Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 20,744 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
(* ========================================================================= *)
(* Grobner basis algorithm. *)
(* ========================================================================= *)
needs "Complex/complexnumbers.ml";;
needs "Complex/quelim.ml";;
prioritize_complex();;
(* ------------------------------------------------------------------------- *)
(* Utility functions. *)
(* ------------------------------------------------------------------------- *)
let allpairs f l1 l2 =
itlist ((@) o C map l2 o f) l1 [];;
let rec merge ord l1 l2 =
match l1 with
[] -> l2
| h1::t1 -> match l2 with
[] -> l1
| h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2)
else h2::(merge ord l1 t2);;
let sort ord =
let rec mergepairs l1 l2 =
match (l1,l2) with
([s],[]) -> s
| (l,[]) -> mergepairs [] l
| (l,[s1]) -> mergepairs (s1::l) []
| (l,(s1::s2::ss)) -> mergepairs ((merge ord s1 s2)::l) ss in
fun l -> if l = [] then [] else mergepairs [] (map (fun x -> [x]) l);;
(* ------------------------------------------------------------------------- *)
(* Type for recording history, i.e. how a polynomial was obtained. *)
(* ------------------------------------------------------------------------- *)
type history =
Start of int
| Mmul of (num * (int list)) * history
| Add of history * history;;
(* ------------------------------------------------------------------------- *)
(* Conversion of leaves, i.e. variables and constant rational constants. *)
(* ------------------------------------------------------------------------- *)
let grob_var vars tm =
let res = map (fun i -> if i = tm then 1 else 0) vars in
if exists (fun x -> x <> 0) res then [Int 1,res] else failwith "grob_var";;
let grob_const =
let cx_tm = `Cx` in
fun vars tm ->
try let l,r = dest_comb tm in
if l = cx_tm then
let x = rat_of_term r in
if x =/ Int 0 then [] else [x,map (fun v -> 0) vars]
else failwith ""
with Failure _ -> failwith "grob_const";;
(* ------------------------------------------------------------------------- *)
(* Monomial ordering. *)
(* ------------------------------------------------------------------------- *)
let morder_lt =
let rec lexorder l1 l2 =
match (l1,l2) with
[],[] -> false
| (x1::o1,x2::o2) -> x1 > x2 || x1 = x2 && lexorder o1 o2
| _ -> failwith "morder: inconsistent monomial lengths" in
fun m1 m2 -> let n1 = itlist (+) m1 0
and n2 = itlist (+) m2 0 in
n1 < n2 || n1 = n2 && lexorder m1 m2;;
let morder_le m1 m2 = morder_lt m1 m2 || (m1 = m2);;
let morder_gt m1 m2 = morder_lt m2 m1;;
(* ------------------------------------------------------------------------- *)
(* Arithmetic on canonical polynomials. *)
(* ------------------------------------------------------------------------- *)
let grob_neg = map (fun (c,m) -> (minus_num c,m));;
let rec grob_add l1 l2 =
match (l1,l2) with
([],l2) -> l2
| (l1,[]) -> l1
| ((c1,m1)::o1,(c2,m2)::o2) ->
if m1 = m2 then
let c = c1+/c2 and rest = grob_add o1 o2 in
if c =/ Int 0 then rest else (c,m1)::rest
else if morder_lt m2 m1 then (c1,m1)::(grob_add o1 l2)
else (c2,m2)::(grob_add l1 o2);;
let grob_sub l1 l2 = grob_add l1 (grob_neg l2);;
let grob_mmul (c1,m1) (c2,m2) = (c1*/c2,map2 (+) m1 m2);;
let rec grob_cmul cm pol = map (grob_mmul cm) pol;;
let rec grob_mul l1 l2 =
match l1 with
[] -> []
| (h1::t1) -> grob_add (grob_cmul h1 l2) (grob_mul t1 l2);;
let rec grob_pow vars l n =
if n < 0 then failwith "grob_pow: negative power"
else if n = 0 then [Int 1,map (fun v -> 0) vars]
else grob_mul l (grob_pow vars l (n - 1));;
(* ------------------------------------------------------------------------- *)
(* Monomial division operation. *)
(* ------------------------------------------------------------------------- *)
let mdiv (c1,m1) (c2,m2) =
(c1//c2,
map2 (fun n1 n2 -> if n1 < n2 then failwith "mdiv" else n1-n2) m1 m2);;
(* ------------------------------------------------------------------------- *)
(* Lowest common multiple of two monomials. *)
(* ------------------------------------------------------------------------- *)
let mlcm (c1,m1) (c2,m2) = (Int 1,map2 max m1 m2);;
(* ------------------------------------------------------------------------- *)
(* Reduce monomial cm by polynomial pol, returning replacement for cm. *)
(* ------------------------------------------------------------------------- *)
let reduce1 cm (pol,hpol) =
match pol with
[] -> failwith "reduce1"
| cm1::cms -> try let (c,m) = mdiv cm cm1 in
(grob_cmul (minus_num c,m) cms,
Mmul((minus_num c,m),hpol))
with Failure _ -> failwith "reduce1";;
(* ------------------------------------------------------------------------- *)
(* Try this for all polynomials in a basis. *)
(* ------------------------------------------------------------------------- *)
let reduceb cm basis = tryfind (fun p -> reduce1 cm p) basis;;
(* ------------------------------------------------------------------------- *)
(* Reduction of a polynomial (always picking largest monomial possible). *)
(* ------------------------------------------------------------------------- *)
let rec reduce basis (pol,hist) =
match pol with
[] -> (pol,hist)
| cm::ptl -> try let q,hnew = reduceb cm basis in
reduce basis (grob_add q ptl,Add(hnew,hist))
with Failure _ ->
let q,hist' = reduce basis (ptl,hist) in
cm::q,hist';;
(* ------------------------------------------------------------------------- *)
(* Check for orthogonality w.r.t. LCM. *)
(* ------------------------------------------------------------------------- *)
let orthogonal l p1 p2 =
snd l = snd(grob_mmul (hd p1) (hd p2));;
(* ------------------------------------------------------------------------- *)
(* Compute S-polynomial of two polynomials. *)
(* ------------------------------------------------------------------------- *)
let spoly cm ph1 ph2 =
match (ph1,ph2) with
([],h),p -> ([],h)
| p,([],h) -> ([],h)
| (cm1::ptl1,his1),(cm2::ptl2,his2) ->
(grob_sub (grob_cmul (mdiv cm cm1) ptl1)
(grob_cmul (mdiv cm cm2) ptl2),
Add(Mmul(mdiv cm cm1,his1),
Mmul(mdiv (minus_num(fst cm),snd cm) cm2,his2)));;
(* ------------------------------------------------------------------------- *)
(* Make a polynomial monic. *)
(* ------------------------------------------------------------------------- *)
let monic (pol,hist) =
if pol = [] then (pol,hist) else
let c',m' = hd pol in
(map (fun (c,m) -> (c//c',m)) pol,
Mmul((Int 1 // c',map (K 0) m'),hist));;
(* ------------------------------------------------------------------------- *)
(* The most popular heuristic is to order critical pairs by LCM monomial. *)
(* ------------------------------------------------------------------------- *)
let forder ((c1,m1),_) ((c2,m2),_) = morder_lt m1 m2;;
(* ------------------------------------------------------------------------- *)
(* Stupid stuff forced on us by lack of equality test on num type. *)
(* ------------------------------------------------------------------------- *)
let rec poly_lt p q =
match (p,q) with
p,[] -> false
| [],q -> true
| (c1,m1)::o1,(c2,m2)::o2 ->
c1 </ c2 ||
c1 =/ c2 && (m1 < m2 || m1 = m2 && poly_lt o1 o2);;
let align ((p,hp),(q,hq)) =
if poly_lt p q then ((p,hp),(q,hq)) else ((q,hq),(p,hp));;
let poly_eq p1 p2 =
forall2 (fun (c1,m1) (c2,m2) -> c1 =/ c2 && m1 = m2) p1 p2;;
let memx ((p1,h1),(p2,h2)) ppairs =
not (exists (fun ((q1,_),(q2,_)) -> poly_eq p1 q1 && poly_eq p2 q2) ppairs);;
(* ------------------------------------------------------------------------- *)
(* Buchberger's second criterion. *)
(* ------------------------------------------------------------------------- *)
let criterion2 basis (lcm,((p1,h1),(p2,h2))) opairs =
exists (fun g -> not(poly_eq (fst g) p1) && not(poly_eq (fst g) p2) &&
can (mdiv lcm) (hd(fst g)) &&
not(memx (align(g,(p1,h1))) (map snd opairs)) &&
not(memx (align(g,(p2,h2))) (map snd opairs))) basis;;
(* ------------------------------------------------------------------------- *)
(* Test for hitting constant polynomial. *)
(* ------------------------------------------------------------------------- *)
let constant_poly p =
length p = 1 && forall ((=) 0) (snd(hd p));;
(* ------------------------------------------------------------------------- *)
(* Grobner basis algorithm. *)
(* ------------------------------------------------------------------------- *)
let rec grobner histories basis pairs =
print_string(string_of_int(length basis)^" basis elements and "^
string_of_int(length pairs)^" critical pairs");
print_newline();
match pairs with
[] -> rev histories,basis
| (l,(p1,p2))::opairs ->
let (sp,hist) = monic (reduce basis (spoly l p1 p2)) in
if sp = [] || criterion2 basis (l,(p1,p2)) opairs
then grobner histories basis opairs else
let sph = sp,Start(length histories) in
if constant_poly sp
then grobner ((sp,hist)::histories) (sph::basis) [] else
let rawcps =
map (fun p -> mlcm (hd(fst p)) (hd sp),align(p,sph)) basis in
let newcps = filter
(fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) rawcps in
grobner ((sp,hist)::histories) (sph::basis)
(merge forder opairs (sort forder newcps));;
(* ------------------------------------------------------------------------- *)
(* Overall function. *)
(* ------------------------------------------------------------------------- *)
let groebner pols =
let npols = map2 (fun p n -> p,Start n) pols (0--(length pols - 1)) in
let phists = filter (fun (p,_) -> p <> []) npols in
let bas0 = map monic phists in
let bas = map2 (fun (p,h) n -> p,Start n) bas0
((length bas0)--(2 * length bas0 - 1)) in
let prs0 = allpairs (fun x y -> x,y) bas bas in
let prs1 = filter (fun ((x,_),(y,_)) -> poly_lt x y) prs0 in
let prs2 = map (fun (p,q) -> mlcm (hd(fst p)) (hd(fst q)),(p,q)) prs1 in
let prs3 = filter (fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) prs2 in
grobner (rev bas0 @ rev phists) bas (mergesort forder prs3);;
(* ------------------------------------------------------------------------- *)
(* Alternative orthography. *)
(* ------------------------------------------------------------------------- *)
let gr'o'bner = groebner;;
(* ------------------------------------------------------------------------- *)
(* Conversion from HOL term. *)
(* ------------------------------------------------------------------------- *)
let grobify_term =
let neg_tm = `(--):complex->complex`
and add_tm = `(+):complex->complex->complex`
and sub_tm = `(-):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex`
and pow_tm = `(pow):complex->num->complex` in
let rec grobify_term vars tm =
try grob_var vars tm with Failure _ ->
try grob_const vars tm with Failure _ ->
let lop,r = dest_comb tm in
if lop = neg_tm then grob_neg(grobify_term vars r) else
let op,l = dest_comb lop in
if op = pow_tm then
grob_pow vars (grobify_term vars l) (dest_small_numeral r)
else
(if op = add_tm then grob_add else if op = sub_tm then grob_sub
else if op = mul_tm then grob_mul else failwith "unknown term")
(grobify_term vars l) (grobify_term vars r) in
fun vars tm ->
try grobify_term vars tm with Failure _ -> failwith "grobify_term";;
let grobvars =
let neg_tm = `(--):complex->complex`
and add_tm = `(+):complex->complex->complex`
and sub_tm = `(-):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex`
and pow_tm = `(pow):complex->num->complex` in
let rec grobvars tm acc =
if is_complex_const tm then acc
else if not (is_comb tm) then tm::acc else
let lop,r = dest_comb tm in
if lop = neg_tm then grobvars r acc
else if not (is_comb lop) then tm::acc else
let op,l = dest_comb lop in
if op = pow_tm then grobvars l acc
else if op = mul_tm || op = sub_tm || op = add_tm
then grobvars l (grobvars r acc)
else tm::acc in
fun tm -> setify(grobvars tm []);;
let grobify_equations =
let zero_tm = `Cx(&0)`
and sub_tm = `(-):complex->complex->complex`
and complex_ty = `:complex` in
let grobify_equation vars tm =
let l,r = dest_eq tm in
if r <> zero_tm then grobify_term vars (mk_comb(mk_comb(sub_tm,l),r))
else grobify_term vars l in
fun tm ->
let cjs = conjuncts tm in
let rawvars = itlist
(fun eq acc -> let l,r = dest_eq eq in
union (union (grobvars l) (grobvars r)) acc) cjs [] in
let vars = sort (fun x y -> x < y) rawvars in
vars,map(grobify_equation vars) cjs;;
(* ------------------------------------------------------------------------- *)
(* Printer. *)
(* ------------------------------------------------------------------------- *)
let string_of_monomial vars (c,m) =
let xns = filter (fun (x,y) -> y <> 0) (map2 (fun x y -> x,y) vars m) in
let xnstrs = map
(fun (x,n) -> x^(if n = 1 then "" else "^"^(string_of_int n))) xns in
if xns = [] then Num.string_of_num c else
let basstr = if c =/ Int 1 then "" else (Num.string_of_num c)^" * " in
basstr ^ end_itlist (fun s t -> s^" * "^t) xnstrs;;
let string_of_polynomial vars l =
if l = [] then "0" else
end_itlist (fun s t -> s^" + "^t) (map (string_of_monomial vars) l);;
(* ------------------------------------------------------------------------- *)
(* Resolve a proof. *)
(* ------------------------------------------------------------------------- *)
let rec resolve_proof vars prf =
match prf with
Start n ->
[n,[Int 1,map (K 0) vars]]
| Mmul(pol,lin) ->
let lis = resolve_proof vars lin in
map (fun (n,p) -> n,grob_cmul pol p) lis
| Add(lin1,lin2) ->
let lis1 = resolve_proof vars lin1
and lis2 = resolve_proof vars lin2 in
let dom = setify(union (map fst lis1) (map fst lis2)) in
map (fun n -> let a = try assoc n lis1 with Failure _ -> []
and b = try assoc n lis2 with Failure _ -> [] in
n,grob_add a b) dom;;
(* ------------------------------------------------------------------------- *)
(* Convert a polynomial back to HOL. *)
(* ------------------------------------------------------------------------- *)
let holify_polynomial =
let complex_ty = `:complex`
and pow_tm = `(pow):complex->num->complex`
and mk_mul = mk_binop `(*):complex->complex->complex`
and mk_add = mk_binop `(+):complex->complex->complex`
and zero_tm = `Cx(&0)`
and add_tm = `(+):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex`
and complex_term_of_rat = curry mk_comb `Cx` o term_of_rat in
let holify_varpow (v,n) =
if n = 1 then v
else list_mk_comb(pow_tm,[v;mk_small_numeral n]) in
let holify_monomial vars (c,m) =
let xps = map holify_varpow (filter (fun (_,n) -> n <> 0) (zip vars m)) in
end_itlist mk_mul (complex_term_of_rat c :: xps) in
let holify_polynomial vars p =
if p = [] then zero_tm
else end_itlist mk_add (map (holify_monomial vars) p) in
holify_polynomial;;
(* ------------------------------------------------------------------------- *)
(* Recursively find the set of basis elements involved. *)
(* ------------------------------------------------------------------------- *)
let dependencies =
let rec dependencies prf acc =
match prf with
Start n -> n::acc
| Mmul(pol,lin) -> dependencies lin acc
| Add(lin1,lin2) -> dependencies lin1 (dependencies lin2 acc) in
fun prf -> setify(dependencies prf []);;
let rec involved deps sofar todo =
match todo with
[] -> sort (<) sofar
| (h::hs) ->
if mem h sofar then involved deps sofar hs
else involved deps (h::sofar) (el h deps @ hs);;
(* ------------------------------------------------------------------------- *)
(* Refute a conjunction of equations in HOL. *)
(* ------------------------------------------------------------------------- *)
let GROBNER_REFUTE =
let add_tm = `(+):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex` in
let APPLY_pth = MATCH_MP(SIMPLE_COMPLEX_ARITH
`(x = y) ==> (x + Cx(--(&1)) * (y + Cx(&1)) = Cx(&0)) ==> F`)
and MK_ADD th1 th2 = MK_COMB(AP_TERM add_tm th1,th2) in
let rec holify_lincombs vars cjs prfs =
match prfs with
[] -> cjs
| (p::ps) ->
if p = [] then holify_lincombs vars (cjs @ [TRUTH]) ps else
let holis = map (fun (n,q) -> n,holify_polynomial vars q) p in
let ths =
map (fun (n,m) -> AP_TERM (mk_comb(mul_tm,m)) (el n cjs)) holis in
let th = CONV_RULE(BINOP_CONV COMPLEX_POLY_CONV)
(end_itlist MK_ADD ths) in
holify_lincombs vars (cjs @ [th]) ps in
fun tm ->
let vars,pols = grobify_equations tm in
let (prfs,gb) = groebner pols in
let (_,prf) =
find (fun (p,h) -> length p = 1 && forall ((=)0) (snd(hd p))) gb in
let deps = map (dependencies o snd) prfs
and depl = dependencies prf in
let need = involved deps [] depl in
let pprfs =
map2 (fun p n -> if mem n need then resolve_proof vars (snd p) else [])
prfs (0--(length prfs - 1))
and ppr = resolve_proof vars prf in
let ths = CONJUNCTS(ASSUME tm) in
let th = last
(holify_lincombs vars ths (snd(chop_list(length ths) (pprfs @ [ppr])))) in
CONV_RULE COMPLEX_RAT_EQ_CONV th;;
(* ------------------------------------------------------------------------- *)
(* Overall conversion. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_ARITH =
let pth0 = SIMPLE_COMPLEX_ARITH `(x = y) <=> (x - y = Cx(&0))`
and pth1 = prove
(`!x. ~(x = Cx(&0)) <=> ?z. z * x + Cx(&1) = Cx(&0)`,
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
and pth2a = prove
(`!x y u v. ~(x = y) \/ ~(u = v) <=>
?w z. w * (x - y) + z * (u - v) + Cx(&1) = Cx(&0)`,
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
and pth2b = prove
(`!x y. ~(x = y) <=> ?z. z * (x - y) + Cx(&1) = Cx(&0)`,
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
and pth3 = TAUT `(p ==> F) ==> (~q <=> p) ==> q` in
let GEN_PRENEX_CONV =
GEN_REWRITE_CONV REDEPTH_CONV
[AND_FORALL_THM;
LEFT_AND_FORALL_THM;
RIGHT_AND_FORALL_THM;
LEFT_OR_FORALL_THM;
RIGHT_OR_FORALL_THM;
OR_EXISTS_THM;
LEFT_OR_EXISTS_THM;
RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM] in
let INITIAL_CONV =
NNF_CONV THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth1] THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth2a] THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth2b] THENC
ONCE_DEPTH_CONV(GEN_REWRITE_CONV I [pth0] o
check ((<>) `Cx(&0)` o rand)) THENC
GEN_PRENEX_CONV THENC
DNF_CONV in
fun tm ->
let avs = frees tm in
let tm' = list_mk_forall(avs,tm) in
let th1 = INITIAL_CONV(mk_neg tm') in
let evs,bod = strip_exists(rand(concl th1)) in
if is_forall bod then failwith "COMPLEX_ARITH: non-universal formula" else
let djs = disjuncts bod in
let th2 = end_itlist SIMPLE_DISJ_CASES(map GROBNER_REFUTE djs) in
let th3 = itlist SIMPLE_CHOOSE evs th2 in
SPECL avs (MATCH_MP (MATCH_MP pth3 (DISCH_ALL th3)) th1);;
|