Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,056 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
(* ========================================================================= *)
(* Binary expansions as a bijection between numbers and finite sets.         *)
(* ========================================================================= *)

let BOUNDED_FINITE = prove
 (`!s. (!x:num. x IN s ==> x <= n) ==> FINITE s`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
  ASM_SIMP_TAC[SUBSET; IN_NUMSEG; FINITE_NUMSEG; LE_0]);;

let EVEN_NSUM = prove
 (`!s. FINITE s /\ (!i. i IN s ==> EVEN(f i)) ==> EVEN(nsum s f)`,
  REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[NSUM_CLAUSES; ARITH; EVEN_ADD; IN_INSERT]);;

(* ------------------------------------------------------------------------- *)
(* The basic bijections.                                                     *)
(* ------------------------------------------------------------------------- *)

let bitset = new_definition
 `bitset n = {i | ODD(n DIV (2 EXP i))}`;;

let binarysum = new_definition
 `binarysum s = nsum s (\i. 2 EXP i)`;;

(* ------------------------------------------------------------------------- *)
(* Inverse property in one direction.                                        *)
(* ------------------------------------------------------------------------- *)

let BITSET_BOUND_LEMMA = prove
 (`!n i. i IN (bitset n) ==> 2 EXP i <= n`,
  REWRITE_TAC[bitset; IN_ELIM_THM] THEN MESON_TAC[DIV_LT; ODD; NOT_LE]);;

let BITSET_BOUND_WEAK = prove
 (`!n i. i IN (bitset n) ==> i < n`,
  MESON_TAC[BITSET_BOUND_LEMMA; LT_POW2_REFL; LTE_TRANS]);;

let FINITE_BITSET = prove
 (`!n. FINITE(bitset n)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
  REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; LE_0; SUBSET] THEN
  MESON_TAC[LT_IMP_LE; BITSET_BOUND_WEAK]);;

let BITSET_0 = prove
 (`bitset 0 = {}`,
  REWRITE_TAC[bitset; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN
  SIMP_TAC[DIV_0; EXP_EQ_0; ARITH]);;

let BITSET_STEP = prove
 (`(!n. bitset(2 * n) = IMAGE SUC (bitset n)) /\
   (!n. bitset(2 * n + 1) = 0 INSERT (IMAGE SUC (bitset n)))`,
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [ALL_TAC; DISCH_THEN(fun th -> REWRITE_TAC[GSYM th])] THEN
  REWRITE_TAC[bitset; EXTENSION; IN_INSERT; IN_ELIM_THM; IN_IMAGE] THEN
  GEN_TAC THEN MATCH_MP_TAC num_INDUCTION THEN
  REWRITE_TAC[ARITH; ODD_MULT; DIV_1; NOT_SUC; ODD_ADD] THEN
  GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN
  REWRITE_TAC[SUC_INJ; UNWIND_THM1; EXP] THEN
  SIMP_TAC[GSYM DIV_DIV; MULT_EQ_0; EXP_EQ_0; ARITH] THEN
  REWRITE_TAC[ARITH_RULE `(2 * n + 1) DIV 2 = n /\ (2 * n) DIV 2 = n`]);;

let BINARYSUM_BITSET = prove
 (`!n. binarysum (bitset n) = n`,
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN REWRITE_TAC[binarysum] THEN
  MATCH_MP_TAC BINARY_INDUCT THEN REWRITE_TAC[BITSET_0; NSUM_CLAUSES] THEN
  SIMP_TAC[BITSET_STEP; NSUM_IMAGE; SUC_INJ; ADD1; FINITE_BITSET; ARITH;
  NSUM_CLAUSES; FINITE_IMAGE; IN_IMAGE; ARITH_RULE `~(0 = x + 1)`] THEN
  REWRITE_TAC[o_DEF; EXP; NSUM_LMUL] THEN
  ASM_MESON_TAC[ADD_SYM; ARITH_RULE `~(2 * m = 0) ==> m < 2 * m`;
                ARITH_RULE `m < SUC(2 * m)`]);;

let BITSET_EQ = prove
 (`!m n. bitset m = bitset n <=> m = n`,
  MESON_TAC[BINARYSUM_BITSET]);;

let BITSET_EQ_EMPTY = prove
 (`!n. bitset n = {} <=> n = 0`,
  MESON_TAC[BITSET_EQ; BITSET_0]);;

(* ------------------------------------------------------------------------- *)
(* Inverse property in the other direction.                                  *)
(* ------------------------------------------------------------------------- *)

let BINARYSUM_BOUND_LEMMA = prove
 (`!k s. (!i. i IN s ==> i < k) ==> nsum s (\i. 2 EXP i) < 2 EXP k`,
  INDUCT_TAC THEN
  SIMP_TAC[LT; GSYM NOT_EXISTS_THM; MEMBER_NOT_EMPTY; NSUM_CLAUSES; ARITH] THEN
  REPEAT STRIP_TAC THEN SUBGOAL_THEN `FINITE(s:num->bool)` ASSUME_TAC THENL
   [ASM_MESON_TAC[BOUNDED_FINITE; LE_LT]; ALL_TAC] THEN
  MATCH_MP_TAC LET_TRANS THEN
  EXISTS_TAC `nsum (k INSERT (s DELETE k)) (\i. 2 EXP i)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC NSUM_SUBSET THEN SIMP_TAC[FINITE_INSERT; FINITE_DELETE];
    ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN
    REWRITE_TAC[EXP; ARITH_RULE `a + b < 2 * a <=> b < a `] THEN
    FIRST_X_ASSUM MATCH_MP_TAC] THEN
  ASM SET_TAC[]);;

let BINARYSUM_DIV_DIVISIBLE = prove
 (`!s k. FINITE s /\ (!i. i IN s ==> k <= i)
         ==> nsum s (\i. 2 EXP i) = 2 EXP k * nsum s (\i. 2 EXP (i - k))`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NSUM_CLAUSES; DIV_0; EXP_EQ_0; ARITH_EQ; MULT_CLAUSES] THEN
  SIMP_TAC[IN_INSERT; ADD_ASSOC; EQ_ADD_RCANCEL; LEFT_ADD_DISTRIB] THEN
  SIMP_TAC[GSYM EXP_ADD; ARITH_RULE `i <= k:num ==> i + k - i = k`]);;

let BINARYSUM_DIV = prove
 (`!k s. FINITE s
         ==> (nsum s (\j. 2 EXP j)) DIV (2 EXP k) =
             nsum s (\j. if j < k then 0 else 2 EXP (j - k))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `(nsum {i | i < k /\ i IN s} (\j. 2 EXP j) +
               nsum {i | k <= i /\ i IN s} (\j. 2 EXP j)) DIV (2 EXP k)` THEN
  CONJ_TAC THENL
   [AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC NSUM_UNION_EQ THEN
    ASM_SIMP_TAC[EXTENSION; IN_INTER; IN_UNION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
    CONJ_TAC THEN X_GEN_TAC `i:num` THEN
    ASM_CASES_TAC `(i:num) IN s` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC DIV_UNIQ THEN
  EXISTS_TAC `nsum {i | i < k /\ i IN s} (\j. 2 EXP j)` THEN
  SIMP_TAC[BINARYSUM_BOUND_LEMMA; IN_ELIM_THM] THEN
  REWRITE_TAC[ARITH_RULE `a + x:num = y + a <=> x = y`] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `2 EXP k * nsum {i | k <= i /\ i IN s} (\i. 2 EXP (i - k))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC BINARYSUM_DIV_DIVISIBLE THEN SIMP_TAC[IN_ELIM_THM] THEN
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:num->bool` THEN
    ASM_SIMP_TAC[SUBSET; IN_ELIM_THM];
    ALL_TAC] THEN
  GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN
  REWRITE_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; ARITH_EQ] THEN
  ONCE_REWRITE_TAC[GSYM NSUM_SUPPORT] THEN
  REWRITE_TAC[support; NEUTRAL_ADD; EXP_EQ_0; ARITH; IN_ELIM_THM] THEN
  REWRITE_TAC[ARITH_RULE `(if p then 0 else q) = 0 <=> ~p ==> q = 0`] THEN
  REWRITE_TAC[EXP_EQ_0; ARITH; NOT_LT; CONJ_ACI] THEN
  MATCH_MP_TAC NSUM_EQ THEN
  SIMP_TAC[IN_ELIM_THM; ARITH_RULE `k <= j:num ==> ~(j < k)`]);;

let BITSET_BINARYSUM = prove
 (`!s. FINITE s ==> bitset (binarysum s) = s`,
  GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[bitset; binarysum; EXTENSION; IN_ELIM_THM] THEN
  X_GEN_TAC `i:num` THEN ASM_SIMP_TAC[BINARYSUM_DIV] THEN
  ASM_CASES_TAC `(i:num) IN s` THEN ASM_REWRITE_TAC[] THENL
   [FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE
     `i IN s ==> s = i INSERT (s DELETE i)`)) THEN
    ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN
    REWRITE_TAC[LT_REFL; SUB_REFL; ARITH; ODD_ADD];
    ALL_TAC] THEN
  REWRITE_TAC[NOT_ODD] THEN MATCH_MP_TAC EVEN_NSUM THEN
  ASM_REWRITE_TAC[FINITE_DELETE; IN_DELETE] THEN
  ONCE_REWRITE_TAC[COND_RAND] THEN SIMP_TAC[ARITH; EVEN_EXP; SUB_EQ_0] THEN
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[LE_LT]);;

(* ------------------------------------------------------------------------- *)
(* Also, bijections between restricted segments.                             *)
(* ------------------------------------------------------------------------- *)

let BINARYSUM_BOUND = prove
 (`!k s. (!i. i IN s ==> i < k) ==> binarysum s < 2 EXP k`,
  REWRITE_TAC[BINARYSUM_BOUND_LEMMA; binarysum]);;

let BITSET_BOUND = prove
 (`!n i k. n < 2 EXP k /\ i IN bitset n ==> i < k`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN `2 EXP i < 2 EXP k` MP_TAC THENL
   [ASM_MESON_TAC[BITSET_BOUND_LEMMA; LET_TRANS];
    REWRITE_TAC[LT_EXP; ARITH]]);;

let BITSET_BOUND_EQ = prove
 (`!n k. n < 2 EXP k <=> (!i. i IN bitset n ==> i < k)`,
  MESON_TAC[BINARYSUM_BOUND; BITSET_BOUND; BINARYSUM_BITSET]);;

let BINARYSUM_BOUND_EQ = prove
 (`!s k. FINITE s ==> (binarysum s < 2 EXP k <=> (!i. i IN s ==> i < k))`,
  MESON_TAC[BINARYSUM_BOUND; BITSET_BOUND; BITSET_BINARYSUM]);;