Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,574 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
(* ========================================================================= *)
(* Arithmetic-geometric mean inequality.                                     *)
(* ========================================================================= *)

needs "Library/products.ml";;

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* Various trivial lemmas.                                                   *)
(* ------------------------------------------------------------------------- *)

let FORALL_2 = prove
 (`!P. (!i. 1 <= i /\ i <= 2 ==> P i) <=> P 1 /\ P 2`,
  MESON_TAC[ARITH_RULE `1 <= i /\ i <= 2 <=> i = 1 \/ i = 2`]);;

let NUMSEG_2 = prove
 (`1..2 = {1,2}`,
  REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; IN_NUMSEG] THEN ARITH_TAC);;

let AGM_2 = prove
 (`!x y. x * y <= ((x + y) / &2) pow 2`,
  REWRITE_TAC[REAL_LE_SQUARE; REAL_ARITH
   `x * y <= ((x + y) / &2) pow 2 <=> &0 <= (x - y) * (x - y)`]);;

let SUM_SPLIT_2 = prove
 (`sum(1..2*n) f = sum(1..n) f + sum(n+1..2*n) f`,
  SIMP_TAC[MULT_2; ARITH_RULE `1 <= n + 1`; SUM_ADD_SPLIT]);;

let PRODUCT_SPLIT_2 = prove
 (`product(1..2*n) f = product(1..n) f * product(n+1..2*n) f`,
  SIMP_TAC[MULT_2; ARITH_RULE `1 <= n + 1`; PRODUCT_ADD_SPLIT]);;

(* ------------------------------------------------------------------------- *)
(* Specialized induction principle.                                          *)
(* ------------------------------------------------------------------------- *)

let CAUCHY_INDUCT = prove
 (`!P. P 2 /\ (!n. P n ==> P(2 * n)) /\ (!n. P(n + 1) ==> P n) ==> !n. P n`,
  GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  SUBGOAL_THEN `P(0) /\ P(1)` STRIP_ASSUME_TAC THENL
   [ASM_MESON_TAC[ARITH_RULE `1 = 0 + 1 /\ 2 = 1 + 1`]; ALL_TAC] THEN
  ASM_CASES_TAC `EVEN n` THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN
    ASM_MESON_TAC[ARITH_RULE `2 * n = 0 \/ n < 2 * n`];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN]) THEN
  SIMP_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
  ASM_MESON_TAC[ARITH_RULE `SUC(2 * m) = 1 \/ m + 1 < SUC(2 * m)`;
                ARITH_RULE `SUC(2 * m) + 1 = 2 * (m + 1)`]);;

(* ------------------------------------------------------------------------- *)
(* The main result.                                                          *)
(* ------------------------------------------------------------------------- *)

let AGM = prove
 (`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i))
         ==> product(1..n) a <= (sum(1..n) a / &n) pow n`,
  MATCH_MP_TAC CAUCHY_INDUCT THEN REPEAT CONJ_TAC THENL
   [REWRITE_TAC[FORALL_2; NUMSEG_2] THEN
    SIMP_TAC[SUM_CLAUSES; PRODUCT_CLAUSES; FINITE_RULES; IN_INSERT;
             NOT_IN_EMPTY; ARITH; REAL_MUL_RID; REAL_ADD_RID] THEN
    REWRITE_TAC[AGM_2];
    X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `a:num->real` THEN
    STRIP_TAC THEN REWRITE_TAC[SUM_SPLIT_2; PRODUCT_SPLIT_2] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `(sum(1..n) a / &n) pow n * (sum(n+1..2*n) a / &n) pow n` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THENL
       [MATCH_MP_TAC PRODUCT_POS_LE THEN
        REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
        ASM_MESON_TAC[ARITH_RULE `i <= n ==> i <= 2 * n`];
        FIRST_X_ASSUM MATCH_MP_TAC THEN
        ASM_MESON_TAC[ARITH_RULE `i <= n ==> i <= 2 * n`;
                      ARITH_RULE `1 <= 2 * n ==> 1 <= n`];
        MATCH_MP_TAC PRODUCT_POS_LE THEN
        REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
        ASM_MESON_TAC[ARITH_RULE `n + 1 <= i ==> 1 <= i`];
        ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[MULT_2] THEN
        REWRITE_TAC[PRODUCT_OFFSET; SUM_OFFSET] THEN
        FIRST_X_ASSUM MATCH_MP_TAC THEN
        ASM_MESON_TAC[ARITH_RULE
          `1 <= i /\ i <= n ==> 1 <= i + n /\ i + n <= 2 * n`;
                      ARITH_RULE `1 <= 2 * n ==> 1 <= n`]];
      ALL_TAC] THEN
    REWRITE_TAC[GSYM REAL_POW_MUL; GSYM REAL_POW_POW] THEN
    MATCH_MP_TAC REAL_POW_LE2 THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN
    SUBST1_TAC(REAL_ARITH `&2 * &n = &n * &2`) THEN
    REWRITE_TAC[real_div; REAL_INV_MUL] THEN
    REWRITE_TAC[REAL_ARITH `(x + y) * (a * b) = (x * a + y * a) * b`] THEN
    REWRITE_TAC[GSYM real_div; AGM_2] THEN
    MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_DIV THEN
    REWRITE_TAC[REAL_POS] THEN MATCH_MP_TAC SUM_POS_LE THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC;
    X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `a:num->real` THEN
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC
     `\i. if i <= n then a(i) else sum(1..n) a / &n`) THEN
    REWRITE_TAC[ARITH_RULE `1 <= n + 1`] THEN ANTS_TAC THENL
     [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
      MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_POS] THEN
      ASM_SIMP_TAC[SUM_POS_LE; FINITE_NUMSEG; IN_NUMSEG];
      ALL_TAC] THEN
    ABBREV_TAC `A = sum(1..n) a / &n` THEN
    SIMP_TAC[GSYM ADD1; PRODUCT_CLAUSES_NUMSEG; SUM_CLAUSES_NUMSEG] THEN
    SIMP_TAC[ARITH_RULE `1 <= SUC n /\ ~(SUC n <= n)`] THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN EXPAND_TAC "A" THEN
    SIMP_TAC[REAL_OF_NUM_LE; ASSUME `1 <= n`; REAL_FIELD
     `&1 <= &n ==> (s + s / &n) / (&n + &1) = s / &n`] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[real_pow] THEN
    ASM_CASES_TAC `&0 < A` THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN
    SUBGOAL_THEN `A = &0` MP_TAC THENL
     [ASM_REWRITE_TAC[GSYM REAL_LE_ANTISYM; GSYM REAL_NOT_LT] THEN
      REWRITE_TAC[REAL_NOT_LT] THEN EXPAND_TAC "A" THEN
      MATCH_MP_TAC REAL_LE_DIV THEN REWRITE_TAC[REAL_POS] THEN
      ASM_SIMP_TAC[SUM_POS_LE; FINITE_NUMSEG; IN_NUMSEG];
      ALL_TAC] THEN
    EXPAND_TAC "A" THEN
    REWRITE_TAC[real_div; REAL_ENTIRE; REAL_INV_EQ_0; REAL_OF_NUM_EQ] THEN
    ASM_SIMP_TAC[ARITH_RULE `1 <= n ==> ~(n = 0)`] THEN DISCH_TAC THEN
    DISCH_THEN(K ALL_TAC) THEN
    MP_TAC(SPECL [`a:num->real`; `1`; `n:num`] SUM_POS_EQ_0_NUMSEG) THEN
    ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `n:num`) THEN
    ASM_REWRITE_TAC[LE_REFL] THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
    REWRITE_TAC[ARITH_RULE `1 + n = SUC n`] THEN
    DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN
    ASM_REWRITE_TAC[real_pow; REAL_MUL_LZERO; PRODUCT_CLAUSES_NUMSEG] THEN
    REWRITE_TAC[ARITH_RULE `1 <= SUC n`; REAL_MUL_RZERO; REAL_LE_REFL]]);;