Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 8,056 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
(* ========================================================================= *)
(* Binary expansions as a bijection between numbers and finite sets. *)
(* ========================================================================= *)
let BOUNDED_FINITE = prove
(`!s. (!x:num. x IN s ==> x <= n) ==> FINITE s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
ASM_SIMP_TAC[SUBSET; IN_NUMSEG; FINITE_NUMSEG; LE_0]);;
let EVEN_NSUM = prove
(`!s. FINITE s /\ (!i. i IN s ==> EVEN(f i)) ==> EVEN(nsum s f)`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_SIMP_TAC[NSUM_CLAUSES; ARITH; EVEN_ADD; IN_INSERT]);;
(* ------------------------------------------------------------------------- *)
(* The basic bijections. *)
(* ------------------------------------------------------------------------- *)
let bitset = new_definition
`bitset n = {i | ODD(n DIV (2 EXP i))}`;;
let binarysum = new_definition
`binarysum s = nsum s (\i. 2 EXP i)`;;
(* ------------------------------------------------------------------------- *)
(* Inverse property in one direction. *)
(* ------------------------------------------------------------------------- *)
let BITSET_BOUND_LEMMA = prove
(`!n i. i IN (bitset n) ==> 2 EXP i <= n`,
REWRITE_TAC[bitset; IN_ELIM_THM] THEN MESON_TAC[DIV_LT; ODD; NOT_LE]);;
let BITSET_BOUND_WEAK = prove
(`!n i. i IN (bitset n) ==> i < n`,
MESON_TAC[BITSET_BOUND_LEMMA; LT_POW2_REFL; LTE_TRANS]);;
let FINITE_BITSET = prove
(`!n. FINITE(bitset n)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; LE_0; SUBSET] THEN
MESON_TAC[LT_IMP_LE; BITSET_BOUND_WEAK]);;
let BITSET_0 = prove
(`bitset 0 = {}`,
REWRITE_TAC[bitset; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN
SIMP_TAC[DIV_0; EXP_EQ_0; ARITH]);;
let BITSET_STEP = prove
(`(!n. bitset(2 * n) = IMAGE SUC (bitset n)) /\
(!n. bitset(2 * n + 1) = 0 INSERT (IMAGE SUC (bitset n)))`,
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[ALL_TAC; DISCH_THEN(fun th -> REWRITE_TAC[GSYM th])] THEN
REWRITE_TAC[bitset; EXTENSION; IN_INSERT; IN_ELIM_THM; IN_IMAGE] THEN
GEN_TAC THEN MATCH_MP_TAC num_INDUCTION THEN
REWRITE_TAC[ARITH; ODD_MULT; DIV_1; NOT_SUC; ODD_ADD] THEN
GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[SUC_INJ; UNWIND_THM1; EXP] THEN
SIMP_TAC[GSYM DIV_DIV; MULT_EQ_0; EXP_EQ_0; ARITH] THEN
REWRITE_TAC[ARITH_RULE `(2 * n + 1) DIV 2 = n /\ (2 * n) DIV 2 = n`]);;
let BINARYSUM_BITSET = prove
(`!n. binarysum (bitset n) = n`,
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN REWRITE_TAC[binarysum] THEN
MATCH_MP_TAC BINARY_INDUCT THEN REWRITE_TAC[BITSET_0; NSUM_CLAUSES] THEN
SIMP_TAC[BITSET_STEP; NSUM_IMAGE; SUC_INJ; ADD1; FINITE_BITSET; ARITH;
NSUM_CLAUSES; FINITE_IMAGE; IN_IMAGE; ARITH_RULE `~(0 = x + 1)`] THEN
REWRITE_TAC[o_DEF; EXP; NSUM_LMUL] THEN
ASM_MESON_TAC[ADD_SYM; ARITH_RULE `~(2 * m = 0) ==> m < 2 * m`;
ARITH_RULE `m < SUC(2 * m)`]);;
let BITSET_EQ = prove
(`!m n. bitset m = bitset n <=> m = n`,
MESON_TAC[BINARYSUM_BITSET]);;
let BITSET_EQ_EMPTY = prove
(`!n. bitset n = {} <=> n = 0`,
MESON_TAC[BITSET_EQ; BITSET_0]);;
(* ------------------------------------------------------------------------- *)
(* Inverse property in the other direction. *)
(* ------------------------------------------------------------------------- *)
let BINARYSUM_BOUND_LEMMA = prove
(`!k s. (!i. i IN s ==> i < k) ==> nsum s (\i. 2 EXP i) < 2 EXP k`,
INDUCT_TAC THEN
SIMP_TAC[LT; GSYM NOT_EXISTS_THM; MEMBER_NOT_EMPTY; NSUM_CLAUSES; ARITH] THEN
REPEAT STRIP_TAC THEN SUBGOAL_THEN `FINITE(s:num->bool)` ASSUME_TAC THENL
[ASM_MESON_TAC[BOUNDED_FINITE; LE_LT]; ALL_TAC] THEN
MATCH_MP_TAC LET_TRANS THEN
EXISTS_TAC `nsum (k INSERT (s DELETE k)) (\i. 2 EXP i)` THEN CONJ_TAC THENL
[MATCH_MP_TAC NSUM_SUBSET THEN SIMP_TAC[FINITE_INSERT; FINITE_DELETE];
ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN
REWRITE_TAC[EXP; ARITH_RULE `a + b < 2 * a <=> b < a `] THEN
FIRST_X_ASSUM MATCH_MP_TAC] THEN
ASM SET_TAC[]);;
let BINARYSUM_DIV_DIVISIBLE = prove
(`!s k. FINITE s /\ (!i. i IN s ==> k <= i)
==> nsum s (\i. 2 EXP i) = 2 EXP k * nsum s (\i. 2 EXP (i - k))`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[NSUM_CLAUSES; DIV_0; EXP_EQ_0; ARITH_EQ; MULT_CLAUSES] THEN
SIMP_TAC[IN_INSERT; ADD_ASSOC; EQ_ADD_RCANCEL; LEFT_ADD_DISTRIB] THEN
SIMP_TAC[GSYM EXP_ADD; ARITH_RULE `i <= k:num ==> i + k - i = k`]);;
let BINARYSUM_DIV = prove
(`!k s. FINITE s
==> (nsum s (\j. 2 EXP j)) DIV (2 EXP k) =
nsum s (\j. if j < k then 0 else 2 EXP (j - k))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `(nsum {i | i < k /\ i IN s} (\j. 2 EXP j) +
nsum {i | k <= i /\ i IN s} (\j. 2 EXP j)) DIV (2 EXP k)` THEN
CONJ_TAC THENL
[AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC NSUM_UNION_EQ THEN
ASM_SIMP_TAC[EXTENSION; IN_INTER; IN_UNION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
CONJ_TAC THEN X_GEN_TAC `i:num` THEN
ASM_CASES_TAC `(i:num) IN s` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC DIV_UNIQ THEN
EXISTS_TAC `nsum {i | i < k /\ i IN s} (\j. 2 EXP j)` THEN
SIMP_TAC[BINARYSUM_BOUND_LEMMA; IN_ELIM_THM] THEN
REWRITE_TAC[ARITH_RULE `a + x:num = y + a <=> x = y`] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `2 EXP k * nsum {i | k <= i /\ i IN s} (\i. 2 EXP (i - k))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC BINARYSUM_DIV_DIVISIBLE THEN SIMP_TAC[IN_ELIM_THM] THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:num->bool` THEN
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM];
ALL_TAC] THEN
GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN
REWRITE_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; ARITH_EQ] THEN
ONCE_REWRITE_TAC[GSYM NSUM_SUPPORT] THEN
REWRITE_TAC[support; NEUTRAL_ADD; EXP_EQ_0; ARITH; IN_ELIM_THM] THEN
REWRITE_TAC[ARITH_RULE `(if p then 0 else q) = 0 <=> ~p ==> q = 0`] THEN
REWRITE_TAC[EXP_EQ_0; ARITH; NOT_LT; CONJ_ACI] THEN
MATCH_MP_TAC NSUM_EQ THEN
SIMP_TAC[IN_ELIM_THM; ARITH_RULE `k <= j:num ==> ~(j < k)`]);;
let BITSET_BINARYSUM = prove
(`!s. FINITE s ==> bitset (binarysum s) = s`,
GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[bitset; binarysum; EXTENSION; IN_ELIM_THM] THEN
X_GEN_TAC `i:num` THEN ASM_SIMP_TAC[BINARYSUM_DIV] THEN
ASM_CASES_TAC `(i:num) IN s` THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE
`i IN s ==> s = i INSERT (s DELETE i)`)) THEN
ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN
REWRITE_TAC[LT_REFL; SUB_REFL; ARITH; ODD_ADD];
ALL_TAC] THEN
REWRITE_TAC[NOT_ODD] THEN MATCH_MP_TAC EVEN_NSUM THEN
ASM_REWRITE_TAC[FINITE_DELETE; IN_DELETE] THEN
ONCE_REWRITE_TAC[COND_RAND] THEN SIMP_TAC[ARITH; EVEN_EXP; SUB_EQ_0] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[LE_LT]);;
(* ------------------------------------------------------------------------- *)
(* Also, bijections between restricted segments. *)
(* ------------------------------------------------------------------------- *)
let BINARYSUM_BOUND = prove
(`!k s. (!i. i IN s ==> i < k) ==> binarysum s < 2 EXP k`,
REWRITE_TAC[BINARYSUM_BOUND_LEMMA; binarysum]);;
let BITSET_BOUND = prove
(`!n i k. n < 2 EXP k /\ i IN bitset n ==> i < k`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `2 EXP i < 2 EXP k` MP_TAC THENL
[ASM_MESON_TAC[BITSET_BOUND_LEMMA; LET_TRANS];
REWRITE_TAC[LT_EXP; ARITH]]);;
let BITSET_BOUND_EQ = prove
(`!n k. n < 2 EXP k <=> (!i. i IN bitset n ==> i < k)`,
MESON_TAC[BINARYSUM_BOUND; BITSET_BOUND; BINARYSUM_BITSET]);;
let BINARYSUM_BOUND_EQ = prove
(`!s k. FINITE s ==> (binarysum s < 2 EXP k <=> (!i. i IN s ==> i < k))`,
MESON_TAC[BINARYSUM_BOUND; BITSET_BOUND; BITSET_BINARYSUM]);;
|