /\
(!s t. complexity (s === t) = 1) /\
(!s t. complexity (s << t) = 1) /\
(!s t. complexity (s <<= t) = 1) /\
(!p. complexity (Not p) = complexity p + 3) /\
(!p q. complexity (p && q) = complexity p + complexity q + 6) /\
(!p q. complexity (p || q) = complexity p + complexity q + 16) /\
(!p q. complexity (p --> q) = complexity p + complexity q + 1) /\
(!p q. complexity (p <-> q) = 2 * (complexity p + complexity q) + 9) /\
(!x p. complexity (!!x p) = complexity p + 1) /\
(!x p. complexity (??x p) = complexity p + 8)`;;
let COMPLEXITY_FORMSUBST = prove
(`!p i. complexity(formsubst i p) = complexity p`,
MATCH_MP_TAC form_INDUCT THEN
SIMP_TAC[formsubst; complexity; LET_DEF; LET_END_DEF]);;
let isubst_general = prove
(`!A p x v s t. A |-- s === t
--> formsubst ((x |-> s) v) p
--> formsubst ((x |-> t) v) p`,
GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `complexity p` THEN
POP_ASSUM MP_TAC THEN SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[formsubst; complexity] THEN
REPEAT CONJ_TAC THENL
[MESON_TAC[imp_refl; add_assum];
MESON_TAC[imp_refl; add_assum];
MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general];
MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general];
MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general];
X_GEN_TAC `p:form` THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `p --> False`) THEN
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[formsubst] THEN
MESON_TAC[axiom_not; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2];
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `(p --> q --> False) --> False`) THEN
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[formsubst] THEN
MESON_TAC[axiom_and; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2];
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `Not(Not p && Not q)`) THEN
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[formsubst] THEN
MESON_TAC[axiom_or; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2];
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(fun th -> MP_TAC(SPEC `p:form` th) THEN
MP_TAC(SPEC `q:form` th)) THEN
REWRITE_TAC[ARITH_RULE `p < p + q + 1 /\ q < p + q + 1`] THEN
MESON_TAC[imp_mono_th; eq_sym; imp_trans; imp_trans_chain_2];
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `(p --> q) && (q --> p)`) THEN
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[formsubst] THEN
MESON_TAC[iff_def; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2];
ALL_TAC;
MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `Not(!!x (Not p))`) THEN
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[formsubst] THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
REWRITE_TAC[FV] THEN REPEAT LET_TAC THEN
ASM_MESON_TAC[axiom_exists; iff_imp1; iff_imp2; imp_swap; imp_trans;
imp_trans2]] THEN
MAP_EVERY X_GEN_TAC [`u:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[ARITH_RULE `a < b + 1 <=> a <= b`] THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`v:num`; `i:num->term`; `s:term`; `t:term`] THEN
MAP_EVERY ABBREV_TAC
[`x = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> s) i y)
then VARIANT (FV (formsubst ((u |-> V u) ((v |-> s) i)) p))
else u`;
`y = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> t) i y)
then VARIANT (FV (formsubst ((u |-> V u) ((v |-> t) i)) p))
else u`] THEN
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
SUBGOAL_THEN `~(x IN FV(formsubst ((v |-> s) i) (!!u p))) /\
~(y IN FV(formsubst ((v |-> t) i) (!!u p)))`
STRIP_ASSUME_TAC THENL
[MAP_EVERY EXPAND_TAC ["x"; "y"] THEN CONJ_TAC THEN
(COND_CASES_TAC THENL
[ALL_TAC; ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM]] THEN
MATCH_MP_TAC NOT_IN_VARIANT THEN REWRITE_TAC[FV_FINITE] THEN
REWRITE_TAC[SUBSET; FORMSUBST_FV; IN_ELIM_THM; FV; IN_DELETE] THEN
REWRITE_TAC[valmod] THEN MESON_TAC[FVT; IN_SING]);
ALL_TAC] THEN
ASM_CASES_TAC `v:num = u` THENL
[ASM_REWRITE_TAC[VALMOD_VALMOD_BASIC] THEN
MATCH_MP_TAC add_assum THEN MATCH_MP_TAC subalpha THEN
ASM_SIMP_TAC[LE_REFL] THEN
ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`;
UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN
ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN
MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN
ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN
ASM_REWRITE_TAC[valmod; FVT; IN_SING];
ALL_TAC] THEN
SUBGOAL_THEN
`?z. ~(z IN FVT s) /\ ~(z IN FVT t) /\
A |-- !!x (formsubst ((u |-> V x) ((v |-> s) i)) p)
--> !!z (formsubst ((u |-> V z) ((v |-> s) i)) p) /\
A |-- !!z (formsubst ((u |-> V z) ((v |-> t) i)) p)
--> !!y (formsubst ((u |-> V y) ((v |-> t) i)) p)`
MP_TAC THENL
[ALL_TAC;
DISCH_THEN(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC imp_trans THEN
EXISTS_TAC `(!!z (formsubst ((v |-> s) ((u |-> V z) i)) p))
--> (!!z (formsubst ((v |-> t) ((u |-> V z) i)) p))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC imp_trans THEN
EXISTS_TAC `!!z (formsubst ((v |-> s) ((u |-> V z) i)) p
--> formsubst ((v |-> t) ((u |-> V z) i)) p)` THEN
REWRITE_TAC[axiom_allimp] THEN
ASM_SIMP_TAC[complexity; LE_REFL; FV; IN_UNION; gen_right];
ALL_TAC] THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP VALMOD_SWAP th]) THEN
ASM_MESON_TAC[imp_mono_th; modusponens]] THEN
MP_TAC(SPEC
`FVT(s) UNION FVT(t) UNION
FV(formsubst ((u |-> V x) ((v |-> s) i)) p) UNION
FV(formsubst ((u |-> V y) ((v |-> t) i)) p)` VARIANT_FINITE) THEN
REWRITE_TAC[FINITE_UNION; FV_FINITE; FVT_FINITE] THEN
W(fun (_,w) -> ABBREV_TAC(mk_comb(`(=) (z:num)`,lhand(rand(lhand w))))) THEN
REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN STRIP_TAC THEN
EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THEN MATCH_MP_TAC subalpha THEN ASM_SIMP_TAC[LE_REFL] THENL
[ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`;
ASM_CASES_TAC `z:num = y` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN
ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN
MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN
ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN
ASM_REWRITE_TAC[valmod; FVT; IN_SING]);;
let isubst = prove
(`!A p x s t. A |-- s === t
--> formsubst (x |=> s) p --> formsubst (x |=> t) p`,
REWRITE_TAC[assign; isubst_general]);;
let isubst_var = prove
(`!A p x t. A |-- V x === t --> p --> formsubst (x |=> t) p`,
MESON_TAC[FORMSUBST_TRIV; ASSIGN_TRIV; isubst]);;
let alpha = prove
(`!A x z p. ~(z IN FV p) ==> A |-- (!!x p) --> !!z (formsubst (x |=> V z) p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC subalpha THEN CONJ_TAC THENL
[ALL_TAC; MESON_TAC[isubst_var]] THEN
REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN
ASM_MESON_TAC[IN_SING; FVT]);;
(* ------------------------------------------------------------------------- *)
(* To conclude cleanly, useful to have all variables. *)
(* ------------------------------------------------------------------------- *)
let VARS = new_recursive_definition form_RECURSION
`(VARS False = {}) /\
(VARS True = {}) /\
(VARS (s === t) = FVT s UNION FVT t) /\
(VARS (s << t) = FVT s UNION FVT t) /\
(VARS (s <<= t) = FVT s UNION FVT t) /\
(VARS (Not p) = VARS p) /\
(VARS (p && q) = VARS p UNION VARS q) /\
(VARS (p || q) = VARS p UNION VARS q) /\
(VARS (p --> q) = VARS p UNION VARS q) /\
(VARS (p <-> q) = VARS p UNION VARS q) /\
(VARS (!! x p) = x INSERT VARS p) /\
(VARS (?? x p) = x INSERT VARS p)`;;
let VARS_FINITE = prove
(`!p. FINITE(VARS p)`,
MATCH_MP_TAC form_INDUCT THEN
ASM_SIMP_TAC[VARS; FINITE_RULES; FVT_FINITE; FINITE_UNION; FINITE_DELETE]);;
let FV_SUBSET_VARS = prove
(`!p. FV(p) SUBSET VARS(p)`,
REWRITE_TAC[SUBSET] THEN
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[FV; VARS] THEN
REWRITE_TAC[IN_INSERT; IN_UNION; IN_DELETE] THEN MESON_TAC[]);;
let TERMSUBST_TWICE_GENERAL = prove
(`!x z t v s. ~(z IN FVT s)
==> (termsubst ((x |-> t) v) s =
termsubst ((z |-> t) v) (termsubst (x |=> V z) s))`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termsubst; ASSIGN; valmod; FVT; IN_SING; IN_UNION] THEN
MESON_TAC[termsubst; ASSIGN]);;
let TERMSUBST_TWICE = prove
(`!x z t s. ~(z IN FVT s)
==> (termsubst (x |=> t) s =
termsubst (z |=> t) (termsubst (x |=> V z) s))`,
MESON_TAC[assign; TERMSUBST_TWICE_GENERAL]);;
let FORMSUBST_TWICE_GENERAL = prove
(`!p i j.
(!x. x IN VARS p ==> safe_for x i)
==> formsubst j (formsubst i p) = formsubst (termsubst j o i) p`,
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[VARS; FORALL_IN_INSERT; IN_UNION; NOT_IN_EMPTY; FORALL_AND_THM;
TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN
SIMP_TAC[FORMSUBST_SAFE_FOR] THEN
REWRITE_TAC[formsubst; TERMSUBST_TERMSUBST] THEN SIMP_TAC[] THEN
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`i:num->term`; `j:num->term`] THEN
STRIP_TAC THEN
REWRITE_TAC[FV; FORMSUBST_FV; TERMSUBST_FVT; o_THM;
IN_ELIM_THM; IN_DELETE] THEN
(SUBGOAL_THEN
`(?y. ((?y'. y' IN FV p /\ y IN FVT ((x |-> V x) i y')) /\ ~(y = x)) /\
x IN FVT (j y)) <=>
(?y. (y IN FV p /\ ~(y = x)) /\
(?y'. y' IN FVT (i y) /\ x IN FVT (j y')))`
(fun th -> REWRITE_TAC[th])
THENL
[REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `y:num` THEN
ASM_CASES_TAC `y IN FV p` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THENL
[ASM_REWRITE_TAC[VALMOD; FVT; IN_SING] THEN MESON_TAC[]; ALL_TAC] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `z:num` THEN
ASM_CASES_TAC `x IN FVT(j(z:num))` THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[VALMOD] THEN ASM_MESON_TAC[safe_for];
ALL_TAC] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[SUBGOAL_THEN
`{x' | ?y. (?y'. y' IN FV p /\ y IN FVT ((x |-> V x) i y')) /\
x' IN FVT ((x |-> V x) j y)} =
{x' | ?y. y IN FV p /\ x' IN FVT ((x |-> V x) (termsubst j o i) y)}`
(fun th -> REWRITE_TAC[th])
THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `z:num` THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `y:num` THEN
ASM_CASES_TAC `y IN FV p` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[VALMOD; FVT; IN_SING; UNWIND_THM2] THEN
REWRITE_TAC[o_THM; TERMSUBST_FVT; IN_ELIM_THM] THEN
ASM_MESON_TAC[safe_for];
ABBREV_TAC `z = VARIANT
{x' | ?y. y IN FV p /\ x' IN FVT ((x |-> V x) (termsubst j o i) y)}`];
ALL_TAC]) THEN
AP_TERM_TAC THEN FIRST_X_ASSUM(fun th ->
W(MP_TAC o PART_MATCH (lhs o rand) th o lhs o snd)) THEN
ASM_SIMP_TAC[SAFE_FOR_VALMOD; FVT; IN_SING] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC FORMSUBST_EQ THEN
X_GEN_TAC `y:num` THEN DISCH_TAC THEN
REWRITE_TAC[VALMOD; o_THM] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[termsubst; VALMOD] THEN
MATCH_MP_TAC TERMSUBST_EQ THEN
X_GEN_TAC `w:num` THEN REWRITE_TAC[VALMOD] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[safe_for]);;
let FORMSUBST_TWICE = prove
(`!z p x t. ~(z IN VARS p)
==> (formsubst (z |=> t) (formsubst (x |=> V z) p) =
formsubst (x |=> t) p)`,
REPEAT STRIP_TAC THEN
W(MP_TAC o PART_MATCH (lhs o rand) FORMSUBST_TWICE_GENERAL o lhs o snd) THEN
REWRITE_TAC[SAFE_FOR_ASSIGN; FVT; IN_SING] THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN
MATCH_MP_TAC FORMSUBST_EQ THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[o_THM; VALMOD; ASSIGN] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[termsubst; ASSIGN] THEN
ASM_MESON_TAC[FV_SUBSET_VARS; SUBSET]);;
let ispec_lemma = prove
(`!A x p t. ~(x IN FVT(t)) ==> A |-- !!x p --> formsubst (x |=> t) p`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC subspec THEN
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[isubst_var] THEN
ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN
ASM_MESON_TAC[FVT; IN_SING]);;
let ispec = prove
(`!A x p t. A |-- !!x p --> formsubst (x |=> t) p`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x IN FVT(t)` THEN
ASM_SIMP_TAC[ispec_lemma] THEN
ABBREV_TAC `z = VARIANT (FVT t UNION VARS p)` THEN
MATCH_MP_TAC imp_trans THEN
EXISTS_TAC `!!z (formsubst (x |=> V z) p)` THEN CONJ_TAC THENL
[MATCH_MP_TAC alpha THEN EXPAND_TAC "z" THEN
MATCH_MP_TAC NOT_IN_VARIANT THEN
REWRITE_TAC[FINITE_UNION; SUBSET; IN_UNION] THEN
MESON_TAC[SUBSET; FVT_FINITE; VARS_FINITE; FV_SUBSET_VARS];
SUBGOAL_THEN
`formsubst (x |=> t) p =
formsubst (z |=> t) (formsubst (x |=> V z) p)`
SUBST1_TAC THENL
[MATCH_MP_TAC(GSYM FORMSUBST_TWICE); MATCH_MP_TAC ispec_lemma] THEN
EXPAND_TAC "z" THEN MATCH_MP_TAC NOT_IN_VARIANT THEN
REWRITE_TAC[VARS_FINITE; FVT_FINITE; FINITE_UNION] THEN
SIMP_TAC[SUBSET; IN_UNION]]);;
let spec = prove
(`!A x p t. A |-- !!x p ==> A |-- formsubst (x |=> t) p`,
MESON_TAC[ispec; modusponens]);;
let spec_var = prove
(`!A x p. A |-- !!x p ==> A |-- p`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o SPEC `V x` o MATCH_MP spec) THEN
SIMP_TAC[ASSIGN_TRIV; FORMSUBST_TRIVIAL]);;
let instantiation = prove
(`!A v p. A |-- p ==> A |-- formsubst v p`,
let lemma = prove
(`!A p v. (!x y. x IN FV p /\ y IN FV p /\ x IN FVT(v y)
==> x = y /\ v x = V x) /\
A |-- p
==> A |-- formsubst v p`,
REPEAT GEN_TAC THEN
WF_INDUCT_TAC `CARD {x | x IN FV(p) /\ ~(v x = V x)}` THEN
ASM_CASES_TAC `!x. x IN FV p ==> v x = V x` THEN
ASM_SIMP_TAC[FORMSUBST_TRIVIAL] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN
REWRITE_TAC[NOT_IMP; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `x:num` THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`p:form`; `(x |-> V x) v`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[MATCH_MP_TAC CARD_PSUBSET THEN SIMP_TAC[FINITE_RESTRICT; FV_FINITE] THEN
REWRITE_TAC[PSUBSET_ALT] THEN CONJ_TAC THENL
[REWRITE_TAC[SUBSET; VALMOD; IN_ELIM_THM] THEN ASM_MESON_TAC[];
EXISTS_TAC `x:num` THEN ASM_REWRITE_TAC[VALMOD; IN_ELIM_THM] THEN
ASM_MESON_TAC[]];
ALL_TAC] THEN
ANTS_TAC THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[VALMOD] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[FVT; IN_SING] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`formsubst v p = formsubst ((x |-> v x) v) p`
SUBST1_TAC THENL [SIMP_TAC[VALMOD_TRIVIAL]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `x:num` o MATCH_MP gen) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] modusponens) THEN
MATCH_MP_TAC exists_imp THEN CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; NOT_EXISTS_THM; VALMOD] THEN
ASM SET_TAC[]] THEN
MATCH_MP_TAC modusponens THEN EXISTS_TAC `??x (V x === v x)` THEN
SIMP_TAC[eximp; isubst_general] THEN ASM_MESON_TAC[axiom_existseq]) in
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?n. !x. x IN VARS p \/ x IN FV(formsubst v p) ==> x < n`
STRIP_ASSUME_TAC THENL
[EXISTS_TAC `SUC(SETMAX(VARS p UNION FV(formsubst v p)))` THEN
REWRITE_TAC[GSYM IN_UNION; LT_SUC_LE] THEN MATCH_MP_TAC SETMAX_MEMBER THEN
REWRITE_TAC[FINITE_UNION; VARS_FINITE; FV_FINITE];
ALL_TAC] THEN
SUBGOAL_THEN
`formsubst v p =
formsubst (\i. v(i - n)) (formsubst (\i. V(i + n)) p)`
SUBST1_TAC THENL
[W(MP_TAC o PART_MATCH (lhs o rand) FORMSUBST_TWICE_GENERAL o
rand o snd) THEN
REWRITE_TAC[safe_for; FVT; IN_SING] THEN ANTS_TAC THENL
[ASM_MESON_TAC[ARITH_RULE `~(x + n:num < n)`];
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[o_DEF; termsubst; ADD_SUB; ETA_AX]];
MATCH_MP_TAC lemma THEN REWRITE_TAC[FVT] THEN CONJ_TAC THENL
[REWRITE_TAC[FORMSUBST_FV; FVT; IN_SING] THEN
REWRITE_TAC[SET_RULE `{x | ?y. y IN s /\ x = f y} = IMAGE f s`] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[ADD_SUB; FVT] THEN
X_GEN_TAC `y:num` THEN REPEAT DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x + n:num`) THEN
MATCH_MP_TAC(TAUT `~p /\ q ==> (r \/ q ==> p) ==> s`) THEN
CONJ_TAC THENL [ARITH_TAC; REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM]] THEN
ASM_MESON_TAC[];
MATCH_MP_TAC lemma THEN REWRITE_TAC[FVT; IN_SING] THEN
ASM_MESON_TAC[ARITH_RULE `x < n /\ y < n ==> ~(x = y + n)`;
FV_SUBSET_VARS; SUBSET]]]);;
(* ------------------------------------------------------------------------- *)
(* Monotonicity and the deduction theorem. *)
(* ------------------------------------------------------------------------- *)
let PROVES_MONO = prove
(`!A B p. A SUBSET B /\ A |-- p ==> B |-- p`,
GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC proves_INDUCT THEN ASM_MESON_TAC[proves_RULES; SUBSET]);;
let DEDUCTION_LEMMA = prove
(`!A p q. p INSERT A |-- q /\ closed p ==> A |-- p --> q`,
GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC proves_INDUCT THEN
REPEAT CONJ_TAC THEN X_GEN_TAC `r:form` THENL
[REWRITE_TAC[IN_INSERT] THEN MESON_TAC[proves_RULES; add_assum; imp_refl];
MESON_TAC[modusponens; axiom_distribimp];
ASM_MESON_TAC[gen_right; closed; NOT_IN_EMPTY]]);;
let DEDUCTION = prove
(`!A p q. closed p ==> (A |-- p --> q <=> p INSERT A |-- q)`,
MESON_TAC[DEDUCTION_LEMMA; modusponens; IN_INSERT; proves_RULES;
PROVES_MONO; SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* A few more derived rules. *)
(* ------------------------------------------------------------------------- *)
let eq_trans = prove
(`!A s t u. A |-- s === t --> t === u --> s === u`,
MESON_TAC[axiom_predcong; modusponens; imp_swap; axiom_eqrefl; imp_trans;
eq_sym]);;
let spec_right = prove
(`!A p q x. A |-- p --> !!x q ==> A |-- p --> formsubst (x |=> t) q`,
MESON_TAC[imp_trans; ispec]);;
let eq_trans_rule = prove
(`!A s t u. A |-- s === t /\ A |-- t === u ==> A |-- s === u`,
MESON_TAC[modusponens; eq_trans]);;
let eq_sym_rule = prove
(`!A s t. A |-- s === t <=> A |-- t === s`,
MESON_TAC[modusponens; eq_sym]);;
let allimp = prove
(`!A x p q. A |-- p --> q ==> A |-- !!x p --> !!x q`,
MESON_TAC[axiom_allimp; modusponens; gen]);;
let alliff = prove
(`!A x p q. A |-- p <-> q ==> A |-- !!x p <-> !!x q`,
MESON_TAC[allimp; iff_imp1; iff_imp2; imp_antisym]);;
let exiff = prove
(`!A x p q. A |-- p <-> q ==> A |-- ??x p <-> ??x q`,
MESON_TAC[eximp; iff_imp1; iff_imp2; imp_antisym]);;
let cong_suc = prove
(`!A s t. A |-- s === t ==> A |-- Suc s === Suc t`,
MESON_TAC[modusponens; axiom_funcong]);;
let cong_add = prove
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s ++ u === t ++ v`,
MESON_TAC[modusponens; axiom_funcong]);;
let cong_mul = prove
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s ** u === t ** v`,
MESON_TAC[modusponens; axiom_funcong]);;
let cong_eq = prove
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s === u <-> t === v`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC imp_antisym THEN
ASM_MESON_TAC[modusponens; axiom_predcong; eq_sym]);;
let cong_le = prove
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s <<= u <-> t <<= v`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC imp_antisym THEN
ASM_MESON_TAC[modusponens; axiom_predcong; eq_sym]);;
let cong_lt = prove
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s << u <-> t << v`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC imp_antisym THEN
ASM_MESON_TAC[modusponens; axiom_predcong; eq_sym]);;
let iexists = prove
(`!A x t p. A |-- formsubst (x |=> t) p --> ??x p`,
REPEAT GEN_TAC THEN TRANS_TAC imp_trans `Not(!!x (Not p))` THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[axiom_exists; iff_imp2]] THEN
TRANS_TAC imp_trans `Not(formsubst (x |=> t) (Not p))` THEN
REWRITE_TAC[contrapos_eq; ispec] THEN REWRITE_TAC[formsubst] THEN
MESON_TAC[not_not; iff_imp2]);;
let exists_intro = prove
(`!A x t p. A |-- formsubst (x |=> t) p ==> A |-- ??x p`,
MESON_TAC[iexists; modusponens]);;
let impex = prove
(`!A x p. ~(x IN FV p) ==> A |-- (??x p) --> p`,
REPEAT STRIP_TAC THEN TRANS_TAC imp_trans `Not(Not p)` THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[not_not; iff_imp1]] THEN
TRANS_TAC imp_trans `Not(!!x (Not p))` THEN
ASM_SIMP_TAC[contrapos_eq; axiom_impall; FV] THEN
MESON_TAC[axiom_exists; iff_imp1]);;
let ichoose = prove
(`!A x p q. A |-- !!x (p --> q) /\ ~(x IN FV q) ==> A |-- (??x p) --> q`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP spec_var) THEN
DISCH_THEN(MP_TAC o SPEC `x:num` o MATCH_MP eximp) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] imp_trans) THEN
ASM_SIMP_TAC[impex]);;
let eq_trans_imp = prove
(`A |-- s === s' /\ A |-- t === t' ==> A |-- s === t --> s' === t'`,
MESON_TAC[axiom_predcong; modusponens]);;
(* ------------------------------------------------------------------------- *)
(* Some conversions for performing explicit substitution operations in what *)
(* we hope is the common case where no variable renaming occurs. *)
(* ------------------------------------------------------------------------- *)
let fv_theorems = ref
[FV; FV_AXIOM; FV_DIAGONALIZE; FV_DIVIDES; FV_FINITE; FV_FIXPOINT; FV_FORM;
FV_FORM1; FV_FREEFORM; FV_FREEFORM1; FV_FREETERM; FV_FREETERM1;
FV_GNUMERAL; FV_GNUMERAL1; FV_GNUMERAL1'; FV_GSENTENCE;
FV_HSENTENCE; FV_PRIME; FV_PRIMEPOW; FV_PRIMREC; FV_PRIMRECSTEP; FV_PROV;
FV_PROV1; FV_QDIAG; FV_QSUBST; FV_RTC; FV_RTCP; FV_SUBSET_VARS; FV_TERM;
FV_TERM1; FVT; FVT_NUMERAL];;
let IN_FV_RULE ths tm =
try EQT_ELIM
((GEN_REWRITE_CONV TOP_DEPTH_CONV
([IN_UNION; IN_DELETE; NOT_IN_EMPTY; IN_INSERT] @
ths @ !fv_theorems) THENC
NUM_REDUCE_CONV) tm)
with Failure _ -> ASSUME tm;;
let rec SAFE_FOR_RULE tm =
try PART_MATCH I SAFE_FOR_V tm
with Failure _ ->
try let th1 = PART_MATCH lhand SAFE_FOR_ASSIGN tm in
let th2 = IN_FV_RULE [] (rand(concl th1)) in
EQ_MP (SYM th1) th2
with Failure _ ->
let th1 = PART_MATCH rand SAFE_FOR_VALMOD tm in
let l,r = dest_conj(lhand(concl th1)) in
let th2 = CONJ (SAFE_FOR_RULE l) (IN_FV_RULE [] r) in
MP th1 th2;;
let VALMOD_CONV =
GEN_REWRITE_CONV TOP_DEPTH_CONV [ASSIGN; VALMOD] THENC NUM_REDUCE_CONV;;
let TERMSUBST_NUMERAL = prove
(`!v n. termsubst v (numeral n) = numeral n`,
SIMP_TAC[TERMSUBST_TRIVIAL; FVT_NUMERAL; NOT_IN_EMPTY]);;
let rec TERMSUBST_CONV tm =
(GEN_REWRITE_CONV I [CONJ TERMSUBST_NUMERAL (CONJUNCT1 termsubst)] ORELSEC
(GEN_REWRITE_CONV I [el 1 (CONJUNCTS termsubst)] THENC
VALMOD_CONV) ORELSEC
(GEN_REWRITE_CONV I [el 2 (CONJUNCTS termsubst)] THENC
RAND_CONV TERMSUBST_CONV) ORELSEC
(GEN_REWRITE_CONV I [funpow 3 CONJUNCT2 termsubst] THENC
BINOP_CONV TERMSUBST_CONV)) tm;;
let rec FORMSUBST_CONV tm =
(GEN_REWRITE_CONV I
[el 0 (CONJUNCTS formsubst); el 1 (CONJUNCTS formsubst)] ORELSEC
(GEN_REWRITE_CONV I
[el 2 (CONJUNCTS formsubst); el 3 (CONJUNCTS formsubst);
el 4 (CONJUNCTS formsubst)] THENC BINOP_CONV TERMSUBST_CONV) ORELSEC
(GEN_REWRITE_CONV I [el 5 (CONJUNCTS formsubst)] THENC
RAND_CONV FORMSUBST_CONV) ORELSEC
(GEN_REWRITE_CONV I
[el 6 (CONJUNCTS formsubst); el 7 (CONJUNCTS formsubst);
el 8 (CONJUNCTS formsubst); el 9 (CONJUNCTS formsubst)] THENC
BINOP_CONV FORMSUBST_CONV) ORELSEC
((fun tm ->
let th =
try PART_MATCH (lhand o rand) (CONJUNCT1 FORMSUBST_SAFE_FOR) tm
with Failure _ ->
PART_MATCH (lhand o rand) (CONJUNCT2 FORMSUBST_SAFE_FOR) tm in
MP th (SAFE_FOR_RULE (lhand(concl th)))) THENC
RAND_CONV FORMSUBST_CONV)) tm;;
(* ------------------------------------------------------------------------- *)
(* Hence a more convenient specialization rule. *)
(* ------------------------------------------------------------------------- *)
let spec_var_rule th = MATCH_MP spec_var th;;
let spec_all_rule = repeat spec_var_rule;;
let instantiate_rule ilist th =
let v_tm = `(|->):num->term->(num->term)->(num->term)` in
let v = itlist (fun (t,x) v ->
mk_comb(mk_comb(mk_comb(v_tm,mk_small_numeral x),t),v)) ilist `V` in
CONV_RULE (RAND_CONV FORMSUBST_CONV)
(SPEC v (MATCH_MP instantiation th));;
let specl_rule tms th =
let avs = striplist (dest_binop `!!`) (rand(concl th)) in
let vs = fst(chop_list(length tms) avs) in
let ilist = map2 (fun t v -> (t,dest_small_numeral v)) tms vs in
instantiate_rule ilist (funpow (length vs) spec_var_rule th);;
let spec_rule t th = specl_rule [t] th;;
let gen_rule t th = SPEC (mk_small_numeral t) (MATCH_MP gen th);;
let gens_tac ns (asl,w) =
let avs,bod = nsplit dest_forall ns w in
let nvs = map (curry mk_comb `V` o mk_small_numeral) ns in
let bod' = subst (zip nvs avs) bod in
let th = GENL avs (instantiate_rule (zip avs ns) (ASSUME bod')) in
MATCH_MP_TAC (DISCH_ALL th) (asl,w);;
let gen_tac n = gens_tac [n];;
|