Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 32,067 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
(* ========================================================================= *)
(* Basic definitions and properties of complex numbers.                      *)
(* ========================================================================= *)

needs "Library/transc.ml";;

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* Definition of complex number type.                                        *)
(* ------------------------------------------------------------------------- *)

let complex_tybij_raw =
  new_type_definition "complex" ("complex","coords")
   (prove(`?x:real#real. T`,REWRITE_TAC[]));;

let complex_tybij = REWRITE_RULE [] complex_tybij_raw;;

(* ------------------------------------------------------------------------- *)
(* Real and imaginary parts of a number.                                     *)
(* ------------------------------------------------------------------------- *)

let RE_DEF = new_definition
  `Re(z) = FST(coords(z))`;;

let IM_DEF = new_definition
  `Im(z) = SND(coords(z))`;;

(* ------------------------------------------------------------------------- *)
(* Set up overloading.                                                       *)
(* ------------------------------------------------------------------------- *)

do_list overload_interface
 ["+",`complex_add:complex->complex->complex`;
  "-",`complex_sub:complex->complex->complex`;
  "*",`complex_mul:complex->complex->complex`;
  "/",`complex_div:complex->complex->complex`;
  "--",`complex_neg:complex->complex`;
  "pow",`complex_pow:complex->num->complex`;
  "inv",`complex_inv:complex->complex`];;

let prioritize_complex() = prioritize_overload(mk_type("complex",[]));;

(* ------------------------------------------------------------------------- *)
(* Complex absolute value (modulus).                                         *)
(* ------------------------------------------------------------------------- *)

make_overloadable "norm" `:A->real`;;
overload_interface("norm",`complex_norm:complex->real`);;

let complex_norm = new_definition
  `norm(z) = sqrt(Re(z) pow 2 + Im(z) pow 2)`;;

(* ------------------------------------------------------------------------- *)
(* Imaginary unit (too inconvenient to use "i"!)                             *)
(* ------------------------------------------------------------------------- *)

let ii = new_definition
  `ii = complex(&0,&1)`;;

(* ------------------------------------------------------------------------- *)
(* Injection from reals.                                                     *)
(* ------------------------------------------------------------------------- *)

let CX_DEF = new_definition
  `Cx(a) = complex(a,&0)`;;

(* ------------------------------------------------------------------------- *)
(* Arithmetic operations.                                                    *)
(* ------------------------------------------------------------------------- *)

let complex_neg = new_definition
  `--z = complex(--(Re(z)),--(Im(z)))`;;

let complex_add = new_definition
  `w + z = complex(Re(w) + Re(z),Im(w) + Im(z))`;;

let complex_sub = new_definition
  `w - z = w + --z`;;

let complex_mul = new_definition
  `w * z = complex(Re(w) * Re(z) - Im(w) * Im(z),
                   Re(w) * Im(z) + Im(w) * Re(z))`;;

let complex_inv = new_definition
  `inv(z) = complex(Re(z) / (Re(z) pow 2 + Im(z) pow 2),
                    --(Im(z)) / (Re(z) pow 2 + Im(z) pow 2))`;;

let complex_div = new_definition
  `w / z = w * inv(z)`;;

let complex_pow = new_recursive_definition num_RECURSION
  `(x pow 0 = Cx(&1)) /\
   (!n. x pow (SUC n) = x * x pow n)`;;

(* ------------------------------------------------------------------------- *)
(* Various handy rewrites.                                                   *)
(* ------------------------------------------------------------------------- *)

let RE = prove
 (`(Re(complex(x,y)) = x)`,
  REWRITE_TAC[RE_DEF; complex_tybij]);;

let IM = prove
 (`Im(complex(x,y)) = y`,
  REWRITE_TAC[IM_DEF; complex_tybij]);;

let COMPLEX = prove
 (`complex(Re(z),Im(z)) = z`,
  REWRITE_TAC[IM_DEF; RE_DEF; complex_tybij]);;

let COMPLEX_EQ = prove
 (`!w z. (w = z) <=> (Re(w) = Re(z)) /\ (Im(w) = Im(z))`,
  REWRITE_TAC[RE_DEF; IM_DEF; GSYM PAIR_EQ] THEN MESON_TAC[complex_tybij]);;

(* ------------------------------------------------------------------------- *)
(* Crude tactic to automate very simple algebraic equivalences.              *)
(* ------------------------------------------------------------------------- *)

let SIMPLE_COMPLEX_ARITH_TAC =
  REWRITE_TAC[COMPLEX_EQ; RE; IM; CX_DEF;
              complex_add; complex_neg; complex_sub; complex_mul] THEN
  REAL_ARITH_TAC;;

let SIMPLE_COMPLEX_ARITH tm = prove(tm,SIMPLE_COMPLEX_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Basic algebraic properties that can be proved automatically by this.      *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_ADD_SYM = prove
 (`!x y. x + y = y + x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_ASSOC = prove
 (`!x y z. x + y + z = (x + y) + z`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_LID = prove
 (`!x. Cx(&0) + x = x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_LINV = prove
 (`!x. --x + x = Cx(&0)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_SYM = prove
 (`!x y. x * y = y * x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_ASSOC = prove
 (`!x y z. x * y * z = (x * y) * z`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_LID = prove
 (`!x. Cx(&1) * x = x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_LDISTRIB = prove
 (`!x y z. x * (y + z) = x * y + x * z`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_AC = prove
 (`(m + n = n + m) /\ ((m + n) + p = m + n + p) /\ (m + n + p = n + m + p)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_AC = prove
 (`(m * n = n * m) /\ ((m * n) * p = m * n * p) /\ (m * n * p = n * m * p)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_RID = prove
 (`!x. x + Cx(&0) = x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_RID = prove
 (`!x. x * Cx(&1) = x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_RINV = prove
 (`!x. x + --x = Cx(&0)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_RDISTRIB = prove
 (`!x y z. (x + y) * z = x * z + y * z`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_EQ_ADD_LCANCEL = prove
 (`!x y z. (x + y = x + z) <=> (y = z)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_EQ_ADD_RCANCEL = prove
 (`!x y z. (x + z = y + z) <=> (x = y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_RZERO = prove
 (`!x. x * Cx(&0) = Cx(&0)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_LZERO = prove
 (`!x. Cx(&0) * x = Cx(&0)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_NEG = prove
 (`!x. --(--x) = x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_RNEG = prove
 (`!x y. x * --y = --(x * y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_LNEG = prove
 (`!x y. --x * y = --(x * y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_ADD = prove
 (`!x y. --(x + y) = --x + --y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_0 = prove
 (`--Cx(&0) = Cx(&0)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_EQ_ADD_LCANCEL_0 = prove
 (`!x y. (x + y = x) <=> (y = Cx(&0))`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_EQ_ADD_RCANCEL_0 = prove
 (`!x y. (x + y = y) <=> (x = Cx(&0))`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_LNEG_UNIQ = prove
 (`!x y. (x + y = Cx(&0)) <=> (x = --y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_RNEG_UNIQ = prove
 (`!x y. (x + y = Cx(&0)) <=> (y = --x)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_LMUL = prove
 (`!x y. --(x * y) = --x * y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_RMUL = prove
 (`!x y. --(x * y) = x * --y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_MUL2 = prove
 (`!x y. --x * --y = x * y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_ADD = prove
 (`!x y. x - y + y = x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_ADD2 = prove
 (`!x y. y + x - y = x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_REFL = prove
 (`!x. x - x = Cx(&0)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_0 = prove
 (`!x y. (x - y = Cx(&0)) <=> (x = y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_EQ_0 = prove
 (`!x. (--x = Cx(&0)) <=> (x = Cx(&0))`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_SUB = prove
 (`!x y. --(x - y) = y - x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_SUB = prove
 (`!x y. (x + y) - x = y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_EQ = prove
 (`!x y. (--x = y) <=> (x = --y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_NEG_MINUS1 = prove
 (`!x. --x = --Cx(&1) * x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_SUB = prove
 (`!x y. x - y - x = --y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD2_SUB2 = prove
 (`!a b c d. (a + b) - (c + d) = a - c + b - d`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_LZERO = prove
 (`!x. Cx(&0) - x = --x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_RZERO = prove
 (`!x. x - Cx(&0) = x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_LNEG = prove
 (`!x y. --x - y = --(x + y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_RNEG = prove
 (`!x y. x - --y = x + y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_NEG2 = prove
 (`!x y. --x - --y = y - x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_TRIANGLE = prove
 (`!a b c. a - b + b - c = a - c`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_EQ_SUB_LADD = prove
 (`!x y z. (x = y - z) <=> (x + z = y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_EQ_SUB_RADD = prove
 (`!x y z. (x - y = z) <=> (x = z + y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_SUB2 = prove
 (`!x y. x - (x - y) = y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_ADD_SUB2 = prove
 (`!x y. x - (x + y) = --y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_DIFFSQ = prove
 (`!x y. (x + y) * (x - y) = x * x - y * y`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_EQ_NEG2 = prove
 (`!x y. (--x = --y) <=> (x = y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_LDISTRIB = prove
 (`!x y z. x * (y - z) = x * y - x * z`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_SUB_RDISTRIB = prove
 (`!x y z. (x - y) * z = x * z - y * z`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_MUL_2 = prove
 (`!x. &2 * x = x + x`,
  SIMPLE_COMPLEX_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Homomorphic embedding properties for Cx mapping.                          *)
(* ------------------------------------------------------------------------- *)

let CX_INJ = prove
 (`!x y. (Cx(x) = Cx(y)) <=> (x = y)`,
  REWRITE_TAC[CX_DEF; COMPLEX_EQ; RE; IM]);;

let CX_NEG = prove
 (`!x. Cx(--x) = --(Cx(x))`,
  REWRITE_TAC[CX_DEF; complex_neg; RE; IM; REAL_NEG_0]);;

let CX_INV = prove
 (`!x. Cx(inv x) = inv(Cx x)`,
  GEN_TAC THEN
  REWRITE_TAC[CX_DEF; complex_inv; RE; IM] THEN
  REWRITE_TAC[real_div; REAL_NEG_0; REAL_MUL_LZERO] THEN
  REWRITE_TAC[COMPLEX_EQ; REAL_POW_2; REAL_MUL_RZERO; RE; IM] THEN
  REWRITE_TAC[REAL_ADD_RID; REAL_INV_MUL] THEN
  ASM_CASES_TAC `x = &0` THEN
  ASM_REWRITE_TAC[REAL_INV_0; REAL_MUL_LZERO] THEN
  REWRITE_TAC[REAL_MUL_ASSOC] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN ASM_MESON_TAC[REAL_MUL_RINV]);;

let CX_ADD = prove
 (`!x y. Cx(x + y) = Cx(x) + Cx(y)`,
  REWRITE_TAC[CX_DEF; complex_add; RE; IM; REAL_ADD_LID]);;

let CX_SUB = prove
 (`!x y. Cx(x - y) = Cx(x) - Cx(y)`,
  REWRITE_TAC[complex_sub; real_sub; CX_ADD; CX_NEG]);;

let CX_MUL = prove
 (`!x y. Cx(x * y) = Cx(x) * Cx(y)`,
  REWRITE_TAC[CX_DEF; complex_mul; RE; IM; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
  REWRITE_TAC[REAL_SUB_RZERO; REAL_ADD_RID]);;

let CX_DIV = prove
 (`!x y. Cx(x / y) = Cx(x) / Cx(y)`,
  REWRITE_TAC[complex_div; real_div; CX_MUL; CX_INV]);;

let CX_POW = prove
 (`!x n. Cx(x pow n) = Cx(x) pow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[complex_pow; real_pow; CX_MUL]);;

let CX_ABS = prove
 (`!x. Cx(abs x) = Cx(norm(Cx(x)))`,
  REWRITE_TAC[CX_DEF; complex_norm; COMPLEX_EQ; RE; IM] THEN
  REWRITE_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_RID] THEN
  REWRITE_TAC[GSYM REAL_POW_2; POW_2_SQRT_ABS]);;

let COMPLEX_NORM_CX = prove
 (`!x. norm(Cx(x)) = abs(x)`,
  REWRITE_TAC[GSYM CX_INJ; CX_ABS]);;

(* ------------------------------------------------------------------------- *)
(* A convenient lemma that we need a few times below.                        *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_ENTIRE = prove
 (`!x y. (x * y = Cx(&0)) <=> (x = Cx(&0)) \/ (y = Cx(&0))`,
  REWRITE_TAC[COMPLEX_EQ; complex_mul; RE; IM; CX_DEF; GSYM REAL_SOS_EQ_0] THEN
  CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* Powers.                                                                   *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_POW_ADD = prove
 (`!x m n. x pow (m + n) = x pow m * x pow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[ADD_CLAUSES; complex_pow;
                  COMPLEX_MUL_LID; COMPLEX_MUL_ASSOC]);;

let COMPLEX_POW_POW = prove
 (`!x m n. (x pow m) pow n = x pow (m * n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[complex_pow; MULT_CLAUSES; COMPLEX_POW_ADD]);;

let COMPLEX_POW_1 = prove
 (`!x. x pow 1 = x`,
  REWRITE_TAC[num_CONV `1`] THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_RID]);;

let COMPLEX_POW_2 = prove
 (`!x. x pow 2 = x * x`,
  REWRITE_TAC[num_CONV `2`] THEN REWRITE_TAC[complex_pow; COMPLEX_POW_1]);;

let COMPLEX_POW_NEG = prove
 (`!x n. (--x) pow n = if EVEN n then x pow n else --(x pow n)`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[complex_pow; EVEN] THEN
  ASM_CASES_TAC `EVEN n` THEN
  ASM_REWRITE_TAC[COMPLEX_MUL_RNEG; COMPLEX_MUL_LNEG; COMPLEX_NEG_NEG]);;

let COMPLEX_POW_ONE = prove
 (`!n. Cx(&1) pow n = Cx(&1)`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID]);;

let COMPLEX_POW_MUL = prove
 (`!x y n. (x * y) pow n = (x pow n) * (y pow n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID; COMPLEX_MUL_AC]);;

let COMPLEX_POW_II_2 = prove
 (`ii pow 2 = --Cx(&1)`,
  REWRITE_TAC[ii; COMPLEX_POW_2; complex_mul; CX_DEF; RE; IM; complex_neg] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV);;

let COMPLEX_POW_EQ_0 = prove
 (`!x n. (x pow n = Cx(&0)) <=> (x = Cx(&0)) /\ ~(n = 0)`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[NOT_SUC; complex_pow; COMPLEX_ENTIRE] THENL
   [SIMPLE_COMPLEX_ARITH_TAC; CONV_TAC TAUT]);;

(* ------------------------------------------------------------------------- *)
(* Norms (aka "moduli").                                                     *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_NORM_CX = prove
 (`!x. norm(Cx x) = abs(x)`,
  GEN_TAC THEN REWRITE_TAC[complex_norm; CX_DEF; RE; IM] THEN
  REWRITE_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_RID] THEN
  REWRITE_TAC[GSYM REAL_POW_2; POW_2_SQRT_ABS]);;

let COMPLEX_NORM_POS = prove
 (`!z. &0 <= norm(z)`,
  SIMP_TAC[complex_norm; SQRT_POS_LE; REAL_POW_2;
           REAL_LE_SQUARE; REAL_LE_ADD]);;

let COMPLEX_ABS_NORM = prove
 (`!z. abs(norm z) = norm z`,
  REWRITE_TAC[real_abs; COMPLEX_NORM_POS]);;

let COMPLEX_NORM_ZERO = prove
 (`!z. (norm z = &0) <=> (z = Cx(&0))`,
  GEN_TAC THEN REWRITE_TAC[complex_norm] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SQRT_0] THEN
  SIMP_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_LE_ADD; REAL_POS; SQRT_INJ] THEN
  REWRITE_TAC[COMPLEX_EQ; RE; IM; CX_DEF] THEN
  SIMP_TAC[REAL_LE_SQUARE; REAL_ARITH
   `&0 <= x /\ &0 <= y ==> ((x + y = &0) <=> (x = &0) /\ (y = &0))`] THEN
  REWRITE_TAC[REAL_ENTIRE]);;

let COMPLEX_NORM_NUM = prove
 (`norm(Cx(&n)) = &n`,
  REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM]);;

let COMPLEX_NORM_0 = prove
 (`norm(Cx(&0)) = &0`,
  MESON_TAC[COMPLEX_NORM_ZERO]);;

let COMPLEX_NORM_NZ = prove
 (`!z. &0 < norm(z) <=> ~(z = Cx(&0))`,
  MESON_TAC[COMPLEX_NORM_ZERO; COMPLEX_ABS_NORM; REAL_ABS_NZ]);;

let COMPLEX_NORM_NEG = prove
 (`!z. norm(--z) = norm(z)`,
  REWRITE_TAC[complex_neg; complex_norm; REAL_POW_2; RE; IM] THEN
  GEN_TAC THEN AP_TERM_TAC THEN REAL_ARITH_TAC);;

let COMPLEX_NORM_MUL = prove
 (`!w z. norm(w * z) = norm(w) * norm(z)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[complex_norm; complex_mul; RE; IM] THEN
  SIMP_TAC[GSYM SQRT_MUL; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
  AP_TERM_TAC THEN REAL_ARITH_TAC);;

let COMPLEX_NORM_POW = prove
 (`!z n. norm(z pow n) = norm(z) pow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[complex_pow; real_pow; COMPLEX_NORM_NUM; COMPLEX_NORM_MUL]);;

let COMPLEX_NORM_INV = prove
 (`!z. norm(inv z) = inv(norm z)`,
  GEN_TAC THEN REWRITE_TAC[complex_norm; complex_inv; RE; IM] THEN
  REWRITE_TAC[REAL_POW_2; real_div] THEN
  REWRITE_TAC[REAL_ARITH `(r * d) * r * d + (--i * d) * --i * d =
                          (r * r + i * i) * d * d:real`] THEN
  ASM_CASES_TAC `Re z * Re z + Im z * Im z = &0` THENL
   [ASM_REWRITE_TAC[REAL_INV_0; SQRT_0; REAL_MUL_LZERO]; ALL_TAC] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
  SIMP_TAC[GSYM SQRT_MUL; REAL_LE_MUL; REAL_LE_INV_EQ; REAL_LE_ADD;
           REAL_LE_SQUARE] THEN
  ONCE_REWRITE_TAC[AC REAL_MUL_AC
   `a * a * b * b:real = (a * b) * (a * b)`] THEN
  ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID; SQRT_1]);;

let COMPLEX_NORM_DIV = prove
 (`!w z. norm(w / z) = norm(w) / norm(z)`,
  REWRITE_TAC[complex_div; real_div; COMPLEX_NORM_INV; COMPLEX_NORM_MUL]);;

let COMPLEX_NORM_TRIANGLE = prove
 (`!w z. norm(w + z) <= norm(w) + norm(z)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[complex_norm; complex_add; RE; IM] THEN
  MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ abs(x) <= abs(y) ==> x <= y`) THEN
  SIMP_TAC[SQRT_POS_LE; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE;
           REAL_LE_SQUARE_ABS; SQRT_POW_2] THEN
  GEN_REWRITE_TAC RAND_CONV[REAL_ARITH
    `(a + b) * (a + b) = a * a + b * b + &2 * a * b`] THEN
  REWRITE_TAC[GSYM REAL_POW_2] THEN
  SIMP_TAC[SQRT_POW_2; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
  REWRITE_TAC[REAL_ARITH
   `(rw + rz) * (rw + rz) + (iw + iz) * (iw + iz) <=
    (rw * rw + iw * iw) + (rz * rz + iz * iz) + &2 * other <=>
    rw * rz + iw * iz <= other`] THEN
  SIMP_TAC[GSYM SQRT_MUL; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
  MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ abs(x) <= abs(y) ==> x <= y`) THEN
  SIMP_TAC[SQRT_POS_LE; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE;
           REAL_LE_SQUARE_ABS; SQRT_POW_2; REAL_LE_MUL] THEN
  REWRITE_TAC[REAL_ARITH
   `(rw * rz + iw * iz) * (rw * rz + iw * iz) <=
    (rw * rw + iw * iw) * (rz * rz + iz * iz) <=>
    &0 <= (rw * iz - rz * iw) * (rw * iz - rz * iw)`] THEN
  REWRITE_TAC[REAL_LE_SQUARE]);;

let COMPLEX_NORM_TRIANGLE_SUB = prove
 (`!w z. norm(w) <= norm(w + z) + norm(z)`,
  MESON_TAC[COMPLEX_NORM_TRIANGLE; COMPLEX_NORM_NEG; COMPLEX_ADD_ASSOC;
            COMPLEX_ADD_RINV; COMPLEX_ADD_RID]);;

let COMPLEX_NORM_ABS_NORM = prove
 (`!w z. abs(norm w - norm z) <= norm(w - z)`,
  REPEAT GEN_TAC THEN
  MATCH_MP_TAC(REAL_ARITH
   `a - b <= x /\ b - a <= x ==> abs(a - b) <= x:real`) THEN
  MESON_TAC[COMPLEX_NEG_SUB; COMPLEX_NORM_NEG; REAL_LE_SUB_RADD; complex_sub;
            COMPLEX_NORM_TRIANGLE_SUB]);;

(* ------------------------------------------------------------------------- *)
(* Complex conjugate.                                                        *)
(* ------------------------------------------------------------------------- *)

let cnj = new_definition
  `cnj(z) = complex(Re(z),--(Im(z)))`;;

(* ------------------------------------------------------------------------- *)
(* Conjugation is an automorphism.                                           *)
(* ------------------------------------------------------------------------- *)

let CNJ_INJ = prove
 (`!w z. (cnj(w) = cnj(z)) <=> (w = z)`,
  REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_EQ_NEG2]);;

let CNJ_CNJ = prove
 (`!z. cnj(cnj z) = z`,
  REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_NEG_NEG]);;

let CNJ_CX = prove
 (`!x. cnj(Cx x) = Cx x`,
  REWRITE_TAC[cnj; COMPLEX_EQ; CX_DEF; REAL_NEG_0; RE; IM]);;

let COMPLEX_NORM_CNJ = prove
 (`!z. norm(cnj z) = norm(z)`,
  REWRITE_TAC[complex_norm; cnj; REAL_POW_2] THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; RE; IM; REAL_NEG_NEG]);;

let CNJ_NEG = prove
 (`!z. cnj(--z) = --(cnj z)`,
  REWRITE_TAC[cnj; complex_neg; COMPLEX_EQ; RE; IM]);;

let CNJ_INV = prove
 (`!z. cnj(inv z) = inv(cnj z)`,
  REWRITE_TAC[cnj; complex_inv; COMPLEX_EQ; RE; IM] THEN
  REWRITE_TAC[real_div; REAL_NEG_NEG; REAL_POW_2;
              REAL_MUL_LNEG; REAL_MUL_RNEG]);;

let CNJ_ADD = prove
 (`!w z. cnj(w + z) = cnj(w) + cnj(z)`,
  REWRITE_TAC[cnj; complex_add; COMPLEX_EQ; RE; IM] THEN
  REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);;

let CNJ_SUB = prove
 (`!w z. cnj(w - z) = cnj(w) - cnj(z)`,
  REWRITE_TAC[complex_sub; CNJ_ADD; CNJ_NEG]);;

let CNJ_MUL = prove
 (`!w z. cnj(w * z) = cnj(w) * cnj(z)`,
  REWRITE_TAC[cnj; complex_mul; COMPLEX_EQ; RE; IM] THEN
  REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);;

let CNJ_DIV = prove
 (`!w z. cnj(w / z) = cnj(w) / cnj(z)`,
  REWRITE_TAC[complex_div; CNJ_MUL; CNJ_INV]);;

let CNJ_POW = prove
 (`!z n. cnj(z pow n) = cnj(z) pow n`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[complex_pow; CNJ_MUL; CNJ_CX]);;

(* ------------------------------------------------------------------------- *)
(* Conversion of (complex-type) rational constant to ML rational number.     *)
(* ------------------------------------------------------------------------- *)

let is_complex_const =
  let cx_tm = `Cx` in
  fun tm ->
    is_comb tm &&
    let l,r = dest_comb tm in l = cx_tm && is_ratconst r;;

let dest_complex_const =
  let cx_tm = `Cx` in
  fun tm ->
    let l,r = dest_comb tm in
    if l = cx_tm then rat_of_term r
    else failwith "dest_complex_const";;

let mk_complex_const =
  let cx_tm = `Cx` in
  fun r ->
    mk_comb(cx_tm,term_of_rat r);;

(* ------------------------------------------------------------------------- *)
(* Conversions to perform operations if coefficients are rational constants. *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_RAT_MUL_CONV =
  GEN_REWRITE_CONV I [GSYM CX_MUL] THENC RAND_CONV REAL_RAT_MUL_CONV;;

let COMPLEX_RAT_ADD_CONV =
  GEN_REWRITE_CONV I [GSYM CX_ADD] THENC RAND_CONV REAL_RAT_ADD_CONV;;

let COMPLEX_RAT_EQ_CONV =
  GEN_REWRITE_CONV I [CX_INJ] THENC REAL_RAT_EQ_CONV;;

let COMPLEX_RAT_POW_CONV =
  let x_tm = `x:real`
  and n_tm = `n:num` in
  let pth = SYM(SPECL [x_tm; n_tm] CX_POW) in
  fun tm ->
    let lop,r = dest_comb tm in
    let op,bod = dest_comb lop in
    let th1 = INST [rand bod,x_tm; r,n_tm] pth in
    let tm1,tm2 = dest_comb(concl th1) in
    if rand tm1 <> tm then failwith "COMPLEX_RAT_POW_CONV" else
    let tm3,tm4 = dest_comb tm2 in
    TRANS th1 (AP_TERM tm3 (REAL_RAT_REDUCE_CONV tm4));;

(* ------------------------------------------------------------------------- *)
(* Instantiate polynomial normalizer.                                        *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_POLY_CLAUSES = prove
 (`(!x y z. x + (y + z) = (x + y) + z) /\
   (!x y. x + y = y + x) /\
   (!x. Cx(&0) + x = x) /\
   (!x y z. x * (y * z) = (x * y) * z) /\
   (!x y. x * y = y * x) /\
   (!x. Cx(&1) * x = x) /\
   (!x. Cx(&0) * x = Cx(&0)) /\
   (!x y z. x * (y + z) = x * y + x * z) /\
   (!x. x pow 0 = Cx(&1)) /\
   (!x n. x pow (SUC n) = x * x pow n)`,
  REWRITE_TAC[complex_pow] THEN SIMPLE_COMPLEX_ARITH_TAC)
and COMPLEX_POLY_NEG_CLAUSES = prove
 (`(!x. --x = Cx(-- &1) * x) /\
   (!x y. x - y = x + Cx(-- &1) * y)`,
  SIMPLE_COMPLEX_ARITH_TAC);;

let COMPLEX_POLY_NEG_CONV,COMPLEX_POLY_ADD_CONV,COMPLEX_POLY_SUB_CONV,
    COMPLEX_POLY_MUL_CONV,COMPLEX_POLY_POW_CONV,COMPLEX_POLY_CONV =
  SEMIRING_NORMALIZERS_CONV COMPLEX_POLY_CLAUSES COMPLEX_POLY_NEG_CLAUSES
   (is_complex_const,
    COMPLEX_RAT_ADD_CONV,COMPLEX_RAT_MUL_CONV,COMPLEX_RAT_POW_CONV)
   (<);;

let COMPLEX_RAT_INV_CONV =
  GEN_REWRITE_CONV I [GSYM CX_INV] THENC RAND_CONV REAL_RAT_INV_CONV;;

let COMPLEX_POLY_CONV =
  let neg_tm = `(--):complex->complex`
  and inv_tm = `inv:complex->complex`
  and add_tm = `(+):complex->complex->complex`
  and sub_tm = `(-):complex->complex->complex`
  and mul_tm = `(*):complex->complex->complex`
  and div_tm = `(/):complex->complex->complex`
  and pow_tm = `(pow):complex->num->complex`
  and div_conv = REWR_CONV complex_div in
  let rec COMPLEX_POLY_CONV tm =
    if not(is_comb tm) || is_complex_const tm then REFL tm else
    let lop,r = dest_comb tm in
    if lop = neg_tm then
      let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in
      TRANS th1 (COMPLEX_POLY_NEG_CONV (rand(concl th1)))
    else if lop = inv_tm then
      let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in
      TRANS th1 (TRY_CONV COMPLEX_RAT_INV_CONV (rand(concl th1)))
    else if not(is_comb lop) then REFL tm else
    let op,l = dest_comb lop in
    if op = pow_tm then
      let th1 = AP_THM (AP_TERM op (COMPLEX_POLY_CONV l)) r in
      TRANS th1 (TRY_CONV COMPLEX_POLY_POW_CONV (rand(concl th1)))
    else if op = add_tm || op = mul_tm || op = sub_tm then
      let th1 = MK_COMB(AP_TERM op (COMPLEX_POLY_CONV l),
                        COMPLEX_POLY_CONV r) in
      let fn = if op = add_tm then COMPLEX_POLY_ADD_CONV
               else if op = mul_tm then COMPLEX_POLY_MUL_CONV
               else COMPLEX_POLY_SUB_CONV in
      TRANS th1 (fn (rand(concl th1)))
    else if op = div_tm then
      let th1 = div_conv tm in
      TRANS th1 (COMPLEX_POLY_CONV (rand(concl th1)))
    else REFL tm in
  COMPLEX_POLY_CONV;;

(* ------------------------------------------------------------------------- *)
(* Complex number version of usual ring procedure.                           *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_MUL_LINV = prove
 (`!z. ~(z = Cx(&0)) ==> (inv(z) * z = Cx(&1))`,
  REWRITE_TAC[complex_mul; complex_inv; RE; IM; COMPLEX_EQ; CX_DEF] THEN
  REWRITE_TAC[GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_FIELD);;

let COMPLEX_MUL_RINV = prove
 (`!z. ~(z = Cx(&0)) ==> (z * inv(z) = Cx(&1))`,
  ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN REWRITE_TAC[COMPLEX_MUL_LINV]);;

let COMPLEX_RING,complex_ideal_cofactors =
  let ring_pow_tm = `(pow):complex->num->complex`
  and COMPLEX_INTEGRAL = prove
   (`(!x. Cx(&0) * x = Cx(&0)) /\
     (!x y z. (x + y = x + z) <=> (y = z)) /\
     (!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
    REWRITE_TAC[COMPLEX_ENTIRE; SIMPLE_COMPLEX_ARITH
     `(w * y + x * z = w * z + x * y) <=>
      (w - x) * (y - z) = Cx(&0)`] THEN
    SIMPLE_COMPLEX_ARITH_TAC)
  and COMPLEX_RABINOWITSCH = prove
   (`!x y:complex. ~(x = y) <=> ?z. (x - y) * z = Cx(&1)`,
    REPEAT GEN_TAC THEN
    GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM COMPLEX_SUB_0] THEN
    MESON_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_LZERO;
              SIMPLE_COMPLEX_ARITH `~(Cx(&1) = Cx(&0))`])
  and init = ALL_CONV in
  let pure,ideal =
    RING_AND_IDEAL_CONV
        (dest_complex_const,mk_complex_const,COMPLEX_RAT_EQ_CONV,
         `(--):complex->complex`,`(+):complex->complex->complex`,
         `(-):complex->complex->complex`,`(inv):complex->complex`,
         `(*):complex->complex->complex`,`(/):complex->complex->complex`,
         `(pow):complex->num->complex`,
         COMPLEX_INTEGRAL,COMPLEX_RABINOWITSCH,COMPLEX_POLY_CONV) in
  (fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)))),
  ideal;;

(* ------------------------------------------------------------------------- *)
(* Most basic properties of inverses.                                        *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_INV_0 = prove
 (`inv(Cx(&0)) = Cx(&0)`,
  REWRITE_TAC[complex_inv; CX_DEF; RE; IM; real_div; REAL_MUL_LZERO;
              REAL_NEG_0]);;

let COMPLEX_INV_MUL = prove
 (`!w z. inv(w * z) = inv(w) * inv(z)`,
  REPEAT GEN_TAC THEN
  MAP_EVERY ASM_CASES_TAC [`w = Cx(&0)`; `z = Cx(&0)`] THEN
  ASM_REWRITE_TAC[COMPLEX_INV_0; COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THEN
  REPEAT(POP_ASSUM MP_TAC) THEN
  REWRITE_TAC[complex_mul; complex_inv; RE; IM; COMPLEX_EQ; CX_DEF] THEN
  REWRITE_TAC[GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_FIELD);;

let COMPLEX_INV_1 = prove
 (`inv(Cx(&1)) = Cx(&1)`,
  REWRITE_TAC[complex_inv; CX_DEF; RE; IM] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_DIV_1]);;

let COMPLEX_POW_INV = prove
 (`!x n. (inv x) pow n = inv(x pow n)`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[complex_pow; COMPLEX_INV_1; COMPLEX_INV_MUL]);;

let COMPLEX_INV_INV = prove
 (`!x:complex. inv(inv x) = x`,
  GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN
  ASM_REWRITE_TAC[COMPLEX_INV_0] THEN
  POP_ASSUM MP_TAC THEN
  MAP_EVERY (fun t -> MP_TAC(SPEC t COMPLEX_MUL_RINV))
   [`x:complex`; `inv(x):complex`] THEN
  CONV_TAC COMPLEX_RING);;

(* ------------------------------------------------------------------------- *)
(* And also field procedure.                                                 *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_FIELD =
  let prenex_conv =
    TOP_DEPTH_CONV BETA_CONV THENC
    PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; complex_div;
                      COMPLEX_INV_INV; COMPLEX_INV_MUL; GSYM REAL_POW_INV] THENC
    NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
    PRENEX_CONV
  and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
  and is_inv =
    let inv_tm = `inv:complex->complex`
    and is_div = is_binop `(/):complex->complex->complex` in
    fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) &&
              not(is_complex_const(rand tm))
  and lemma_inv = MESON[COMPLEX_MUL_RINV]
    `!x. x = Cx(&0) \/ x * inv(x) = Cx(&1)`
  and dcases = MATCH_MP(TAUT `(p \/ q) /\ (r \/ s) ==> (p \/ r) \/ q /\ s`) in
  let cases_rule th1 th2 = dcases (CONJ th1 th2) in
  let BASIC_COMPLEX_FIELD tm =
    let is_freeinv t = is_inv t && free_in t tm in
    let itms = setify(map rand (find_terms is_freeinv tm)) in
    let dth = if itms = [] then TRUTH
              else end_itlist cases_rule (map (C SPEC lemma_inv) itms) in
    let tm' = mk_imp(concl dth,tm) in
    let th1 = setup_conv tm' in
    let ths = map COMPLEX_RING (conjuncts(rand(concl th1))) in
    let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
    MP (EQ_MP (SYM th1) (end_itlist CONJ ths)) dth in
  fun tm ->
    let th0 = prenex_conv tm in
    let tm0 = rand(concl th0) in
    let avs,bod = strip_forall tm0 in
    let th1 = setup_conv bod in
    let ths = map BASIC_COMPLEX_FIELD (conjuncts(rand(concl th1))) in
    EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;

(* ------------------------------------------------------------------------- *)
(* Properties of inverses, divisions are now mostly automatic.               *)
(* ------------------------------------------------------------------------- *)

let COMPLEX_POW_DIV = prove
 (`!x y n. (x / y) pow n = (x pow n) / (y pow n)`,
  REWRITE_TAC[complex_div; COMPLEX_POW_MUL; COMPLEX_POW_INV]);;

let COMPLEX_DIV_REFL = prove
 (`!x. ~(x = Cx(&0)) ==> (x / x = Cx(&1))`,
  CONV_TAC COMPLEX_FIELD);;

let COMPLEX_EQ_MUL_LCANCEL = prove
 (`!x y z. (x * y = x * z) <=> (x = Cx(&0)) \/ (y = z)`,
  CONV_TAC COMPLEX_FIELD);;

let COMPLEX_EQ_MUL_RCANCEL = prove
 (`!x y z. (x * z = y * z) <=> (x = y) \/ (z = Cx(&0))`,
  CONV_TAC COMPLEX_FIELD);;

let COMPLEX_MUL_RINV_UNIQ = prove
 (`!w z. w * z = Cx(&1) ==> inv w = z`,
  CONV_TAC COMPLEX_FIELD);;

let COMPLEX_MUL_LINV_UNIQ = prove
 (`!w z. w * z = Cx(&1) ==> inv z = w`,
  CONV_TAC COMPLEX_FIELD);;

let COMPLEX_DIV_LMUL = prove
 (`!w z. ~(z = Cx(&0)) ==> z * w / z = w`,
  CONV_TAC COMPLEX_FIELD);;

let COMPLEX_DIV_RMUL = prove
 (`!w z. ~(z = Cx(&0)) ==> w / z * z = w`,
  CONV_TAC COMPLEX_FIELD);;