Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 20,744 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
(* ========================================================================= *)
(* Grobner basis algorithm.                                                  *)
(* ========================================================================= *)

needs "Complex/complexnumbers.ml";;
needs "Complex/quelim.ml";;

prioritize_complex();;

(* ------------------------------------------------------------------------- *)
(* Utility functions.                                                        *)
(* ------------------------------------------------------------------------- *)

let allpairs f l1 l2 =
  itlist ((@) o C map l2 o f) l1 [];;

let rec merge ord l1 l2 =
  match l1 with
    [] -> l2
  | h1::t1 -> match l2 with
                [] -> l1
              | h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2)
                          else h2::(merge ord l1 t2);;

let sort ord =
  let rec mergepairs l1 l2 =
    match (l1,l2) with
        ([s],[]) -> s
      | (l,[]) -> mergepairs [] l
      | (l,[s1]) -> mergepairs (s1::l) []
      | (l,(s1::s2::ss)) -> mergepairs ((merge ord s1 s2)::l) ss in
  fun l -> if l = [] then [] else mergepairs [] (map (fun x -> [x]) l);;

(* ------------------------------------------------------------------------- *)
(* Type for recording history, i.e. how a polynomial was obtained.           *)
(* ------------------------------------------------------------------------- *)

type history =
   Start of int
 | Mmul of (num * (int list)) * history
 | Add of history * history;;

(* ------------------------------------------------------------------------- *)
(* Conversion of leaves, i.e. variables and constant rational constants.     *)
(* ------------------------------------------------------------------------- *)

let grob_var vars tm =
  let res = map (fun i -> if i = tm then 1 else 0) vars in
  if exists (fun x -> x <> 0) res then [Int 1,res] else failwith "grob_var";;

let grob_const =
  let cx_tm = `Cx` in
  fun vars tm ->
    try let l,r = dest_comb tm in
        if l = cx_tm then
          let x = rat_of_term r in
          if x =/ Int 0 then [] else [x,map (fun v -> 0) vars]
        else failwith ""
    with Failure _ -> failwith "grob_const";;

(* ------------------------------------------------------------------------- *)
(* Monomial ordering.                                                        *)
(* ------------------------------------------------------------------------- *)

let morder_lt =
  let rec lexorder l1 l2 =
    match (l1,l2) with
        [],[] -> false
      | (x1::o1,x2::o2) -> x1 > x2 || x1 = x2 && lexorder o1 o2
      | _ -> failwith "morder: inconsistent monomial lengths" in
  fun m1 m2 -> let n1 = itlist (+) m1 0
               and n2 = itlist (+) m2 0 in
               n1 < n2 || n1 = n2 && lexorder m1 m2;;

let morder_le m1 m2 = morder_lt m1 m2 || (m1 = m2);;

let morder_gt m1 m2 = morder_lt m2 m1;;

(* ------------------------------------------------------------------------- *)
(* Arithmetic on canonical polynomials.                                      *)
(* ------------------------------------------------------------------------- *)

let grob_neg = map (fun (c,m) -> (minus_num c,m));;

let rec grob_add l1 l2 =
  match (l1,l2) with
    ([],l2) -> l2
  | (l1,[]) -> l1
  | ((c1,m1)::o1,(c2,m2)::o2) ->
        if m1 = m2 then
          let c = c1+/c2 and rest = grob_add o1 o2 in
          if c =/ Int 0 then rest else (c,m1)::rest
        else if morder_lt m2 m1 then (c1,m1)::(grob_add o1 l2)
        else (c2,m2)::(grob_add l1 o2);;

let grob_sub l1 l2 = grob_add l1 (grob_neg l2);;

let grob_mmul (c1,m1) (c2,m2) = (c1*/c2,map2 (+) m1 m2);;

let rec grob_cmul cm pol = map (grob_mmul cm) pol;;

let rec grob_mul l1 l2 =
  match l1 with
    [] -> []
  | (h1::t1) -> grob_add (grob_cmul h1 l2) (grob_mul t1 l2);;

let rec grob_pow vars l n =
  if n < 0 then failwith "grob_pow: negative power"
  else if n = 0 then [Int 1,map (fun v -> 0) vars]
  else grob_mul l (grob_pow vars l (n - 1));;

(* ------------------------------------------------------------------------- *)
(* Monomial division operation.                                              *)
(* ------------------------------------------------------------------------- *)

let mdiv (c1,m1) (c2,m2) =
  (c1//c2,
   map2 (fun n1 n2 -> if n1 < n2 then failwith "mdiv" else n1-n2) m1 m2);;

(* ------------------------------------------------------------------------- *)
(* Lowest common multiple of two monomials.                                  *)
(* ------------------------------------------------------------------------- *)

let mlcm (c1,m1) (c2,m2) = (Int 1,map2 max m1 m2);;

(* ------------------------------------------------------------------------- *)
(* Reduce monomial cm by polynomial pol, returning replacement for cm.       *)
(* ------------------------------------------------------------------------- *)

let reduce1 cm (pol,hpol) =
  match pol with
    [] -> failwith "reduce1"
  | cm1::cms -> try let (c,m) = mdiv cm cm1 in
                    (grob_cmul (minus_num c,m) cms,
                     Mmul((minus_num c,m),hpol))
                with Failure _ -> failwith "reduce1";;

(* ------------------------------------------------------------------------- *)
(* Try this for all polynomials in a basis.                                  *)
(* ------------------------------------------------------------------------- *)

let reduceb cm basis = tryfind (fun p -> reduce1 cm p) basis;;

(* ------------------------------------------------------------------------- *)
(* Reduction of a polynomial (always picking largest monomial possible).     *)
(* ------------------------------------------------------------------------- *)

let rec reduce basis (pol,hist) =
  match pol with
    [] -> (pol,hist)
  | cm::ptl -> try let q,hnew = reduceb cm basis in
                   reduce basis (grob_add q ptl,Add(hnew,hist))
               with Failure _ ->
                   let q,hist' = reduce basis (ptl,hist) in
                   cm::q,hist';;

(* ------------------------------------------------------------------------- *)
(* Check for orthogonality w.r.t. LCM.                                       *)
(* ------------------------------------------------------------------------- *)

let orthogonal l p1 p2 =
  snd l = snd(grob_mmul (hd p1) (hd p2));;

(* ------------------------------------------------------------------------- *)
(* Compute S-polynomial of two polynomials.                                  *)
(* ------------------------------------------------------------------------- *)

let spoly cm ph1 ph2 =
  match (ph1,ph2) with
    ([],h),p -> ([],h)
  | p,([],h) -> ([],h)
  | (cm1::ptl1,his1),(cm2::ptl2,his2) ->
        (grob_sub (grob_cmul (mdiv cm cm1) ptl1)
                  (grob_cmul (mdiv cm cm2) ptl2),
         Add(Mmul(mdiv cm cm1,his1),
             Mmul(mdiv (minus_num(fst cm),snd cm) cm2,his2)));;

(* ------------------------------------------------------------------------- *)
(* Make a polynomial monic.                                                  *)
(* ------------------------------------------------------------------------- *)

let monic (pol,hist) =
  if pol = [] then (pol,hist) else
  let c',m' = hd pol in
  (map (fun (c,m) -> (c//c',m)) pol,
   Mmul((Int 1 // c',map (K 0) m'),hist));;

(* ------------------------------------------------------------------------- *)
(* The most popular heuristic is to order critical pairs by LCM monomial.    *)
(* ------------------------------------------------------------------------- *)

let forder ((c1,m1),_) ((c2,m2),_) = morder_lt m1 m2;;

(* ------------------------------------------------------------------------- *)
(* Stupid stuff forced on us by lack of equality test on num type.           *)
(* ------------------------------------------------------------------------- *)

let rec poly_lt p q =
  match (p,q) with
    p,[] -> false
  | [],q -> true
  | (c1,m1)::o1,(c2,m2)::o2 ->
        c1 </ c2 ||
        c1 =/ c2 && (m1 < m2 || m1 = m2 && poly_lt o1 o2);;

let align ((p,hp),(q,hq)) =
  if poly_lt p q then ((p,hp),(q,hq)) else ((q,hq),(p,hp));;

let poly_eq p1 p2 =
  forall2 (fun (c1,m1) (c2,m2) -> c1 =/ c2 && m1 = m2) p1 p2;;

let memx ((p1,h1),(p2,h2)) ppairs =
  not (exists (fun ((q1,_),(q2,_)) -> poly_eq p1 q1 && poly_eq p2 q2) ppairs);;

(* ------------------------------------------------------------------------- *)
(* Buchberger's second criterion.                                            *)
(* ------------------------------------------------------------------------- *)

let criterion2 basis (lcm,((p1,h1),(p2,h2))) opairs =
  exists (fun g -> not(poly_eq (fst g) p1) && not(poly_eq (fst g) p2) &&
                   can (mdiv lcm) (hd(fst g)) &&
                   not(memx (align(g,(p1,h1))) (map snd opairs)) &&
                   not(memx (align(g,(p2,h2))) (map snd opairs))) basis;;

(* ------------------------------------------------------------------------- *)
(* Test for hitting constant polynomial.                                     *)
(* ------------------------------------------------------------------------- *)

let constant_poly p =
  length p = 1 && forall ((=) 0) (snd(hd p));;

(* ------------------------------------------------------------------------- *)
(* Grobner basis algorithm.                                                  *)
(* ------------------------------------------------------------------------- *)

let rec grobner histories basis pairs =
  print_string(string_of_int(length basis)^" basis elements and "^
               string_of_int(length pairs)^" critical pairs");
  print_newline();
  match pairs with
    [] -> rev histories,basis
  | (l,(p1,p2))::opairs ->
        let (sp,hist) = monic (reduce basis (spoly l p1 p2)) in
        if sp = [] || criterion2 basis (l,(p1,p2)) opairs
        then grobner histories basis opairs else
        let sph = sp,Start(length histories) in
        if constant_poly sp
        then grobner ((sp,hist)::histories) (sph::basis) [] else
        let rawcps =
          map (fun p -> mlcm (hd(fst p)) (hd sp),align(p,sph)) basis in
        let newcps = filter
          (fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) rawcps in
        grobner ((sp,hist)::histories) (sph::basis)
                (merge forder opairs (sort forder newcps));;

(* ------------------------------------------------------------------------- *)
(* Overall function.                                                         *)
(* ------------------------------------------------------------------------- *)

let groebner pols =
  let npols = map2 (fun p n -> p,Start n) pols (0--(length pols - 1)) in
  let phists = filter (fun (p,_) -> p <> []) npols in
  let bas0 = map monic phists in
  let bas = map2 (fun (p,h) n -> p,Start n) bas0
                 ((length bas0)--(2 * length bas0 - 1)) in
  let prs0 = allpairs (fun x y -> x,y) bas bas in
  let prs1 = filter (fun ((x,_),(y,_)) -> poly_lt x y) prs0 in
  let prs2 = map (fun (p,q) -> mlcm (hd(fst p)) (hd(fst q)),(p,q)) prs1 in
  let prs3 = filter (fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) prs2 in
  grobner (rev bas0 @ rev phists) bas (mergesort forder prs3);;

(* ------------------------------------------------------------------------- *)
(* Alternative orthography.                                                  *)
(* ------------------------------------------------------------------------- *)

let gr'o'bner = groebner;;

(* ------------------------------------------------------------------------- *)
(* Conversion from HOL term.                                                 *)
(* ------------------------------------------------------------------------- *)

let grobify_term =
  let neg_tm = `(--):complex->complex`
  and add_tm = `(+):complex->complex->complex`
  and sub_tm = `(-):complex->complex->complex`
  and mul_tm = `(*):complex->complex->complex`
  and pow_tm = `(pow):complex->num->complex` in
  let rec grobify_term vars tm =
    try grob_var vars tm with Failure _ ->
    try grob_const vars tm with Failure _ ->
    let lop,r = dest_comb tm in
    if lop = neg_tm then grob_neg(grobify_term vars r) else
    let op,l = dest_comb lop in
    if op = pow_tm then
      grob_pow vars (grobify_term vars l) (dest_small_numeral r)
    else
     (if op = add_tm then grob_add else if op = sub_tm then grob_sub
      else if op = mul_tm then grob_mul else failwith "unknown term")
     (grobify_term vars l) (grobify_term vars r) in
  fun vars tm ->
    try grobify_term vars tm with Failure _ -> failwith "grobify_term";;

let grobvars =
  let neg_tm = `(--):complex->complex`
  and add_tm = `(+):complex->complex->complex`
  and sub_tm = `(-):complex->complex->complex`
  and mul_tm = `(*):complex->complex->complex`
  and pow_tm = `(pow):complex->num->complex` in
  let rec grobvars tm acc =
    if is_complex_const tm then acc
    else if not (is_comb tm) then tm::acc else
    let lop,r = dest_comb tm in
    if lop = neg_tm then grobvars r acc
    else if not (is_comb lop) then tm::acc else
    let op,l = dest_comb lop in
    if op = pow_tm then grobvars l acc
    else if op = mul_tm || op = sub_tm || op = add_tm
    then grobvars l (grobvars r acc)
    else tm::acc in
  fun tm -> setify(grobvars tm []);;

let grobify_equations =
  let zero_tm = `Cx(&0)`
  and sub_tm = `(-):complex->complex->complex`
  and complex_ty = `:complex` in
  let grobify_equation vars tm =
  let l,r = dest_eq tm in
    if r <> zero_tm then grobify_term vars (mk_comb(mk_comb(sub_tm,l),r))
    else grobify_term vars l in
  fun tm ->
    let cjs = conjuncts tm in
    let rawvars = itlist
       (fun eq acc -> let l,r = dest_eq eq in
                     union (union (grobvars l) (grobvars r)) acc) cjs [] in
    let vars = sort (fun x y -> x < y) rawvars in
    vars,map(grobify_equation vars) cjs;;

(* ------------------------------------------------------------------------- *)
(* Printer.                                                                  *)
(* ------------------------------------------------------------------------- *)

let string_of_monomial vars (c,m) =
  let xns = filter (fun (x,y) -> y <> 0) (map2 (fun x y -> x,y) vars m) in
  let xnstrs = map
    (fun (x,n) -> x^(if n = 1 then "" else "^"^(string_of_int n))) xns in
  if xns = [] then Num.string_of_num c else
  let basstr = if c =/ Int 1 then "" else (Num.string_of_num c)^" * " in
  basstr ^ end_itlist (fun s t -> s^" * "^t) xnstrs;;

let string_of_polynomial vars l =
  if l = [] then "0" else
  end_itlist (fun s t -> s^" + "^t) (map (string_of_monomial vars) l);;

(* ------------------------------------------------------------------------- *)
(* Resolve a proof.                                                          *)
(* ------------------------------------------------------------------------- *)

let rec resolve_proof vars prf =
  match prf with
    Start n ->
        [n,[Int 1,map (K 0) vars]]
  | Mmul(pol,lin) ->
        let lis = resolve_proof vars lin in
        map (fun (n,p) -> n,grob_cmul pol p) lis
  | Add(lin1,lin2) ->
        let lis1 = resolve_proof vars lin1
        and lis2 = resolve_proof vars lin2 in
        let dom = setify(union (map fst lis1) (map fst lis2)) in
        map (fun n -> let a = try assoc n lis1 with Failure _ -> []
                      and b = try assoc n lis2 with Failure _ -> [] in
                      n,grob_add a b) dom;;

(* ------------------------------------------------------------------------- *)
(* Convert a polynomial back to HOL.                                         *)
(* ------------------------------------------------------------------------- *)

let holify_polynomial =
  let complex_ty = `:complex`
  and pow_tm = `(pow):complex->num->complex`
  and mk_mul = mk_binop `(*):complex->complex->complex`
  and mk_add = mk_binop `(+):complex->complex->complex`
  and zero_tm = `Cx(&0)`
  and add_tm = `(+):complex->complex->complex`
  and mul_tm = `(*):complex->complex->complex`
  and complex_term_of_rat = curry mk_comb `Cx` o term_of_rat in
  let holify_varpow (v,n) =
    if n = 1 then v
    else list_mk_comb(pow_tm,[v;mk_small_numeral n]) in
  let holify_monomial vars (c,m) =
    let xps = map holify_varpow (filter (fun (_,n) -> n <> 0) (zip vars m)) in
    end_itlist mk_mul (complex_term_of_rat c :: xps) in
  let holify_polynomial vars p =
    if p = [] then zero_tm
    else end_itlist mk_add (map (holify_monomial vars) p) in
  holify_polynomial;;

(* ------------------------------------------------------------------------- *)
(* Recursively find the set of basis elements involved.                      *)
(* ------------------------------------------------------------------------- *)

let dependencies =
  let rec dependencies prf acc =
    match prf with
      Start n -> n::acc
    | Mmul(pol,lin) -> dependencies lin acc
    | Add(lin1,lin2) -> dependencies lin1 (dependencies lin2 acc) in
  fun prf -> setify(dependencies prf []);;

let rec involved deps sofar todo =
  match todo with
    [] -> sort (<) sofar
  | (h::hs) ->
        if mem h sofar then involved deps sofar hs
        else involved deps (h::sofar) (el h deps @ hs);;

(* ------------------------------------------------------------------------- *)
(* Refute a conjunction of equations in HOL.                                 *)
(* ------------------------------------------------------------------------- *)

let GROBNER_REFUTE =
  let add_tm = `(+):complex->complex->complex`
  and mul_tm = `(*):complex->complex->complex` in
  let APPLY_pth = MATCH_MP(SIMPLE_COMPLEX_ARITH
    `(x = y) ==> (x + Cx(--(&1)) * (y + Cx(&1)) = Cx(&0)) ==> F`)
  and MK_ADD th1 th2 = MK_COMB(AP_TERM add_tm th1,th2) in
  let rec holify_lincombs vars cjs prfs =
    match prfs with
      [] -> cjs
    | (p::ps) ->
        if p = [] then holify_lincombs vars (cjs @ [TRUTH]) ps else
        let holis = map (fun (n,q) -> n,holify_polynomial vars q) p in
        let ths =
          map (fun (n,m) -> AP_TERM (mk_comb(mul_tm,m)) (el n cjs)) holis in
        let th = CONV_RULE(BINOP_CONV COMPLEX_POLY_CONV)
                          (end_itlist MK_ADD ths) in
        holify_lincombs vars (cjs @ [th]) ps in
  fun tm ->
    let vars,pols = grobify_equations tm in
    let (prfs,gb) = groebner pols in
    let (_,prf) =
      find (fun (p,h) -> length p = 1 && forall ((=)0) (snd(hd p))) gb in
    let deps = map (dependencies o snd) prfs
    and depl = dependencies prf in
    let need = involved deps [] depl in
    let pprfs =
      map2 (fun p n -> if mem n need then resolve_proof vars (snd p) else [])
           prfs (0--(length prfs - 1))
    and ppr = resolve_proof vars prf in
    let ths = CONJUNCTS(ASSUME tm) in
    let th = last
     (holify_lincombs vars ths (snd(chop_list(length ths) (pprfs @ [ppr])))) in
    CONV_RULE COMPLEX_RAT_EQ_CONV th;;

(* ------------------------------------------------------------------------- *)
(* Overall conversion.                                                       *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_ARITH =
  let pth0 = SIMPLE_COMPLEX_ARITH `(x = y) <=> (x - y = Cx(&0))`
  and pth1 = prove
   (`!x. ~(x = Cx(&0)) <=> ?z. z * x + Cx(&1) = Cx(&0)`,
    CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
  and pth2a = prove
   (`!x y u v. ~(x = y) \/ ~(u = v) <=>
                ?w z. w * (x - y) + z * (u - v) + Cx(&1) = Cx(&0)`,
    CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
  and pth2b = prove
   (`!x y. ~(x = y) <=> ?z. z * (x - y) + Cx(&1) = Cx(&0)`,
    CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
  and pth3 = TAUT `(p ==> F) ==> (~q <=> p) ==> q` in
  let GEN_PRENEX_CONV =
    GEN_REWRITE_CONV REDEPTH_CONV
     [AND_FORALL_THM;
      LEFT_AND_FORALL_THM;
      RIGHT_AND_FORALL_THM;
      LEFT_OR_FORALL_THM;
      RIGHT_OR_FORALL_THM;
      OR_EXISTS_THM;
      LEFT_OR_EXISTS_THM;
      RIGHT_OR_EXISTS_THM;
      LEFT_AND_EXISTS_THM;
      RIGHT_AND_EXISTS_THM] in
  let INITIAL_CONV =
    NNF_CONV THENC
    GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth1] THENC
    GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth2a] THENC
    GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth2b] THENC
    ONCE_DEPTH_CONV(GEN_REWRITE_CONV I [pth0] o
                    check ((<>) `Cx(&0)` o rand)) THENC
    GEN_PRENEX_CONV THENC
    DNF_CONV in
  fun tm ->
    let avs = frees tm in
    let tm' = list_mk_forall(avs,tm) in
    let th1 = INITIAL_CONV(mk_neg tm') in
    let evs,bod = strip_exists(rand(concl th1)) in
    if is_forall bod then failwith "COMPLEX_ARITH: non-universal formula" else
    let djs = disjuncts bod in
    let th2 = end_itlist SIMPLE_DISJ_CASES(map GROBNER_REFUTE djs) in
    let th3 = itlist SIMPLE_CHOOSE evs th2 in
    SPECL avs (MATCH_MP (MATCH_MP pth3 (DISCH_ALL th3)) th1);;