Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,574 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
(* ========================================================================= *)
(* Arithmetic-geometric mean inequality. *)
(* ========================================================================= *)
needs "Library/products.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Various trivial lemmas. *)
(* ------------------------------------------------------------------------- *)
let FORALL_2 = prove
(`!P. (!i. 1 <= i /\ i <= 2 ==> P i) <=> P 1 /\ P 2`,
MESON_TAC[ARITH_RULE `1 <= i /\ i <= 2 <=> i = 1 \/ i = 2`]);;
let NUMSEG_2 = prove
(`1..2 = {1,2}`,
REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; IN_NUMSEG] THEN ARITH_TAC);;
let AGM_2 = prove
(`!x y. x * y <= ((x + y) / &2) pow 2`,
REWRITE_TAC[REAL_LE_SQUARE; REAL_ARITH
`x * y <= ((x + y) / &2) pow 2 <=> &0 <= (x - y) * (x - y)`]);;
let SUM_SPLIT_2 = prove
(`sum(1..2*n) f = sum(1..n) f + sum(n+1..2*n) f`,
SIMP_TAC[MULT_2; ARITH_RULE `1 <= n + 1`; SUM_ADD_SPLIT]);;
let PRODUCT_SPLIT_2 = prove
(`product(1..2*n) f = product(1..n) f * product(n+1..2*n) f`,
SIMP_TAC[MULT_2; ARITH_RULE `1 <= n + 1`; PRODUCT_ADD_SPLIT]);;
(* ------------------------------------------------------------------------- *)
(* Specialized induction principle. *)
(* ------------------------------------------------------------------------- *)
let CAUCHY_INDUCT = prove
(`!P. P 2 /\ (!n. P n ==> P(2 * n)) /\ (!n. P(n + 1) ==> P n) ==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN
SUBGOAL_THEN `P(0) /\ P(1)` STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[ARITH_RULE `1 = 0 + 1 /\ 2 = 1 + 1`]; ALL_TAC] THEN
ASM_CASES_TAC `EVEN n` THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
ASM_MESON_TAC[ARITH_RULE `2 * n = 0 \/ n < 2 * n`];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN]) THEN
SIMP_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
ASM_MESON_TAC[ARITH_RULE `SUC(2 * m) = 1 \/ m + 1 < SUC(2 * m)`;
ARITH_RULE `SUC(2 * m) + 1 = 2 * (m + 1)`]);;
(* ------------------------------------------------------------------------- *)
(* The main result. *)
(* ------------------------------------------------------------------------- *)
let AGM = prove
(`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i))
==> product(1..n) a <= (sum(1..n) a / &n) pow n`,
MATCH_MP_TAC CAUCHY_INDUCT THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[FORALL_2; NUMSEG_2] THEN
SIMP_TAC[SUM_CLAUSES; PRODUCT_CLAUSES; FINITE_RULES; IN_INSERT;
NOT_IN_EMPTY; ARITH; REAL_MUL_RID; REAL_ADD_RID] THEN
REWRITE_TAC[AGM_2];
X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `a:num->real` THEN
STRIP_TAC THEN REWRITE_TAC[SUM_SPLIT_2; PRODUCT_SPLIT_2] THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `(sum(1..n) a / &n) pow n * (sum(n+1..2*n) a / &n) pow n` THEN
CONJ_TAC THENL
[MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THENL
[MATCH_MP_TAC PRODUCT_POS_LE THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
ASM_MESON_TAC[ARITH_RULE `i <= n ==> i <= 2 * n`];
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[ARITH_RULE `i <= n ==> i <= 2 * n`;
ARITH_RULE `1 <= 2 * n ==> 1 <= n`];
MATCH_MP_TAC PRODUCT_POS_LE THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
ASM_MESON_TAC[ARITH_RULE `n + 1 <= i ==> 1 <= i`];
ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[MULT_2] THEN
REWRITE_TAC[PRODUCT_OFFSET; SUM_OFFSET] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[ARITH_RULE
`1 <= i /\ i <= n ==> 1 <= i + n /\ i + n <= 2 * n`;
ARITH_RULE `1 <= 2 * n ==> 1 <= n`]];
ALL_TAC] THEN
REWRITE_TAC[GSYM REAL_POW_MUL; GSYM REAL_POW_POW] THEN
MATCH_MP_TAC REAL_POW_LE2 THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN
SUBST1_TAC(REAL_ARITH `&2 * &n = &n * &2`) THEN
REWRITE_TAC[real_div; REAL_INV_MUL] THEN
REWRITE_TAC[REAL_ARITH `(x + y) * (a * b) = (x * a + y * a) * b`] THEN
REWRITE_TAC[GSYM real_div; AGM_2] THEN
MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_DIV THEN
REWRITE_TAC[REAL_POS] THEN MATCH_MP_TAC SUM_POS_LE THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC;
X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `a:num->real` THEN
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC
`\i. if i <= n then a(i) else sum(1..n) a / &n`) THEN
REWRITE_TAC[ARITH_RULE `1 <= n + 1`] THEN ANTS_TAC THENL
[REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_POS] THEN
ASM_SIMP_TAC[SUM_POS_LE; FINITE_NUMSEG; IN_NUMSEG];
ALL_TAC] THEN
ABBREV_TAC `A = sum(1..n) a / &n` THEN
SIMP_TAC[GSYM ADD1; PRODUCT_CLAUSES_NUMSEG; SUM_CLAUSES_NUMSEG] THEN
SIMP_TAC[ARITH_RULE `1 <= SUC n /\ ~(SUC n <= n)`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN EXPAND_TAC "A" THEN
SIMP_TAC[REAL_OF_NUM_LE; ASSUME `1 <= n`; REAL_FIELD
`&1 <= &n ==> (s + s / &n) / (&n + &1) = s / &n`] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[real_pow] THEN
ASM_CASES_TAC `&0 < A` THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN
SUBGOAL_THEN `A = &0` MP_TAC THENL
[ASM_REWRITE_TAC[GSYM REAL_LE_ANTISYM; GSYM REAL_NOT_LT] THEN
REWRITE_TAC[REAL_NOT_LT] THEN EXPAND_TAC "A" THEN
MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_POS] THEN
ASM_SIMP_TAC[SUM_POS_LE; FINITE_NUMSEG; IN_NUMSEG];
ALL_TAC] THEN
EXPAND_TAC "A" THEN
REWRITE_TAC[real_div; REAL_ENTIRE; REAL_INV_EQ_0; REAL_OF_NUM_EQ] THEN
ASM_SIMP_TAC[ARITH_RULE `1 <= n ==> ~(n = 0)`] THEN DISCH_TAC THEN
DISCH_THEN(K ALL_TAC) THEN
MP_TAC(SPECL [`a:num->real`; `1`; `n:num`] SUM_POS_EQ_0_NUMSEG) THEN
ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `n:num`) THEN
ASM_REWRITE_TAC[LE_REFL] THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
REWRITE_TAC[ARITH_RULE `1 + n = SUC n`] THEN
DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[real_pow; REAL_MUL_LZERO; PRODUCT_CLAUSES_NUMSEG] THEN
REWRITE_TAC[ARITH_RULE `1 <= SUC n`; REAL_MUL_RZERO; REAL_LE_REFL]]);;
|