Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 24,276 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
(* ========================================================================= *)
(* Godel's theorem in its true form.                                         *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Classes of formulas, via auxiliary "shared" inductive definition.         *)
(* ------------------------------------------------------------------------- *)

let sigmapi_RULES,sigmapi_INDUCT,sigmapi_CASES = new_inductive_definition
  `(!b n. sigmapi b n False) /\
   (!b n. sigmapi b n True) /\
   (!b n s t. sigmapi b n (s === t)) /\
   (!b n s t. sigmapi b n (s << t)) /\
   (!b n s t. sigmapi b n (s <<= t)) /\
   (!b n p. sigmapi (~b) n p ==> sigmapi b n (Not p)) /\
   (!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p && q)) /\
   (!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p || q)) /\
   (!b n p q. sigmapi (~b) n p /\ sigmapi b n q ==> sigmapi b n (p --> q)) /\
   (!b n p q. (!b. sigmapi b n p) /\ (!b. sigmapi b n q)
            ==> sigmapi b n (p <-> q)) /\
   (!n x p. sigmapi T n p /\ ~(n = 0) ==> sigmapi T n (??x p)) /\
   (!n x p. sigmapi F n p /\ ~(n = 0) ==> sigmapi F n (!!x p)) /\
   (!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
            ==> sigmapi b n (??x (V x << t && p))) /\
   (!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
            ==> sigmapi b n (??x (V x <<= t && p))) /\
   (!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
            ==> sigmapi b n (!!x (V x << t --> p))) /\
   (!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
            ==> sigmapi b n (!!x (V x <<= t --> p))) /\
   (!b c n p. sigmapi b n p ==> sigmapi c (n + 1) p)`;;

let SIGMA = new_definition `SIGMA = sigmapi T`;;
let PI = new_definition `PI = sigmapi F`;;
let DELTA = new_definition `DELTA n p <=> SIGMA n p /\ PI n p`;;

let SIGMAPI_PROP = prove
 (`(!n b. sigmapi b n False <=> T) /\
   (!n b. sigmapi b n True <=> T) /\
   (!n b s t. sigmapi b n (s === t) <=> T) /\
   (!n b s t. sigmapi b n (s << t) <=> T) /\
   (!n b s t. sigmapi b n (s <<= t) <=> T) /\
   (!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
   (!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
                                        (sigmapi b n q /\ sigmapi (~b) n q))`,
   REWRITE_TAC[sigmapi_RULES] THEN
   GEN_REWRITE_TAC DEPTH_CONV [AND_FORALL_THM] THEN
   INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_SUB1] THEN
   REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
   REWRITE_TAC[form_DISTINCT; form_INJ] THEN
   REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1;
               FORALL_BOOL_THM] THEN
   REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`] THEN
   REWRITE_TAC[ARITH_RULE `(SUC m = n + 1) <=> (n = m)`; UNWIND_THM2] THEN
   ASM_REWRITE_TAC[] THEN
   BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[ADD1] THEN
   REWRITE_TAC[CONJ_ACI] THEN
   REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
   MESON_TAC[sigmapi_RULES]);;

let SIGMAPI_MONO_LEMMA = prove
 (`(!b n p. sigmapi b n p ==> sigmapi b (n + 1) p) /\
   (!b n p. ~(n = 0) /\ sigmapi b (n - 1) p ==> sigmapi b n p) /\
   (!b n p. ~(n = 0) /\ sigmapi (~b) (n - 1) p ==> sigmapi b n p)`,
  CONJ_TAC THENL
   [REPEAT STRIP_TAC;
    REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
     `~(n = 0) ==> (n = (n - 1) + 1)`))] THEN
  POP_ASSUM MP_TAC THEN ASM_MESON_TAC[sigmapi_RULES]);;

let SIGMAPI_REV_EXISTS = prove
 (`!n b x p. sigmapi b n (??x p) ==> sigmapi b n p`,
  MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
  REWRITE_TAC[form_DISTINCT; form_INJ] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN
  ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);;

let SIGMAPI_REV_FORALL = prove
 (`!n b x p. sigmapi b n (!!x p) ==> sigmapi b n p`,
  MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
  REWRITE_TAC[form_DISTINCT; form_INJ] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN
  ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);;

let SIGMAPI_CLAUSES_CODE = prove
 (`(!n b. sigmapi b n False <=> T) /\
   (!n b. sigmapi b n True <=> T) /\
   (!n b s t. sigmapi b n (s === t) <=> T) /\
   (!n b s t. sigmapi b n (s << t) <=> T) /\
   (!n b s t. sigmapi b n (s <<= t) <=> T) /\
   (!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
   (!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
                                        (sigmapi b n q /\ sigmapi (~b) n q)) /\
   (!n b x p. sigmapi b n (??x p) <=>
                if b /\ ~(n = 0) \/
                   ?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\
                         ~(x IN FVT t)
                then sigmapi b n p
                else ~(n = 0) /\ sigmapi (~b) (n - 1) (??x p)) /\
   (!n b x p. sigmapi b n (!!x p) <=>
                if ~b /\ ~(n = 0) \/
                   ?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\
                         ~(x IN FVT t)
                then sigmapi b n p
                else ~(n = 0) /\ sigmapi (~b) (n - 1) (!!x p))`,
  REWRITE_TAC[SIGMAPI_PROP] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
  REWRITE_TAC[form_DISTINCT; form_INJ] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
  ONCE_REWRITE_TAC[TAUT `a \/ b \/ c \/ d <=> (b \/ c) \/ (a \/ d)`] THEN
  REWRITE_TAC[CONJ_ASSOC; OR_EXISTS_THM; GSYM RIGHT_OR_DISTRIB] THEN
  REWRITE_TAC[TAUT
   `(if b /\ c \/ d then e else c /\ f) <=>
    d /\ e \/ c /\ ~d /\ (if b then e else f)`] THEN
  MATCH_MP_TAC(TAUT `(a <=> a') /\ (~a' ==> (b <=> b'))
                     ==> (a \/ b <=> a' \/ b')`) THEN
  (CONJ_TAC THENL
    [REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
     REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
     EQ_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
     REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[SIGMAPI_PROP] THEN
     SIMP_TAC[];
     ALL_TAC]) THEN
  (ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`]) THEN
  ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (n = m + 1 <=> m = n - 1)`] THEN
  REWRITE_TAC[UNWIND_THM2] THEN
  W(fun (asl,w) -> ASM_CASES_TAC (find_term is_exists w)) THEN
  ASM_REWRITE_TAC[CONTRAPOS_THM] THENL
   [DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN
    DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
    ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
    ASM_CASES_TAC `b:bool` THEN
    ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL
     [DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN
      DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
      ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
      REWRITE_TAC[EXISTS_BOOL_THM] THEN
      REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
      ONCE_REWRITE_TAC[sigmapi_CASES] THEN
      REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[]];
    DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN
    DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
    ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
    ASM_CASES_TAC `b:bool` THEN
    ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL
     [REWRITE_TAC[EXISTS_BOOL_THM] THEN
      REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
      ONCE_REWRITE_TAC[sigmapi_CASES] THEN
      REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[];
      DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN
      DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
      ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]]]);;

let SIGMAPI_CLAUSES = prove
 (`(!n b. sigmapi b n False <=> T) /\
   (!n b. sigmapi b n True <=> T) /\
   (!n b s t. sigmapi b n (s === t) <=> T) /\
   (!n b s t. sigmapi b n (s << t) <=> T) /\
   (!n b s t. sigmapi b n (s <<= t) <=> T) /\
   (!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
   (!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
   (!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
                                        (sigmapi b n q /\ sigmapi (~b) n q)) /\
   (!n b x p. sigmapi b n (??x p) <=>
                if b /\ ~(n = 0) \/
                   ?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\
                         ~(x IN FVT t)
                then sigmapi b n p
                else 2 <= n /\ sigmapi (~b) (n - 1) p) /\
   (!n b x p. sigmapi b n (!!x p) <=>
                if ~b /\ ~(n = 0) \/
                   ?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\
                         ~(x IN FVT t)
                then sigmapi b n p
                else 2 <= n /\ sigmapi (~b) (n - 1) p)`,
  REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN
  REWRITE_TAC[] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH] THEN
  BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN
  ASM_REWRITE_TAC[ARITH_RULE `~(n - 1 = 0) <=> 2 <= n`] THEN
  MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Show that it respects substitution.                                       *)
(* ------------------------------------------------------------------------- *)

let SIGMAPI_FORMSUBST = prove
 (`!p v n b. sigmapi b n p ==> sigmapi b n (formsubst v p)`,
  MATCH_MP_TAC form_INDUCT THEN
  REWRITE_TAC[SIGMAPI_CLAUSES; formsubst] THEN SIMP_TAC[] THEN
  REWRITE_TAC[AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
  MATCH_MP_TAC(TAUT `(a ==> b /\ c) ==> (a ==> b) /\ (a ==> c)`) THEN
  DISCH_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN
  MAP_EVERY X_GEN_TAC [`i:num->term`; `n:num`; `b:bool`] THEN
  REWRITE_TAC[FV] THEN LET_TAC THEN
  CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
  REWRITE_TAC[SIGMAPI_CLAUSES] THEN
  ONCE_REWRITE_TAC[TAUT
   `((if p \/ q then x else y) ==> (if p \/ q' then x' else y')) <=>
    (p /\ x ==> x') /\
    (~p ==> (if q then x else y) ==> (if q' then x' else y'))`] THEN
  ASM_SIMP_TAC[] THEN REWRITE_TAC[DE_MORGAN_THM] THEN
  CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(TAUT
   `(p ==> p') /\ (x ==> x') /\ (y ==> y') /\ (y ==> x)
    ==> (if p then x else y) ==> (if p' then x' else y')`) THEN
  ASM_SIMP_TAC[SIGMAPI_MONO_LEMMA; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[formsubst; form_INJ; termsubst] THEN
  REWRITE_TAC[form_DISTINCT] THEN
  ONCE_REWRITE_TAC[TAUT `((a /\ b) /\ c) /\ d <=> b /\ c /\ a /\ d`] THEN
  REWRITE_TAC[UNWIND_THM1; termsubst; VALMOD_BASIC] THEN
  REWRITE_TAC[TERMSUBST_FVT; IN_ELIM_THM; NOT_EXISTS_THM] THEN
  X_GEN_TAC `y:num` THEN REWRITE_TAC[valmod] THEN
  (COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [SYM th]) THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[FV; FVT] THEN
  REWRITE_TAC[IN_DELETE; IN_UNION; IN_SING; GSYM DISJ_ASSOC] THEN
  REWRITE_TAC[TAUT `(a \/ b \/ c) /\ ~a <=> ~a /\ b \/ ~a /\ c`] THEN
  (COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN
  W(fun (asl,w) -> let t = lhand(rand w) in
                   MP_TAC(SPEC (rand(rand t)) VARIANT_THM) THEN
                   SPEC_TAC(t,`u:num`)) THEN
  REWRITE_TAC[CONTRAPOS_THM; FORMSUBST_FV; IN_ELIM_THM; FV] THEN
  GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `y:num` THEN
  ASM_REWRITE_TAC[valmod; IN_UNION]);;

(* ------------------------------------------------------------------------- *)
(* Hence all our main concepts are OK.                                       *)
(* ------------------------------------------------------------------------- *)

let SIGMAPI_TAC ths =
  REPEAT STRIP_TAC THEN
  REWRITE_TAC ths THEN
  TRY(MATCH_MP_TAC SIGMAPI_FORMSUBST) THEN
  let ths' = ths @  [SIGMAPI_CLAUSES; form_DISTINCT;
                     form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; GSYM EXISTS_REFL;
                     FVT; IN_SING; ARITH_EQ] in
  REWRITE_TAC ths' THEN ASM_SIMP_TAC ths';;

let SIGMAPI_DIVIDES = prove
 (`!n s t. sigmapi b n (arith_divides s t)`,
  SIGMAPI_TAC[arith_divides]);;

let SIGMAPI_PRIME = prove
 (`!n t. sigmapi b n (arith_prime t)`,
  SIGMAPI_TAC[arith_prime; SIGMAPI_DIVIDES]);;

let SIGMAPI_PRIMEPOW = prove
 (`!n s t. sigmapi b n (arith_primepow s t)`,
  SIGMAPI_TAC[arith_primepow; SIGMAPI_DIVIDES; SIGMAPI_PRIME]);;

let SIGMAPI_RTC = prove
 (`(!s t. sigmapi T 1 (R s t))
   ==> !s t. sigmapi T 1 (arith_rtc R s t)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtc] THEN
  MATCH_MP_TAC SIGMAPI_FORMSUBST THEN
  REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1;
              GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES;
              SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN
  ASM_REWRITE_TAC[]);;

let SIGMAPI_RTCP = prove
 (`(!s t u. sigmapi T 1 (R s t u))
   ==> !s t u. sigmapi T 1 (arith_rtcp R s t u)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtcp] THEN
  MATCH_MP_TAC SIGMAPI_FORMSUBST THEN
  REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1;
              GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES;
              SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN
  ASM_REWRITE_TAC[]);;

let SIGMAPI_TERM1 = prove
 (`!s t. sigmapi T 1 (arith_term1 s t)`,
  SIGMAPI_TAC[arith_term1]);;

let SIGMAPI_TERM = prove
 (`!t. sigmapi T 1 (arith_term t)`,
  SIGMAPI_TAC[arith_term; SIGMAPI_RTC; SIGMAPI_TERM1]);;

let SIGMAPI_FORM1 = prove
 (`!s t. sigmapi T 1 (arith_form1 s t)`,
  SIGMAPI_TAC[arith_form1; SIGMAPI_TERM]);;

let SIGMAPI_FORM = prove
 (`!t. sigmapi T 1 (arith_form t)`,
  SIGMAPI_TAC[arith_form; SIGMAPI_RTC; SIGMAPI_FORM1]);;

let SIGMAPI_FREETERM1 = prove
 (`!s t u. sigmapi T 1 (arith_freeterm1 s t u)`,
  SIGMAPI_TAC[arith_freeterm1]);;

let SIGMAPI_FREETERM = prove
 (`!s t. sigmapi T 1 (arith_freeterm s t)`,
  SIGMAPI_TAC[arith_freeterm; SIGMAPI_FREETERM1; SIGMAPI_RTCP]);;

let SIGMAPI_FREEFORM1 = prove
 (`!s t u. sigmapi T 1 (arith_freeform1 s t u)`,
  SIGMAPI_TAC[arith_freeform1; SIGMAPI_FREETERM; SIGMAPI_FORM]);;

let SIGMAPI_FREEFORM = prove
 (`!s t. sigmapi T 1 (arith_freeform s t)`,
  SIGMAPI_TAC[arith_freeform; SIGMAPI_FREEFORM1; SIGMAPI_RTCP]);;

let SIGMAPI_AXIOM = prove
 (`!t. sigmapi T 1 (arith_axiom t)`,
  SIGMAPI_TAC[arith_axiom; SIGMAPI_FREEFORM; SIGMAPI_FREETERM; SIGMAPI_FORM;
              SIGMAPI_TERM]);;

let SIGMAPI_PROV1 = prove
 (`!A. (!t. sigmapi T 1 (A t)) ==> !s t. sigmapi T 1 (arith_prov1 A s t)`,
  SIGMAPI_TAC[arith_prov1; SIGMAPI_AXIOM]);;

let SIGMAPI_PROV = prove
 (`(!t. sigmapi T 1 (A t)) ==> !t. sigmapi T 1 (arith_prov A t)`,
  SIGMAPI_TAC[arith_prov; SIGMAPI_PROV1; SIGMAPI_RTC]);;

let SIGMAPI_PRIMRECSTEP = prove
 (`(!s t u. sigmapi T 1 (R s t u))
   ==> !s t. sigmapi T 1 (arith_primrecstep R s t)`,
  SIGMAPI_TAC[arith_primrecstep]);;

let SIGMAPI_PRIMREC = prove
 (`(!s t u. sigmapi T 1 (R s t u))
   ==> !s t. sigmapi T 1 (arith_primrec R c s t)`,
  SIGMAPI_TAC[arith_primrec; SIGMAPI_PRIMRECSTEP; SIGMAPI_RTC]);;

let  SIGMAPI_GNUMERAL1 = prove
 (`!s t. sigmapi T 1 (arith_gnumeral1 s t)`,
  SIGMAPI_TAC[arith_gnumeral1]);;

let SIGMAPI_GNUMERAL = prove
 (`!s t. sigmapi T 1 (arith_gnumeral s t)`,
  SIGMAPI_TAC[arith_gnumeral; arith_gnumeral1';
              SIGMAPI_GNUMERAL1; SIGMAPI_RTC]);;

let SIGMAPI_QSUBST = prove
 (`!x n p.  sigmapi T 1 p ==> sigmapi T 1 (qsubst(x,n) p)`,
  SIGMAPI_TAC[qsubst]);;

let SIGMAPI_QDIAG = prove
 (`!x s t. sigmapi T 1 (arith_qdiag x s t)`,
  SIGMAPI_TAC[arith_qdiag; SIGMAPI_GNUMERAL]);;

let SIGMAPI_DIAGONALIZE = prove
 (`!x p. sigmapi T 1 p ==> sigmapi T 1 (diagonalize x p)`,
  SIGMAPI_TAC[diagonalize; SIGMAPI_QDIAG;
        SIGMAPI_FORMSUBST; LET_DEF; LET_END_DEF]);;

let SIGMAPI_FIXPOINT = prove
 (`!x p. sigmapi T 1 p ==> sigmapi T 1 (fixpoint x p)`,
  SIGMAPI_TAC[fixpoint; qdiag; SIGMAPI_QSUBST; SIGMAPI_DIAGONALIZE]);;

(* ------------------------------------------------------------------------- *)
(* The Godel sentence, "H" being Sigma and "G" being Pi.                     *)
(* ------------------------------------------------------------------------- *)

let hsentence = new_definition
  `hsentence Arep =
    fixpoint 0 (arith_prov Arep (arith_pair (numeral 4) (V 0)))`;;

let gsentence = new_definition
  `gsentence Arep = Not(hsentence Arep)`;;

let FV_HSENTENCE = prove
 (`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(hsentence Arep) = {})`,
  SIMP_TAC[hsentence; FV_FIXPOINT; FV_PROV] THEN
  REWRITE_TAC[FVT_PAIR; FVT_NUMERAL; FVT; UNION_EMPTY; DELETE_INSERT;
              EMPTY_DELETE]);;

let FV_GSENTENCE = prove
 (`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(gsentence Arep) = {})`,
  SIMP_TAC[gsentence; FV_HSENTENCE; FV]);;

let SIGMAPI_HSENTENCE = prove
 (`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi T 1 (hsentence Arep)`,
  SIGMAPI_TAC[hsentence; SIGMAPI_FIXPOINT; SIGMAPI_PROV]);;

let SIGMAPI_GSENTENCE = prove
 (`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi F 1 (gsentence Arep)`,
  SIGMAPI_TAC[gsentence; SIGMAPI_HSENTENCE]);;

(* ------------------------------------------------------------------------- *)
(* Hence the key fixpoint properties.                                        *)
(* ------------------------------------------------------------------------- *)

let HSENTENCE_FIX_STRONG = prove
 (`!A Arep.
        (!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
        ==> !v. holds v (hsentence Arep) <=> A |-- Not(hsentence Arep)`,
  REWRITE_TAC[hsentence; true_def; HOLDS_FIXPOINT] THEN
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP ARITH_PROV) THEN
  REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[ARITH_PAIR; TERMVAL_NUMERAL] THEN
  REWRITE_TAC[termval; valmod; GSYM gform] THEN REWRITE_TAC[PROV_THM]);;

let HSENTENCE_FIX = prove
 (`!A Arep.
        (!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
        ==> (true(hsentence Arep) <=> A |-- Not(hsentence Arep))`,
  REWRITE_TAC[true_def] THEN MESON_TAC[HSENTENCE_FIX_STRONG]);;

let GSENTENCE_FIX = prove
 (`!A Arep.
        (!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
        ==> (true(gsentence Arep) <=> ~(A |-- gsentence Arep))`,
  REWRITE_TAC[true_def; holds; gsentence] THEN
  MESON_TAC[HSENTENCE_FIX_STRONG]);;

(* ------------------------------------------------------------------------- *)
(* Auxiliary concepts.                                                       *)
(* ------------------------------------------------------------------------- *)

let ground = new_definition
  `ground t <=> (FVT t = {})`;;

let complete_for = new_definition
  `complete_for P A <=> !p. P p /\ true p ==> A |-- p`;;

let sound_for = new_definition
  `sound_for P A <=> !p. P p /\ A |-- p ==> true p`;;

let consistent = new_definition
  `consistent A <=> ~(?p. A |-- p /\ A |-- Not p)`;;

let CONSISTENT_ALT = prove
 (`!A p. A |-- p /\ A |-- Not p <=> A |-- False`,
  MESON_TAC[proves_RULES; axiom_RULES]);;

(* ------------------------------------------------------------------------- *)
(* The purest and most symmetric and beautiful form of G1.                   *)
(* ------------------------------------------------------------------------- *)

let DEFINABLE_BY_ONEVAR = prove
 (`definable_by (SIGMA 1) s <=>
        ?p x. SIGMA 1 p /\ (FV p = {x}) /\ !v. holds v p <=> (v x) IN s`,
  REWRITE_TAC[definable_by; SIGMA] THEN
  EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:form` (X_CHOOSE_TAC `x:num`)) THEN
  EXISTS_TAC `(V x === V x) && formsubst (\y. if y = x then V x else Z) p` THEN
  EXISTS_TAC `x:num` THEN ASM_SIMP_TAC[SIGMAPI_CLAUSES; SIGMAPI_FORMSUBST] THEN
  ASM_REWRITE_TAC[HOLDS_FORMSUBST; FORMSUBST_FV; FV; holds] THEN
  REWRITE_TAC[COND_RAND; EXTENSION; IN_ELIM_THM; IN_SING; FVT; IN_UNION;
              COND_EXPAND; NOT_IN_EMPTY; o_THM; termval] THEN
  MESON_TAC[]);;

let CLOSED_NOT_TRUE = prove
 (`!p. closed p ==> (true(Not p) <=> ~(true p))`,
  REWRITE_TAC[closed; true_def; holds] THEN
  MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);;

let G1 = prove
 (`!A. definable_by (SIGMA 1) (IMAGE gform A)
       ==> ?G. PI 1 G /\ closed G /\
               (sound_for (PI 1 INTER closed) A ==> true G /\ ~(A |-- G)) /\
               (sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`,
  GEN_TAC THEN
  REWRITE_TAC[sound_for; INTER; IN_ELIM_THM; DEFINABLE_BY_ONEVAR] THEN
  DISCH_THEN(X_CHOOSE_THEN `Arep:form` (X_CHOOSE_THEN `a:num`
        STRIP_ASSUME_TAC)) THEN
  MP_TAC(SPECL [`A:form->bool`; `\t. formsubst ((a |-> t) V) Arep`]
         GSENTENCE_FIX) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN REWRITE_TAC[termval; valmod; o_THM];
    ALL_TAC] THEN
  STRIP_TAC THEN EXISTS_TAC `gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c /\ d) ==> a /\ b /\ c /\ d`) THEN
  REPEAT CONJ_TAC THENL
   [REWRITE_TAC[PI] THEN MATCH_MP_TAC SIGMAPI_GSENTENCE THEN
    RULE_ASSUM_TAC(REWRITE_RULE[SIGMA]) THEN ASM_SIMP_TAC[SIGMAPI_FORMSUBST];
    REWRITE_TAC[closed] THEN MATCH_MP_TAC FV_GSENTENCE THEN
    ASM_REWRITE_TAC[FORMSUBST_FV; EXTENSION; IN_ELIM_THM; IN_SING;
                    valmod; UNWIND_THM2];
    ALL_TAC] THEN
  ABBREV_TAC `G = gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN
  REPEAT STRIP_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
  SUBGOAL_THEN `true(Not G)` MP_TAC THENL
   [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN] THEN
    REWRITE_TAC[SIGMA; SIGMAPI_CLAUSES] THEN ASM_MESON_TAC[closed; FV; PI];
    ALL_TAC] THEN
  FIRST_ASSUM(SUBST1_TAC o MATCH_MP CLOSED_NOT_TRUE) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  SUBGOAL_THEN `true False` MP_TAC THENL
   [ALL_TAC; REWRITE_TAC[true_def; holds]] THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN
  REWRITE_TAC[closed; IN; SIGMA; SIGMAPI_CLAUSES; FV] THEN
  ASM_MESON_TAC[CONSISTENT_ALT]);;

(* ------------------------------------------------------------------------- *)
(* Some more familiar variants.                                              *)
(* ------------------------------------------------------------------------- *)

let COMPLETE_SOUND_SENTENCE = prove
 (`consistent A /\ complete_for (sigmapi (~b) n INTER closed) A
   ==> sound_for (sigmapi b n INTER closed) A`,
  REWRITE_TAC[consistent; sound_for; complete_for; IN; INTER; IN_ELIM_THM] THEN
  REWRITE_TAC[NOT_EXISTS_THM] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(fun th -> X_GEN_TAC `p:form` THEN MP_TAC(SPEC `Not p` th)) THEN
  REWRITE_TAC[SIGMAPI_CLAUSES] THEN
  REWRITE_TAC[closed; FV; true_def; holds] THEN
  ASM_MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);;

let G1_TRAD = prove
 (`!A. consistent A /\
       complete_for (SIGMA 1 INTER closed) A /\
       definable_by (SIGMA 1) (IMAGE gform A)
       ==> ?G. PI 1 G /\ closed G /\ true G /\ ~(A |-- G) /\
               (sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`,
  REWRITE_TAC[SIGMA] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `A:form->bool` G1) THEN ASM_REWRITE_TAC[SIGMA; PI] THEN
  MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[COMPLETE_SOUND_SENTENCE]);;