Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 24,276 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
(* ========================================================================= *)
(* Godel's theorem in its true form. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Classes of formulas, via auxiliary "shared" inductive definition. *)
(* ------------------------------------------------------------------------- *)
let sigmapi_RULES,sigmapi_INDUCT,sigmapi_CASES = new_inductive_definition
`(!b n. sigmapi b n False) /\
(!b n. sigmapi b n True) /\
(!b n s t. sigmapi b n (s === t)) /\
(!b n s t. sigmapi b n (s << t)) /\
(!b n s t. sigmapi b n (s <<= t)) /\
(!b n p. sigmapi (~b) n p ==> sigmapi b n (Not p)) /\
(!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p && q)) /\
(!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p || q)) /\
(!b n p q. sigmapi (~b) n p /\ sigmapi b n q ==> sigmapi b n (p --> q)) /\
(!b n p q. (!b. sigmapi b n p) /\ (!b. sigmapi b n q)
==> sigmapi b n (p <-> q)) /\
(!n x p. sigmapi T n p /\ ~(n = 0) ==> sigmapi T n (??x p)) /\
(!n x p. sigmapi F n p /\ ~(n = 0) ==> sigmapi F n (!!x p)) /\
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
==> sigmapi b n (??x (V x << t && p))) /\
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
==> sigmapi b n (??x (V x <<= t && p))) /\
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
==> sigmapi b n (!!x (V x << t --> p))) /\
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
==> sigmapi b n (!!x (V x <<= t --> p))) /\
(!b c n p. sigmapi b n p ==> sigmapi c (n + 1) p)`;;
let SIGMA = new_definition `SIGMA = sigmapi T`;;
let PI = new_definition `PI = sigmapi F`;;
let DELTA = new_definition `DELTA n p <=> SIGMA n p /\ PI n p`;;
let SIGMAPI_PROP = prove
(`(!n b. sigmapi b n False <=> T) /\
(!n b. sigmapi b n True <=> T) /\
(!n b s t. sigmapi b n (s === t) <=> T) /\
(!n b s t. sigmapi b n (s << t) <=> T) /\
(!n b s t. sigmapi b n (s <<= t) <=> T) /\
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
(sigmapi b n q /\ sigmapi (~b) n q))`,
REWRITE_TAC[sigmapi_RULES] THEN
GEN_REWRITE_TAC DEPTH_CONV [AND_FORALL_THM] THEN
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_SUB1] THEN
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1;
FORALL_BOOL_THM] THEN
REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`] THEN
REWRITE_TAC[ARITH_RULE `(SUC m = n + 1) <=> (n = m)`; UNWIND_THM2] THEN
ASM_REWRITE_TAC[] THEN
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[ADD1] THEN
REWRITE_TAC[CONJ_ACI] THEN
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
MESON_TAC[sigmapi_RULES]);;
let SIGMAPI_MONO_LEMMA = prove
(`(!b n p. sigmapi b n p ==> sigmapi b (n + 1) p) /\
(!b n p. ~(n = 0) /\ sigmapi b (n - 1) p ==> sigmapi b n p) /\
(!b n p. ~(n = 0) /\ sigmapi (~b) (n - 1) p ==> sigmapi b n p)`,
CONJ_TAC THENL
[REPEAT STRIP_TAC;
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`~(n = 0) ==> (n = (n - 1) + 1)`))] THEN
POP_ASSUM MP_TAC THEN ASM_MESON_TAC[sigmapi_RULES]);;
let SIGMAPI_REV_EXISTS = prove
(`!n b x p. sigmapi b n (??x p) ==> sigmapi b n p`,
MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN
ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);;
let SIGMAPI_REV_FORALL = prove
(`!n b x p. sigmapi b n (!!x p) ==> sigmapi b n p`,
MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN
ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);;
let SIGMAPI_CLAUSES_CODE = prove
(`(!n b. sigmapi b n False <=> T) /\
(!n b. sigmapi b n True <=> T) /\
(!n b s t. sigmapi b n (s === t) <=> T) /\
(!n b s t. sigmapi b n (s << t) <=> T) /\
(!n b s t. sigmapi b n (s <<= t) <=> T) /\
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
(sigmapi b n q /\ sigmapi (~b) n q)) /\
(!n b x p. sigmapi b n (??x p) <=>
if b /\ ~(n = 0) \/
?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\
~(x IN FVT t)
then sigmapi b n p
else ~(n = 0) /\ sigmapi (~b) (n - 1) (??x p)) /\
(!n b x p. sigmapi b n (!!x p) <=>
if ~b /\ ~(n = 0) \/
?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\
~(x IN FVT t)
then sigmapi b n p
else ~(n = 0) /\ sigmapi (~b) (n - 1) (!!x p))`,
REWRITE_TAC[SIGMAPI_PROP] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
ONCE_REWRITE_TAC[TAUT `a \/ b \/ c \/ d <=> (b \/ c) \/ (a \/ d)`] THEN
REWRITE_TAC[CONJ_ASSOC; OR_EXISTS_THM; GSYM RIGHT_OR_DISTRIB] THEN
REWRITE_TAC[TAUT
`(if b /\ c \/ d then e else c /\ f) <=>
d /\ e \/ c /\ ~d /\ (if b then e else f)`] THEN
MATCH_MP_TAC(TAUT `(a <=> a') /\ (~a' ==> (b <=> b'))
==> (a \/ b <=> a' \/ b')`) THEN
(CONJ_TAC THENL
[REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
EQ_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[SIGMAPI_PROP] THEN
SIMP_TAC[];
ALL_TAC]) THEN
(ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`]) THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (n = m + 1 <=> m = n - 1)`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
W(fun (asl,w) -> ASM_CASES_TAC (find_term is_exists w)) THEN
ASM_REWRITE_TAC[CONTRAPOS_THM] THENL
[DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
ASM_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL
[DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
REWRITE_TAC[EXISTS_BOOL_THM] THEN
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
ONCE_REWRITE_TAC[sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[]];
DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
ASM_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL
[REWRITE_TAC[EXISTS_BOOL_THM] THEN
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
ONCE_REWRITE_TAC[sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[];
DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]]]);;
let SIGMAPI_CLAUSES = prove
(`(!n b. sigmapi b n False <=> T) /\
(!n b. sigmapi b n True <=> T) /\
(!n b s t. sigmapi b n (s === t) <=> T) /\
(!n b s t. sigmapi b n (s << t) <=> T) /\
(!n b s t. sigmapi b n (s <<= t) <=> T) /\
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
(sigmapi b n q /\ sigmapi (~b) n q)) /\
(!n b x p. sigmapi b n (??x p) <=>
if b /\ ~(n = 0) \/
?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\
~(x IN FVT t)
then sigmapi b n p
else 2 <= n /\ sigmapi (~b) (n - 1) p) /\
(!n b x p. sigmapi b n (!!x p) <=>
if ~b /\ ~(n = 0) \/
?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\
~(x IN FVT t)
then sigmapi b n p
else 2 <= n /\ sigmapi (~b) (n - 1) p)`,
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN
REWRITE_TAC[] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH] THEN
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN
ASM_REWRITE_TAC[ARITH_RULE `~(n - 1 = 0) <=> 2 <= n`] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Show that it respects substitution. *)
(* ------------------------------------------------------------------------- *)
let SIGMAPI_FORMSUBST = prove
(`!p v n b. sigmapi b n p ==> sigmapi b n (formsubst v p)`,
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[SIGMAPI_CLAUSES; formsubst] THEN SIMP_TAC[] THEN
REWRITE_TAC[AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
MATCH_MP_TAC(TAUT `(a ==> b /\ c) ==> (a ==> b) /\ (a ==> c)`) THEN
DISCH_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN
MAP_EVERY X_GEN_TAC [`i:num->term`; `n:num`; `b:bool`] THEN
REWRITE_TAC[FV] THEN LET_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
REWRITE_TAC[SIGMAPI_CLAUSES] THEN
ONCE_REWRITE_TAC[TAUT
`((if p \/ q then x else y) ==> (if p \/ q' then x' else y')) <=>
(p /\ x ==> x') /\
(~p ==> (if q then x else y) ==> (if q' then x' else y'))`] THEN
ASM_SIMP_TAC[] THEN REWRITE_TAC[DE_MORGAN_THM] THEN
CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(TAUT
`(p ==> p') /\ (x ==> x') /\ (y ==> y') /\ (y ==> x)
==> (if p then x else y) ==> (if p' then x' else y')`) THEN
ASM_SIMP_TAC[SIGMAPI_MONO_LEMMA; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[formsubst; form_INJ; termsubst] THEN
REWRITE_TAC[form_DISTINCT] THEN
ONCE_REWRITE_TAC[TAUT `((a /\ b) /\ c) /\ d <=> b /\ c /\ a /\ d`] THEN
REWRITE_TAC[UNWIND_THM1; termsubst; VALMOD_BASIC] THEN
REWRITE_TAC[TERMSUBST_FVT; IN_ELIM_THM; NOT_EXISTS_THM] THEN
X_GEN_TAC `y:num` THEN REWRITE_TAC[valmod] THEN
(COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [SYM th]) THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[FV; FVT] THEN
REWRITE_TAC[IN_DELETE; IN_UNION; IN_SING; GSYM DISJ_ASSOC] THEN
REWRITE_TAC[TAUT `(a \/ b \/ c) /\ ~a <=> ~a /\ b \/ ~a /\ c`] THEN
(COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN
W(fun (asl,w) -> let t = lhand(rand w) in
MP_TAC(SPEC (rand(rand t)) VARIANT_THM) THEN
SPEC_TAC(t,`u:num`)) THEN
REWRITE_TAC[CONTRAPOS_THM; FORMSUBST_FV; IN_ELIM_THM; FV] THEN
GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `y:num` THEN
ASM_REWRITE_TAC[valmod; IN_UNION]);;
(* ------------------------------------------------------------------------- *)
(* Hence all our main concepts are OK. *)
(* ------------------------------------------------------------------------- *)
let SIGMAPI_TAC ths =
REPEAT STRIP_TAC THEN
REWRITE_TAC ths THEN
TRY(MATCH_MP_TAC SIGMAPI_FORMSUBST) THEN
let ths' = ths @ [SIGMAPI_CLAUSES; form_DISTINCT;
form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; GSYM EXISTS_REFL;
FVT; IN_SING; ARITH_EQ] in
REWRITE_TAC ths' THEN ASM_SIMP_TAC ths';;
let SIGMAPI_DIVIDES = prove
(`!n s t. sigmapi b n (arith_divides s t)`,
SIGMAPI_TAC[arith_divides]);;
let SIGMAPI_PRIME = prove
(`!n t. sigmapi b n (arith_prime t)`,
SIGMAPI_TAC[arith_prime; SIGMAPI_DIVIDES]);;
let SIGMAPI_PRIMEPOW = prove
(`!n s t. sigmapi b n (arith_primepow s t)`,
SIGMAPI_TAC[arith_primepow; SIGMAPI_DIVIDES; SIGMAPI_PRIME]);;
let SIGMAPI_RTC = prove
(`(!s t. sigmapi T 1 (R s t))
==> !s t. sigmapi T 1 (arith_rtc R s t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtc] THEN
MATCH_MP_TAC SIGMAPI_FORMSUBST THEN
REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1;
GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES;
SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN
ASM_REWRITE_TAC[]);;
let SIGMAPI_RTCP = prove
(`(!s t u. sigmapi T 1 (R s t u))
==> !s t u. sigmapi T 1 (arith_rtcp R s t u)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtcp] THEN
MATCH_MP_TAC SIGMAPI_FORMSUBST THEN
REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1;
GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES;
SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN
ASM_REWRITE_TAC[]);;
let SIGMAPI_TERM1 = prove
(`!s t. sigmapi T 1 (arith_term1 s t)`,
SIGMAPI_TAC[arith_term1]);;
let SIGMAPI_TERM = prove
(`!t. sigmapi T 1 (arith_term t)`,
SIGMAPI_TAC[arith_term; SIGMAPI_RTC; SIGMAPI_TERM1]);;
let SIGMAPI_FORM1 = prove
(`!s t. sigmapi T 1 (arith_form1 s t)`,
SIGMAPI_TAC[arith_form1; SIGMAPI_TERM]);;
let SIGMAPI_FORM = prove
(`!t. sigmapi T 1 (arith_form t)`,
SIGMAPI_TAC[arith_form; SIGMAPI_RTC; SIGMAPI_FORM1]);;
let SIGMAPI_FREETERM1 = prove
(`!s t u. sigmapi T 1 (arith_freeterm1 s t u)`,
SIGMAPI_TAC[arith_freeterm1]);;
let SIGMAPI_FREETERM = prove
(`!s t. sigmapi T 1 (arith_freeterm s t)`,
SIGMAPI_TAC[arith_freeterm; SIGMAPI_FREETERM1; SIGMAPI_RTCP]);;
let SIGMAPI_FREEFORM1 = prove
(`!s t u. sigmapi T 1 (arith_freeform1 s t u)`,
SIGMAPI_TAC[arith_freeform1; SIGMAPI_FREETERM; SIGMAPI_FORM]);;
let SIGMAPI_FREEFORM = prove
(`!s t. sigmapi T 1 (arith_freeform s t)`,
SIGMAPI_TAC[arith_freeform; SIGMAPI_FREEFORM1; SIGMAPI_RTCP]);;
let SIGMAPI_AXIOM = prove
(`!t. sigmapi T 1 (arith_axiom t)`,
SIGMAPI_TAC[arith_axiom; SIGMAPI_FREEFORM; SIGMAPI_FREETERM; SIGMAPI_FORM;
SIGMAPI_TERM]);;
let SIGMAPI_PROV1 = prove
(`!A. (!t. sigmapi T 1 (A t)) ==> !s t. sigmapi T 1 (arith_prov1 A s t)`,
SIGMAPI_TAC[arith_prov1; SIGMAPI_AXIOM]);;
let SIGMAPI_PROV = prove
(`(!t. sigmapi T 1 (A t)) ==> !t. sigmapi T 1 (arith_prov A t)`,
SIGMAPI_TAC[arith_prov; SIGMAPI_PROV1; SIGMAPI_RTC]);;
let SIGMAPI_PRIMRECSTEP = prove
(`(!s t u. sigmapi T 1 (R s t u))
==> !s t. sigmapi T 1 (arith_primrecstep R s t)`,
SIGMAPI_TAC[arith_primrecstep]);;
let SIGMAPI_PRIMREC = prove
(`(!s t u. sigmapi T 1 (R s t u))
==> !s t. sigmapi T 1 (arith_primrec R c s t)`,
SIGMAPI_TAC[arith_primrec; SIGMAPI_PRIMRECSTEP; SIGMAPI_RTC]);;
let SIGMAPI_GNUMERAL1 = prove
(`!s t. sigmapi T 1 (arith_gnumeral1 s t)`,
SIGMAPI_TAC[arith_gnumeral1]);;
let SIGMAPI_GNUMERAL = prove
(`!s t. sigmapi T 1 (arith_gnumeral s t)`,
SIGMAPI_TAC[arith_gnumeral; arith_gnumeral1';
SIGMAPI_GNUMERAL1; SIGMAPI_RTC]);;
let SIGMAPI_QSUBST = prove
(`!x n p. sigmapi T 1 p ==> sigmapi T 1 (qsubst(x,n) p)`,
SIGMAPI_TAC[qsubst]);;
let SIGMAPI_QDIAG = prove
(`!x s t. sigmapi T 1 (arith_qdiag x s t)`,
SIGMAPI_TAC[arith_qdiag; SIGMAPI_GNUMERAL]);;
let SIGMAPI_DIAGONALIZE = prove
(`!x p. sigmapi T 1 p ==> sigmapi T 1 (diagonalize x p)`,
SIGMAPI_TAC[diagonalize; SIGMAPI_QDIAG;
SIGMAPI_FORMSUBST; LET_DEF; LET_END_DEF]);;
let SIGMAPI_FIXPOINT = prove
(`!x p. sigmapi T 1 p ==> sigmapi T 1 (fixpoint x p)`,
SIGMAPI_TAC[fixpoint; qdiag; SIGMAPI_QSUBST; SIGMAPI_DIAGONALIZE]);;
(* ------------------------------------------------------------------------- *)
(* The Godel sentence, "H" being Sigma and "G" being Pi. *)
(* ------------------------------------------------------------------------- *)
let hsentence = new_definition
`hsentence Arep =
fixpoint 0 (arith_prov Arep (arith_pair (numeral 4) (V 0)))`;;
let gsentence = new_definition
`gsentence Arep = Not(hsentence Arep)`;;
let FV_HSENTENCE = prove
(`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(hsentence Arep) = {})`,
SIMP_TAC[hsentence; FV_FIXPOINT; FV_PROV] THEN
REWRITE_TAC[FVT_PAIR; FVT_NUMERAL; FVT; UNION_EMPTY; DELETE_INSERT;
EMPTY_DELETE]);;
let FV_GSENTENCE = prove
(`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(gsentence Arep) = {})`,
SIMP_TAC[gsentence; FV_HSENTENCE; FV]);;
let SIGMAPI_HSENTENCE = prove
(`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi T 1 (hsentence Arep)`,
SIGMAPI_TAC[hsentence; SIGMAPI_FIXPOINT; SIGMAPI_PROV]);;
let SIGMAPI_GSENTENCE = prove
(`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi F 1 (gsentence Arep)`,
SIGMAPI_TAC[gsentence; SIGMAPI_HSENTENCE]);;
(* ------------------------------------------------------------------------- *)
(* Hence the key fixpoint properties. *)
(* ------------------------------------------------------------------------- *)
let HSENTENCE_FIX_STRONG = prove
(`!A Arep.
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
==> !v. holds v (hsentence Arep) <=> A |-- Not(hsentence Arep)`,
REWRITE_TAC[hsentence; true_def; HOLDS_FIXPOINT] THEN
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ARITH_PROV) THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
DISCH_TAC THEN ASM_REWRITE_TAC[ARITH_PAIR; TERMVAL_NUMERAL] THEN
REWRITE_TAC[termval; valmod; GSYM gform] THEN REWRITE_TAC[PROV_THM]);;
let HSENTENCE_FIX = prove
(`!A Arep.
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
==> (true(hsentence Arep) <=> A |-- Not(hsentence Arep))`,
REWRITE_TAC[true_def] THEN MESON_TAC[HSENTENCE_FIX_STRONG]);;
let GSENTENCE_FIX = prove
(`!A Arep.
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
==> (true(gsentence Arep) <=> ~(A |-- gsentence Arep))`,
REWRITE_TAC[true_def; holds; gsentence] THEN
MESON_TAC[HSENTENCE_FIX_STRONG]);;
(* ------------------------------------------------------------------------- *)
(* Auxiliary concepts. *)
(* ------------------------------------------------------------------------- *)
let ground = new_definition
`ground t <=> (FVT t = {})`;;
let complete_for = new_definition
`complete_for P A <=> !p. P p /\ true p ==> A |-- p`;;
let sound_for = new_definition
`sound_for P A <=> !p. P p /\ A |-- p ==> true p`;;
let consistent = new_definition
`consistent A <=> ~(?p. A |-- p /\ A |-- Not p)`;;
let CONSISTENT_ALT = prove
(`!A p. A |-- p /\ A |-- Not p <=> A |-- False`,
MESON_TAC[proves_RULES; axiom_RULES]);;
(* ------------------------------------------------------------------------- *)
(* The purest and most symmetric and beautiful form of G1. *)
(* ------------------------------------------------------------------------- *)
let DEFINABLE_BY_ONEVAR = prove
(`definable_by (SIGMA 1) s <=>
?p x. SIGMA 1 p /\ (FV p = {x}) /\ !v. holds v p <=> (v x) IN s`,
REWRITE_TAC[definable_by; SIGMA] THEN
EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
DISCH_THEN(X_CHOOSE_THEN `p:form` (X_CHOOSE_TAC `x:num`)) THEN
EXISTS_TAC `(V x === V x) && formsubst (\y. if y = x then V x else Z) p` THEN
EXISTS_TAC `x:num` THEN ASM_SIMP_TAC[SIGMAPI_CLAUSES; SIGMAPI_FORMSUBST] THEN
ASM_REWRITE_TAC[HOLDS_FORMSUBST; FORMSUBST_FV; FV; holds] THEN
REWRITE_TAC[COND_RAND; EXTENSION; IN_ELIM_THM; IN_SING; FVT; IN_UNION;
COND_EXPAND; NOT_IN_EMPTY; o_THM; termval] THEN
MESON_TAC[]);;
let CLOSED_NOT_TRUE = prove
(`!p. closed p ==> (true(Not p) <=> ~(true p))`,
REWRITE_TAC[closed; true_def; holds] THEN
MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);;
let G1 = prove
(`!A. definable_by (SIGMA 1) (IMAGE gform A)
==> ?G. PI 1 G /\ closed G /\
(sound_for (PI 1 INTER closed) A ==> true G /\ ~(A |-- G)) /\
(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`,
GEN_TAC THEN
REWRITE_TAC[sound_for; INTER; IN_ELIM_THM; DEFINABLE_BY_ONEVAR] THEN
DISCH_THEN(X_CHOOSE_THEN `Arep:form` (X_CHOOSE_THEN `a:num`
STRIP_ASSUME_TAC)) THEN
MP_TAC(SPECL [`A:form->bool`; `\t. formsubst ((a |-> t) V) Arep`]
GSENTENCE_FIX) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN REWRITE_TAC[termval; valmod; o_THM];
ALL_TAC] THEN
STRIP_TAC THEN EXISTS_TAC `gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c /\ d) ==> a /\ b /\ c /\ d`) THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[PI] THEN MATCH_MP_TAC SIGMAPI_GSENTENCE THEN
RULE_ASSUM_TAC(REWRITE_RULE[SIGMA]) THEN ASM_SIMP_TAC[SIGMAPI_FORMSUBST];
REWRITE_TAC[closed] THEN MATCH_MP_TAC FV_GSENTENCE THEN
ASM_REWRITE_TAC[FORMSUBST_FV; EXTENSION; IN_ELIM_THM; IN_SING;
valmod; UNWIND_THM2];
ALL_TAC] THEN
ABBREV_TAC `G = gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN
REPEAT STRIP_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
SUBGOAL_THEN `true(Not G)` MP_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN] THEN
REWRITE_TAC[SIGMA; SIGMAPI_CLAUSES] THEN ASM_MESON_TAC[closed; FV; PI];
ALL_TAC] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP CLOSED_NOT_TRUE) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
SUBGOAL_THEN `true False` MP_TAC THENL
[ALL_TAC; REWRITE_TAC[true_def; holds]] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[closed; IN; SIGMA; SIGMAPI_CLAUSES; FV] THEN
ASM_MESON_TAC[CONSISTENT_ALT]);;
(* ------------------------------------------------------------------------- *)
(* Some more familiar variants. *)
(* ------------------------------------------------------------------------- *)
let COMPLETE_SOUND_SENTENCE = prove
(`consistent A /\ complete_for (sigmapi (~b) n INTER closed) A
==> sound_for (sigmapi b n INTER closed) A`,
REWRITE_TAC[consistent; sound_for; complete_for; IN; INTER; IN_ELIM_THM] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(fun th -> X_GEN_TAC `p:form` THEN MP_TAC(SPEC `Not p` th)) THEN
REWRITE_TAC[SIGMAPI_CLAUSES] THEN
REWRITE_TAC[closed; FV; true_def; holds] THEN
ASM_MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);;
let G1_TRAD = prove
(`!A. consistent A /\
complete_for (SIGMA 1 INTER closed) A /\
definable_by (SIGMA 1) (IMAGE gform A)
==> ?G. PI 1 G /\ closed G /\ true G /\ ~(A |-- G) /\
(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`,
REWRITE_TAC[SIGMA] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPEC `A:form->bool` G1) THEN ASM_REWRITE_TAC[SIGMA; PI] THEN
MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[COMPLETE_SOUND_SENTENCE]);;
|