Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 32,067 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
(* ========================================================================= *)
(* Basic definitions and properties of complex numbers. *)
(* ========================================================================= *)
needs "Library/transc.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Definition of complex number type. *)
(* ------------------------------------------------------------------------- *)
let complex_tybij_raw =
new_type_definition "complex" ("complex","coords")
(prove(`?x:real#real. T`,REWRITE_TAC[]));;
let complex_tybij = REWRITE_RULE [] complex_tybij_raw;;
(* ------------------------------------------------------------------------- *)
(* Real and imaginary parts of a number. *)
(* ------------------------------------------------------------------------- *)
let RE_DEF = new_definition
`Re(z) = FST(coords(z))`;;
let IM_DEF = new_definition
`Im(z) = SND(coords(z))`;;
(* ------------------------------------------------------------------------- *)
(* Set up overloading. *)
(* ------------------------------------------------------------------------- *)
do_list overload_interface
["+",`complex_add:complex->complex->complex`;
"-",`complex_sub:complex->complex->complex`;
"*",`complex_mul:complex->complex->complex`;
"/",`complex_div:complex->complex->complex`;
"--",`complex_neg:complex->complex`;
"pow",`complex_pow:complex->num->complex`;
"inv",`complex_inv:complex->complex`];;
let prioritize_complex() = prioritize_overload(mk_type("complex",[]));;
(* ------------------------------------------------------------------------- *)
(* Complex absolute value (modulus). *)
(* ------------------------------------------------------------------------- *)
make_overloadable "norm" `:A->real`;;
overload_interface("norm",`complex_norm:complex->real`);;
let complex_norm = new_definition
`norm(z) = sqrt(Re(z) pow 2 + Im(z) pow 2)`;;
(* ------------------------------------------------------------------------- *)
(* Imaginary unit (too inconvenient to use "i"!) *)
(* ------------------------------------------------------------------------- *)
let ii = new_definition
`ii = complex(&0,&1)`;;
(* ------------------------------------------------------------------------- *)
(* Injection from reals. *)
(* ------------------------------------------------------------------------- *)
let CX_DEF = new_definition
`Cx(a) = complex(a,&0)`;;
(* ------------------------------------------------------------------------- *)
(* Arithmetic operations. *)
(* ------------------------------------------------------------------------- *)
let complex_neg = new_definition
`--z = complex(--(Re(z)),--(Im(z)))`;;
let complex_add = new_definition
`w + z = complex(Re(w) + Re(z),Im(w) + Im(z))`;;
let complex_sub = new_definition
`w - z = w + --z`;;
let complex_mul = new_definition
`w * z = complex(Re(w) * Re(z) - Im(w) * Im(z),
Re(w) * Im(z) + Im(w) * Re(z))`;;
let complex_inv = new_definition
`inv(z) = complex(Re(z) / (Re(z) pow 2 + Im(z) pow 2),
--(Im(z)) / (Re(z) pow 2 + Im(z) pow 2))`;;
let complex_div = new_definition
`w / z = w * inv(z)`;;
let complex_pow = new_recursive_definition num_RECURSION
`(x pow 0 = Cx(&1)) /\
(!n. x pow (SUC n) = x * x pow n)`;;
(* ------------------------------------------------------------------------- *)
(* Various handy rewrites. *)
(* ------------------------------------------------------------------------- *)
let RE = prove
(`(Re(complex(x,y)) = x)`,
REWRITE_TAC[RE_DEF; complex_tybij]);;
let IM = prove
(`Im(complex(x,y)) = y`,
REWRITE_TAC[IM_DEF; complex_tybij]);;
let COMPLEX = prove
(`complex(Re(z),Im(z)) = z`,
REWRITE_TAC[IM_DEF; RE_DEF; complex_tybij]);;
let COMPLEX_EQ = prove
(`!w z. (w = z) <=> (Re(w) = Re(z)) /\ (Im(w) = Im(z))`,
REWRITE_TAC[RE_DEF; IM_DEF; GSYM PAIR_EQ] THEN MESON_TAC[complex_tybij]);;
(* ------------------------------------------------------------------------- *)
(* Crude tactic to automate very simple algebraic equivalences. *)
(* ------------------------------------------------------------------------- *)
let SIMPLE_COMPLEX_ARITH_TAC =
REWRITE_TAC[COMPLEX_EQ; RE; IM; CX_DEF;
complex_add; complex_neg; complex_sub; complex_mul] THEN
REAL_ARITH_TAC;;
let SIMPLE_COMPLEX_ARITH tm = prove(tm,SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Basic algebraic properties that can be proved automatically by this. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_ADD_SYM = prove
(`!x y. x + y = y + x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_ASSOC = prove
(`!x y z. x + y + z = (x + y) + z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_LID = prove
(`!x. Cx(&0) + x = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_LINV = prove
(`!x. --x + x = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_SYM = prove
(`!x y. x * y = y * x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_ASSOC = prove
(`!x y z. x * y * z = (x * y) * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_LID = prove
(`!x. Cx(&1) * x = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_LDISTRIB = prove
(`!x y z. x * (y + z) = x * y + x * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_AC = prove
(`(m + n = n + m) /\ ((m + n) + p = m + n + p) /\ (m + n + p = n + m + p)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_AC = prove
(`(m * n = n * m) /\ ((m * n) * p = m * n * p) /\ (m * n * p = n * m * p)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_RID = prove
(`!x. x + Cx(&0) = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_RID = prove
(`!x. x * Cx(&1) = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_RINV = prove
(`!x. x + --x = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_RDISTRIB = prove
(`!x y z. (x + y) * z = x * z + y * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_ADD_LCANCEL = prove
(`!x y z. (x + y = x + z) <=> (y = z)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_ADD_RCANCEL = prove
(`!x y z. (x + z = y + z) <=> (x = y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_RZERO = prove
(`!x. x * Cx(&0) = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_LZERO = prove
(`!x. Cx(&0) * x = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_NEG = prove
(`!x. --(--x) = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_RNEG = prove
(`!x y. x * --y = --(x * y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_LNEG = prove
(`!x y. --x * y = --(x * y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_ADD = prove
(`!x y. --(x + y) = --x + --y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_0 = prove
(`--Cx(&0) = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_ADD_LCANCEL_0 = prove
(`!x y. (x + y = x) <=> (y = Cx(&0))`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_ADD_RCANCEL_0 = prove
(`!x y. (x + y = y) <=> (x = Cx(&0))`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_LNEG_UNIQ = prove
(`!x y. (x + y = Cx(&0)) <=> (x = --y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_RNEG_UNIQ = prove
(`!x y. (x + y = Cx(&0)) <=> (y = --x)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_LMUL = prove
(`!x y. --(x * y) = --x * y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_RMUL = prove
(`!x y. --(x * y) = x * --y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_MUL2 = prove
(`!x y. --x * --y = x * y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_ADD = prove
(`!x y. x - y + y = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_ADD2 = prove
(`!x y. y + x - y = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_REFL = prove
(`!x. x - x = Cx(&0)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_0 = prove
(`!x y. (x - y = Cx(&0)) <=> (x = y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_EQ_0 = prove
(`!x. (--x = Cx(&0)) <=> (x = Cx(&0))`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_SUB = prove
(`!x y. --(x - y) = y - x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_SUB = prove
(`!x y. (x + y) - x = y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_EQ = prove
(`!x y. (--x = y) <=> (x = --y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_NEG_MINUS1 = prove
(`!x. --x = --Cx(&1) * x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_SUB = prove
(`!x y. x - y - x = --y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD2_SUB2 = prove
(`!a b c d. (a + b) - (c + d) = a - c + b - d`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_LZERO = prove
(`!x. Cx(&0) - x = --x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_RZERO = prove
(`!x. x - Cx(&0) = x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_LNEG = prove
(`!x y. --x - y = --(x + y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_RNEG = prove
(`!x y. x - --y = x + y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_NEG2 = prove
(`!x y. --x - --y = y - x`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_TRIANGLE = prove
(`!a b c. a - b + b - c = a - c`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_SUB_LADD = prove
(`!x y z. (x = y - z) <=> (x + z = y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_SUB_RADD = prove
(`!x y z. (x - y = z) <=> (x = z + y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_SUB2 = prove
(`!x y. x - (x - y) = y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_ADD_SUB2 = prove
(`!x y. x - (x + y) = --y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_DIFFSQ = prove
(`!x y. (x + y) * (x - y) = x * x - y * y`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_EQ_NEG2 = prove
(`!x y. (--x = --y) <=> (x = y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_LDISTRIB = prove
(`!x y z. x * (y - z) = x * y - x * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_SUB_RDISTRIB = prove
(`!x y z. (x - y) * z = x * z - y * z`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_MUL_2 = prove
(`!x. &2 * x = x + x`,
SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Homomorphic embedding properties for Cx mapping. *)
(* ------------------------------------------------------------------------- *)
let CX_INJ = prove
(`!x y. (Cx(x) = Cx(y)) <=> (x = y)`,
REWRITE_TAC[CX_DEF; COMPLEX_EQ; RE; IM]);;
let CX_NEG = prove
(`!x. Cx(--x) = --(Cx(x))`,
REWRITE_TAC[CX_DEF; complex_neg; RE; IM; REAL_NEG_0]);;
let CX_INV = prove
(`!x. Cx(inv x) = inv(Cx x)`,
GEN_TAC THEN
REWRITE_TAC[CX_DEF; complex_inv; RE; IM] THEN
REWRITE_TAC[real_div; REAL_NEG_0; REAL_MUL_LZERO] THEN
REWRITE_TAC[COMPLEX_EQ; REAL_POW_2; REAL_MUL_RZERO; RE; IM] THEN
REWRITE_TAC[REAL_ADD_RID; REAL_INV_MUL] THEN
ASM_CASES_TAC `x = &0` THEN
ASM_REWRITE_TAC[REAL_INV_0; REAL_MUL_LZERO] THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN ASM_MESON_TAC[REAL_MUL_RINV]);;
let CX_ADD = prove
(`!x y. Cx(x + y) = Cx(x) + Cx(y)`,
REWRITE_TAC[CX_DEF; complex_add; RE; IM; REAL_ADD_LID]);;
let CX_SUB = prove
(`!x y. Cx(x - y) = Cx(x) - Cx(y)`,
REWRITE_TAC[complex_sub; real_sub; CX_ADD; CX_NEG]);;
let CX_MUL = prove
(`!x y. Cx(x * y) = Cx(x) * Cx(y)`,
REWRITE_TAC[CX_DEF; complex_mul; RE; IM; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
REWRITE_TAC[REAL_SUB_RZERO; REAL_ADD_RID]);;
let CX_DIV = prove
(`!x y. Cx(x / y) = Cx(x) / Cx(y)`,
REWRITE_TAC[complex_div; real_div; CX_MUL; CX_INV]);;
let CX_POW = prove
(`!x n. Cx(x pow n) = Cx(x) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; real_pow; CX_MUL]);;
let CX_ABS = prove
(`!x. Cx(abs x) = Cx(norm(Cx(x)))`,
REWRITE_TAC[CX_DEF; complex_norm; COMPLEX_EQ; RE; IM] THEN
REWRITE_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_RID] THEN
REWRITE_TAC[GSYM REAL_POW_2; POW_2_SQRT_ABS]);;
let COMPLEX_NORM_CX = prove
(`!x. norm(Cx(x)) = abs(x)`,
REWRITE_TAC[GSYM CX_INJ; CX_ABS]);;
(* ------------------------------------------------------------------------- *)
(* A convenient lemma that we need a few times below. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_ENTIRE = prove
(`!x y. (x * y = Cx(&0)) <=> (x = Cx(&0)) \/ (y = Cx(&0))`,
REWRITE_TAC[COMPLEX_EQ; complex_mul; RE; IM; CX_DEF; GSYM REAL_SOS_EQ_0] THEN
CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Powers. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_POW_ADD = prove
(`!x m n. x pow (m + n) = x pow m * x pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[ADD_CLAUSES; complex_pow;
COMPLEX_MUL_LID; COMPLEX_MUL_ASSOC]);;
let COMPLEX_POW_POW = prove
(`!x m n. (x pow m) pow n = x pow (m * n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; MULT_CLAUSES; COMPLEX_POW_ADD]);;
let COMPLEX_POW_1 = prove
(`!x. x pow 1 = x`,
REWRITE_TAC[num_CONV `1`] THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_RID]);;
let COMPLEX_POW_2 = prove
(`!x. x pow 2 = x * x`,
REWRITE_TAC[num_CONV `2`] THEN REWRITE_TAC[complex_pow; COMPLEX_POW_1]);;
let COMPLEX_POW_NEG = prove
(`!x n. (--x) pow n = if EVEN n then x pow n else --(x pow n)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; EVEN] THEN
ASM_CASES_TAC `EVEN n` THEN
ASM_REWRITE_TAC[COMPLEX_MUL_RNEG; COMPLEX_MUL_LNEG; COMPLEX_NEG_NEG]);;
let COMPLEX_POW_ONE = prove
(`!n. Cx(&1) pow n = Cx(&1)`,
INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID]);;
let COMPLEX_POW_MUL = prove
(`!x y n. (x * y) pow n = (x pow n) * (y pow n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID; COMPLEX_MUL_AC]);;
let COMPLEX_POW_II_2 = prove
(`ii pow 2 = --Cx(&1)`,
REWRITE_TAC[ii; COMPLEX_POW_2; complex_mul; CX_DEF; RE; IM; complex_neg] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let COMPLEX_POW_EQ_0 = prove
(`!x n. (x pow n = Cx(&0)) <=> (x = Cx(&0)) /\ ~(n = 0)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[NOT_SUC; complex_pow; COMPLEX_ENTIRE] THENL
[SIMPLE_COMPLEX_ARITH_TAC; CONV_TAC TAUT]);;
(* ------------------------------------------------------------------------- *)
(* Norms (aka "moduli"). *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_NORM_CX = prove
(`!x. norm(Cx x) = abs(x)`,
GEN_TAC THEN REWRITE_TAC[complex_norm; CX_DEF; RE; IM] THEN
REWRITE_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_RID] THEN
REWRITE_TAC[GSYM REAL_POW_2; POW_2_SQRT_ABS]);;
let COMPLEX_NORM_POS = prove
(`!z. &0 <= norm(z)`,
SIMP_TAC[complex_norm; SQRT_POS_LE; REAL_POW_2;
REAL_LE_SQUARE; REAL_LE_ADD]);;
let COMPLEX_ABS_NORM = prove
(`!z. abs(norm z) = norm z`,
REWRITE_TAC[real_abs; COMPLEX_NORM_POS]);;
let COMPLEX_NORM_ZERO = prove
(`!z. (norm z = &0) <=> (z = Cx(&0))`,
GEN_TAC THEN REWRITE_TAC[complex_norm] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SQRT_0] THEN
SIMP_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_LE_ADD; REAL_POS; SQRT_INJ] THEN
REWRITE_TAC[COMPLEX_EQ; RE; IM; CX_DEF] THEN
SIMP_TAC[REAL_LE_SQUARE; REAL_ARITH
`&0 <= x /\ &0 <= y ==> ((x + y = &0) <=> (x = &0) /\ (y = &0))`] THEN
REWRITE_TAC[REAL_ENTIRE]);;
let COMPLEX_NORM_NUM = prove
(`norm(Cx(&n)) = &n`,
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM]);;
let COMPLEX_NORM_0 = prove
(`norm(Cx(&0)) = &0`,
MESON_TAC[COMPLEX_NORM_ZERO]);;
let COMPLEX_NORM_NZ = prove
(`!z. &0 < norm(z) <=> ~(z = Cx(&0))`,
MESON_TAC[COMPLEX_NORM_ZERO; COMPLEX_ABS_NORM; REAL_ABS_NZ]);;
let COMPLEX_NORM_NEG = prove
(`!z. norm(--z) = norm(z)`,
REWRITE_TAC[complex_neg; complex_norm; REAL_POW_2; RE; IM] THEN
GEN_TAC THEN AP_TERM_TAC THEN REAL_ARITH_TAC);;
let COMPLEX_NORM_MUL = prove
(`!w z. norm(w * z) = norm(w) * norm(z)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[complex_norm; complex_mul; RE; IM] THEN
SIMP_TAC[GSYM SQRT_MUL; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
AP_TERM_TAC THEN REAL_ARITH_TAC);;
let COMPLEX_NORM_POW = prove
(`!z n. norm(z pow n) = norm(z) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; real_pow; COMPLEX_NORM_NUM; COMPLEX_NORM_MUL]);;
let COMPLEX_NORM_INV = prove
(`!z. norm(inv z) = inv(norm z)`,
GEN_TAC THEN REWRITE_TAC[complex_norm; complex_inv; RE; IM] THEN
REWRITE_TAC[REAL_POW_2; real_div] THEN
REWRITE_TAC[REAL_ARITH `(r * d) * r * d + (--i * d) * --i * d =
(r * r + i * i) * d * d:real`] THEN
ASM_CASES_TAC `Re z * Re z + Im z * Im z = &0` THENL
[ASM_REWRITE_TAC[REAL_INV_0; SQRT_0; REAL_MUL_LZERO]; ALL_TAC] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN
SIMP_TAC[GSYM SQRT_MUL; REAL_LE_MUL; REAL_LE_INV_EQ; REAL_LE_ADD;
REAL_LE_SQUARE] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC
`a * a * b * b:real = (a * b) * (a * b)`] THEN
ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID; SQRT_1]);;
let COMPLEX_NORM_DIV = prove
(`!w z. norm(w / z) = norm(w) / norm(z)`,
REWRITE_TAC[complex_div; real_div; COMPLEX_NORM_INV; COMPLEX_NORM_MUL]);;
let COMPLEX_NORM_TRIANGLE = prove
(`!w z. norm(w + z) <= norm(w) + norm(z)`,
REPEAT GEN_TAC THEN REWRITE_TAC[complex_norm; complex_add; RE; IM] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ abs(x) <= abs(y) ==> x <= y`) THEN
SIMP_TAC[SQRT_POS_LE; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE;
REAL_LE_SQUARE_ABS; SQRT_POW_2] THEN
GEN_REWRITE_TAC RAND_CONV[REAL_ARITH
`(a + b) * (a + b) = a * a + b * b + &2 * a * b`] THEN
REWRITE_TAC[GSYM REAL_POW_2] THEN
SIMP_TAC[SQRT_POW_2; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
REWRITE_TAC[REAL_ARITH
`(rw + rz) * (rw + rz) + (iw + iz) * (iw + iz) <=
(rw * rw + iw * iw) + (rz * rz + iz * iz) + &2 * other <=>
rw * rz + iw * iz <= other`] THEN
SIMP_TAC[GSYM SQRT_MUL; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ abs(x) <= abs(y) ==> x <= y`) THEN
SIMP_TAC[SQRT_POS_LE; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE;
REAL_LE_SQUARE_ABS; SQRT_POW_2; REAL_LE_MUL] THEN
REWRITE_TAC[REAL_ARITH
`(rw * rz + iw * iz) * (rw * rz + iw * iz) <=
(rw * rw + iw * iw) * (rz * rz + iz * iz) <=>
&0 <= (rw * iz - rz * iw) * (rw * iz - rz * iw)`] THEN
REWRITE_TAC[REAL_LE_SQUARE]);;
let COMPLEX_NORM_TRIANGLE_SUB = prove
(`!w z. norm(w) <= norm(w + z) + norm(z)`,
MESON_TAC[COMPLEX_NORM_TRIANGLE; COMPLEX_NORM_NEG; COMPLEX_ADD_ASSOC;
COMPLEX_ADD_RINV; COMPLEX_ADD_RID]);;
let COMPLEX_NORM_ABS_NORM = prove
(`!w z. abs(norm w - norm z) <= norm(w - z)`,
REPEAT GEN_TAC THEN
MATCH_MP_TAC(REAL_ARITH
`a - b <= x /\ b - a <= x ==> abs(a - b) <= x:real`) THEN
MESON_TAC[COMPLEX_NEG_SUB; COMPLEX_NORM_NEG; REAL_LE_SUB_RADD; complex_sub;
COMPLEX_NORM_TRIANGLE_SUB]);;
(* ------------------------------------------------------------------------- *)
(* Complex conjugate. *)
(* ------------------------------------------------------------------------- *)
let cnj = new_definition
`cnj(z) = complex(Re(z),--(Im(z)))`;;
(* ------------------------------------------------------------------------- *)
(* Conjugation is an automorphism. *)
(* ------------------------------------------------------------------------- *)
let CNJ_INJ = prove
(`!w z. (cnj(w) = cnj(z)) <=> (w = z)`,
REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_EQ_NEG2]);;
let CNJ_CNJ = prove
(`!z. cnj(cnj z) = z`,
REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_NEG_NEG]);;
let CNJ_CX = prove
(`!x. cnj(Cx x) = Cx x`,
REWRITE_TAC[cnj; COMPLEX_EQ; CX_DEF; REAL_NEG_0; RE; IM]);;
let COMPLEX_NORM_CNJ = prove
(`!z. norm(cnj z) = norm(z)`,
REWRITE_TAC[complex_norm; cnj; REAL_POW_2] THEN
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; RE; IM; REAL_NEG_NEG]);;
let CNJ_NEG = prove
(`!z. cnj(--z) = --(cnj z)`,
REWRITE_TAC[cnj; complex_neg; COMPLEX_EQ; RE; IM]);;
let CNJ_INV = prove
(`!z. cnj(inv z) = inv(cnj z)`,
REWRITE_TAC[cnj; complex_inv; COMPLEX_EQ; RE; IM] THEN
REWRITE_TAC[real_div; REAL_NEG_NEG; REAL_POW_2;
REAL_MUL_LNEG; REAL_MUL_RNEG]);;
let CNJ_ADD = prove
(`!w z. cnj(w + z) = cnj(w) + cnj(z)`,
REWRITE_TAC[cnj; complex_add; COMPLEX_EQ; RE; IM] THEN
REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);;
let CNJ_SUB = prove
(`!w z. cnj(w - z) = cnj(w) - cnj(z)`,
REWRITE_TAC[complex_sub; CNJ_ADD; CNJ_NEG]);;
let CNJ_MUL = prove
(`!w z. cnj(w * z) = cnj(w) * cnj(z)`,
REWRITE_TAC[cnj; complex_mul; COMPLEX_EQ; RE; IM] THEN
REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);;
let CNJ_DIV = prove
(`!w z. cnj(w / z) = cnj(w) / cnj(z)`,
REWRITE_TAC[complex_div; CNJ_MUL; CNJ_INV]);;
let CNJ_POW = prove
(`!z n. cnj(z pow n) = cnj(z) pow n`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; CNJ_MUL; CNJ_CX]);;
(* ------------------------------------------------------------------------- *)
(* Conversion of (complex-type) rational constant to ML rational number. *)
(* ------------------------------------------------------------------------- *)
let is_complex_const =
let cx_tm = `Cx` in
fun tm ->
is_comb tm &&
let l,r = dest_comb tm in l = cx_tm && is_ratconst r;;
let dest_complex_const =
let cx_tm = `Cx` in
fun tm ->
let l,r = dest_comb tm in
if l = cx_tm then rat_of_term r
else failwith "dest_complex_const";;
let mk_complex_const =
let cx_tm = `Cx` in
fun r ->
mk_comb(cx_tm,term_of_rat r);;
(* ------------------------------------------------------------------------- *)
(* Conversions to perform operations if coefficients are rational constants. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_RAT_MUL_CONV =
GEN_REWRITE_CONV I [GSYM CX_MUL] THENC RAND_CONV REAL_RAT_MUL_CONV;;
let COMPLEX_RAT_ADD_CONV =
GEN_REWRITE_CONV I [GSYM CX_ADD] THENC RAND_CONV REAL_RAT_ADD_CONV;;
let COMPLEX_RAT_EQ_CONV =
GEN_REWRITE_CONV I [CX_INJ] THENC REAL_RAT_EQ_CONV;;
let COMPLEX_RAT_POW_CONV =
let x_tm = `x:real`
and n_tm = `n:num` in
let pth = SYM(SPECL [x_tm; n_tm] CX_POW) in
fun tm ->
let lop,r = dest_comb tm in
let op,bod = dest_comb lop in
let th1 = INST [rand bod,x_tm; r,n_tm] pth in
let tm1,tm2 = dest_comb(concl th1) in
if rand tm1 <> tm then failwith "COMPLEX_RAT_POW_CONV" else
let tm3,tm4 = dest_comb tm2 in
TRANS th1 (AP_TERM tm3 (REAL_RAT_REDUCE_CONV tm4));;
(* ------------------------------------------------------------------------- *)
(* Instantiate polynomial normalizer. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_POLY_CLAUSES = prove
(`(!x y z. x + (y + z) = (x + y) + z) /\
(!x y. x + y = y + x) /\
(!x. Cx(&0) + x = x) /\
(!x y z. x * (y * z) = (x * y) * z) /\
(!x y. x * y = y * x) /\
(!x. Cx(&1) * x = x) /\
(!x. Cx(&0) * x = Cx(&0)) /\
(!x y z. x * (y + z) = x * y + x * z) /\
(!x. x pow 0 = Cx(&1)) /\
(!x n. x pow (SUC n) = x * x pow n)`,
REWRITE_TAC[complex_pow] THEN SIMPLE_COMPLEX_ARITH_TAC)
and COMPLEX_POLY_NEG_CLAUSES = prove
(`(!x. --x = Cx(-- &1) * x) /\
(!x y. x - y = x + Cx(-- &1) * y)`,
SIMPLE_COMPLEX_ARITH_TAC);;
let COMPLEX_POLY_NEG_CONV,COMPLEX_POLY_ADD_CONV,COMPLEX_POLY_SUB_CONV,
COMPLEX_POLY_MUL_CONV,COMPLEX_POLY_POW_CONV,COMPLEX_POLY_CONV =
SEMIRING_NORMALIZERS_CONV COMPLEX_POLY_CLAUSES COMPLEX_POLY_NEG_CLAUSES
(is_complex_const,
COMPLEX_RAT_ADD_CONV,COMPLEX_RAT_MUL_CONV,COMPLEX_RAT_POW_CONV)
(<);;
let COMPLEX_RAT_INV_CONV =
GEN_REWRITE_CONV I [GSYM CX_INV] THENC RAND_CONV REAL_RAT_INV_CONV;;
let COMPLEX_POLY_CONV =
let neg_tm = `(--):complex->complex`
and inv_tm = `inv:complex->complex`
and add_tm = `(+):complex->complex->complex`
and sub_tm = `(-):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex`
and div_tm = `(/):complex->complex->complex`
and pow_tm = `(pow):complex->num->complex`
and div_conv = REWR_CONV complex_div in
let rec COMPLEX_POLY_CONV tm =
if not(is_comb tm) || is_complex_const tm then REFL tm else
let lop,r = dest_comb tm in
if lop = neg_tm then
let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in
TRANS th1 (COMPLEX_POLY_NEG_CONV (rand(concl th1)))
else if lop = inv_tm then
let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in
TRANS th1 (TRY_CONV COMPLEX_RAT_INV_CONV (rand(concl th1)))
else if not(is_comb lop) then REFL tm else
let op,l = dest_comb lop in
if op = pow_tm then
let th1 = AP_THM (AP_TERM op (COMPLEX_POLY_CONV l)) r in
TRANS th1 (TRY_CONV COMPLEX_POLY_POW_CONV (rand(concl th1)))
else if op = add_tm || op = mul_tm || op = sub_tm then
let th1 = MK_COMB(AP_TERM op (COMPLEX_POLY_CONV l),
COMPLEX_POLY_CONV r) in
let fn = if op = add_tm then COMPLEX_POLY_ADD_CONV
else if op = mul_tm then COMPLEX_POLY_MUL_CONV
else COMPLEX_POLY_SUB_CONV in
TRANS th1 (fn (rand(concl th1)))
else if op = div_tm then
let th1 = div_conv tm in
TRANS th1 (COMPLEX_POLY_CONV (rand(concl th1)))
else REFL tm in
COMPLEX_POLY_CONV;;
(* ------------------------------------------------------------------------- *)
(* Complex number version of usual ring procedure. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_MUL_LINV = prove
(`!z. ~(z = Cx(&0)) ==> (inv(z) * z = Cx(&1))`,
REWRITE_TAC[complex_mul; complex_inv; RE; IM; COMPLEX_EQ; CX_DEF] THEN
REWRITE_TAC[GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_FIELD);;
let COMPLEX_MUL_RINV = prove
(`!z. ~(z = Cx(&0)) ==> (z * inv(z) = Cx(&1))`,
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN REWRITE_TAC[COMPLEX_MUL_LINV]);;
let COMPLEX_RING,complex_ideal_cofactors =
let ring_pow_tm = `(pow):complex->num->complex`
and COMPLEX_INTEGRAL = prove
(`(!x. Cx(&0) * x = Cx(&0)) /\
(!x y z. (x + y = x + z) <=> (y = z)) /\
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
REWRITE_TAC[COMPLEX_ENTIRE; SIMPLE_COMPLEX_ARITH
`(w * y + x * z = w * z + x * y) <=>
(w - x) * (y - z) = Cx(&0)`] THEN
SIMPLE_COMPLEX_ARITH_TAC)
and COMPLEX_RABINOWITSCH = prove
(`!x y:complex. ~(x = y) <=> ?z. (x - y) * z = Cx(&1)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM COMPLEX_SUB_0] THEN
MESON_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_LZERO;
SIMPLE_COMPLEX_ARITH `~(Cx(&1) = Cx(&0))`])
and init = ALL_CONV in
let pure,ideal =
RING_AND_IDEAL_CONV
(dest_complex_const,mk_complex_const,COMPLEX_RAT_EQ_CONV,
`(--):complex->complex`,`(+):complex->complex->complex`,
`(-):complex->complex->complex`,`(inv):complex->complex`,
`(*):complex->complex->complex`,`(/):complex->complex->complex`,
`(pow):complex->num->complex`,
COMPLEX_INTEGRAL,COMPLEX_RABINOWITSCH,COMPLEX_POLY_CONV) in
(fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)))),
ideal;;
(* ------------------------------------------------------------------------- *)
(* Most basic properties of inverses. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_INV_0 = prove
(`inv(Cx(&0)) = Cx(&0)`,
REWRITE_TAC[complex_inv; CX_DEF; RE; IM; real_div; REAL_MUL_LZERO;
REAL_NEG_0]);;
let COMPLEX_INV_MUL = prove
(`!w z. inv(w * z) = inv(w) * inv(z)`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`w = Cx(&0)`; `z = Cx(&0)`] THEN
ASM_REWRITE_TAC[COMPLEX_INV_0; COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[complex_mul; complex_inv; RE; IM; COMPLEX_EQ; CX_DEF] THEN
REWRITE_TAC[GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_FIELD);;
let COMPLEX_INV_1 = prove
(`inv(Cx(&1)) = Cx(&1)`,
REWRITE_TAC[complex_inv; CX_DEF; RE; IM] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_DIV_1]);;
let COMPLEX_POW_INV = prove
(`!x n. (inv x) pow n = inv(x pow n)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[complex_pow; COMPLEX_INV_1; COMPLEX_INV_MUL]);;
let COMPLEX_INV_INV = prove
(`!x:complex. inv(inv x) = x`,
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN
POP_ASSUM MP_TAC THEN
MAP_EVERY (fun t -> MP_TAC(SPEC t COMPLEX_MUL_RINV))
[`x:complex`; `inv(x):complex`] THEN
CONV_TAC COMPLEX_RING);;
(* ------------------------------------------------------------------------- *)
(* And also field procedure. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_FIELD =
let prenex_conv =
TOP_DEPTH_CONV BETA_CONV THENC
PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; complex_div;
COMPLEX_INV_INV; COMPLEX_INV_MUL; GSYM REAL_POW_INV] THENC
NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
PRENEX_CONV
and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
and is_inv =
let inv_tm = `inv:complex->complex`
and is_div = is_binop `(/):complex->complex->complex` in
fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) &&
not(is_complex_const(rand tm))
and lemma_inv = MESON[COMPLEX_MUL_RINV]
`!x. x = Cx(&0) \/ x * inv(x) = Cx(&1)`
and dcases = MATCH_MP(TAUT `(p \/ q) /\ (r \/ s) ==> (p \/ r) \/ q /\ s`) in
let cases_rule th1 th2 = dcases (CONJ th1 th2) in
let BASIC_COMPLEX_FIELD tm =
let is_freeinv t = is_inv t && free_in t tm in
let itms = setify(map rand (find_terms is_freeinv tm)) in
let dth = if itms = [] then TRUTH
else end_itlist cases_rule (map (C SPEC lemma_inv) itms) in
let tm' = mk_imp(concl dth,tm) in
let th1 = setup_conv tm' in
let ths = map COMPLEX_RING (conjuncts(rand(concl th1))) in
let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
MP (EQ_MP (SYM th1) (end_itlist CONJ ths)) dth in
fun tm ->
let th0 = prenex_conv tm in
let tm0 = rand(concl th0) in
let avs,bod = strip_forall tm0 in
let th1 = setup_conv bod in
let ths = map BASIC_COMPLEX_FIELD (conjuncts(rand(concl th1))) in
EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;
(* ------------------------------------------------------------------------- *)
(* Properties of inverses, divisions are now mostly automatic. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_POW_DIV = prove
(`!x y n. (x / y) pow n = (x pow n) / (y pow n)`,
REWRITE_TAC[complex_div; COMPLEX_POW_MUL; COMPLEX_POW_INV]);;
let COMPLEX_DIV_REFL = prove
(`!x. ~(x = Cx(&0)) ==> (x / x = Cx(&1))`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_EQ_MUL_LCANCEL = prove
(`!x y z. (x * y = x * z) <=> (x = Cx(&0)) \/ (y = z)`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_EQ_MUL_RCANCEL = prove
(`!x y z. (x * z = y * z) <=> (x = y) \/ (z = Cx(&0))`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_MUL_RINV_UNIQ = prove
(`!w z. w * z = Cx(&1) ==> inv w = z`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_MUL_LINV_UNIQ = prove
(`!w z. w * z = Cx(&1) ==> inv z = w`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_DIV_LMUL = prove
(`!w z. ~(z = Cx(&0)) ==> z * w / z = w`,
CONV_TAC COMPLEX_FIELD);;
let COMPLEX_DIV_RMUL = prove
(`!w z. ~(z = Cx(&0)) ==> w / z * z = w`,
CONV_TAC COMPLEX_FIELD);;
|