Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 106,094 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
(* ========================================================================= *)
(* Calculation with real numbers (Boehm-style but by inference).             *)
(* ========================================================================= *)

needs "Library/transc.ml";;

let REAL_SUB_SUM0 = prove
 (`!x y m. sum(0,m) x - sum(0,m) y = sum(0,m) (\i. x i - y i)`,
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[sum] THEN
  REAL_ARITH_TAC);;

let REAL_MUL_RSUM0 = prove
 (`!m c x. c * sum(0,m) x = sum(0,m) (\i. c * x(i))`,
  INDUCT_TAC THEN
  ASM_REWRITE_TAC[sum; REAL_MUL_RZERO; REAL_ADD_LDISTRIB]);;

let REAL_ABS_LEMMA = prove
 (`!a b n. (&a pow n) * abs b = abs((&a pow n) * b)`,
  REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM]);;

let REAL_ABS_LEMMA1 = prove
 (`!a b. &a * abs b = abs(&a * b)`,
  REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NUM]);;

let REAL_ABS_TRIANGLE_LEMMA = prove
 (`!u x y z. abs(x - y) + abs(z - x) < u ==> abs(z - y) < u`,
  REAL_ARITH_TAC);;
let REAL_MONO_POW2 = prove
 (`!m n. m <= n ==> &2 pow m <= &2 pow n`,
  REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
  SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
  REWRITE_TAC[ADD_CLAUSES; real_pow; REAL_LE_REFL] THEN
  POP_ASSUM MP_TAC THEN MP_TAC(SPEC `m:num` REAL_LT_POW2) THEN
  REAL_ARITH_TAC);;

let REAL_LE_SUC_POW2 = prove
 (`!m. &2 pow m + &1 <= &2 pow (SUC m)`,
  GEN_TAC THEN REWRITE_TAC[real_pow; REAL_MUL_2; REAL_LE_LADD; REAL_LE_POW2]);;

let REAL_OPPSIGN_LEMMA = prove
 (`!x y. (x * y < &0) <=> (x < &0 /\ &0 < y) \/ (&0 < x /\ y < &0)`,
  REPEAT GEN_TAC THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `x:real` REAL_LT_NEGTOTAL) THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `y:real` REAL_LT_NEGTOTAL) THEN
  ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LT_REFL] THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
  DISCH_THEN(fun th -> MP_TAC(MATCH_MP REAL_LT_MUL th) THEN MP_TAC th) THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN
  REAL_ARITH_TAC);;

let REAL_OPPSIGN = prove
 (`(&0 < x ==> &0 <= y) /\ (x < &0 ==> y <= &0) <=> &0 <= x * y`,
  REWRITE_TAC[GSYM REAL_NOT_LT; REAL_OPPSIGN_LEMMA] THEN
  REAL_ARITH_TAC);;

let REAL_NDIV_LEMMA1a = prove
 (`!a m n. &2 * abs(&2 pow m * &a - &2 pow (m + n)) <= &2 pow m
           ==> (&a = &2 pow n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[REAL_POW_ADD; GSYM REAL_SUB_LDISTRIB] THEN
  REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN
  REWRITE_TAC[REAL_OF_NUM_POW] THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
    (SPECL [`a:num`; `2 EXP n`] LT_CASES) THEN
  ASM_REWRITE_TAC[] THEN
  CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN
  POP_ASSUM(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[LT_EXISTS]) THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
  REWRITE_TAC[REAL_ARITH `((a + b) - a = b) /\ (a - (a + b) = --b)`] THEN
  REWRITE_TAC[REAL_ABS_NEG; REAL_NOT_LE; REAL_ABS_NUM] THEN
  REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN
  REWRITE_TAC[REAL_MUL_2; REAL_ADD_LDISTRIB; REAL_ADD_RDISTRIB] THEN
  REWRITE_TAC[REAL_MUL_RID; REAL_ADD_ASSOC; REAL_LT_ADDL] THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&(2 EXP m)` THEN
  REWRITE_TAC[REAL_LT_POW2; GSYM REAL_OF_NUM_POW] THEN
  ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + c = b + (a + c)`] THEN
  REWRITE_TAC[GSYM REAL_MUL_2; REAL_LE_ADDR] THEN
  MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN
  MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN
  MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2]);;

let REAL_NDIV_LEMMA1b = prove
 (`!a m n. ~(&2 * abs(-- (&2 pow m * &a) - &2 pow (m + n)) <= &2 pow m)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; GSYM REAL_NEG_ADD] THEN
  REWRITE_TAC[REAL_ABS_NEG; REAL_POW_ADD] THEN
  REWRITE_TAC[REAL_ABS_MUL; GSYM REAL_ADD_LDISTRIB] THEN
  SUBGOAL_THEN `&0 <= &a + &2 pow n` ASSUME_TAC THENL
   [MATCH_MP_TAC REAL_LE_ADD THEN REWRITE_TAC[REAL_POS] THEN
    MATCH_MP_TAC REAL_POW_LE THEN REWRITE_TAC[REAL_POS];
    REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN
    ASM_REWRITE_TAC[real_abs; REAL_NOT_LE] THEN
    MATCH_MP_TAC REAL_LTE_TRANS THEN
    EXISTS_TAC `(&2 * &2 pow m) * &1` THEN CONJ_TAC THENL
     [REWRITE_TAC[REAL_MUL_RID; REAL_MUL_2] THEN
      REWRITE_TAC[REAL_LT_ADDR; REAL_LT_POW2];
      REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
      CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN
        MATCH_MP_TAC REAL_POW_LE THEN REWRITE_TAC[REAL_POS];
        MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow n` THEN
        REWRITE_TAC[REAL_LE_POW2; REAL_LE_ADDL; REAL_POS]]]]);;

let REAL_NDIV_LEMMA2 = prove
 (`!a b m n. (?k. (b = &k) \/ (b = --(&k))) /\
             (abs(a) = &2 pow m) /\
             &2 * abs(a * b - &2 pow (m + n)) <= abs(a)
             ==> (a * b = &2 pow (m + n))`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISJ_CASES_THEN SUBST1_TAC (REAL_ARITH `(a = abs a) \/ (a = --(abs a))`) THEN
  ASM_REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG] THEN
  REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_POW; REAL_ABS_NUM; REAL_NEG_NEG] THEN
  REWRITE_TAC[REAL_NDIV_LEMMA1b] THEN
  DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_NDIV_LEMMA1a) THEN
  REWRITE_TAC[REAL_POW_ADD]);;

let REAL_NDIV_LEMMA3 = prove
 (`!a b m n. m <= n /\
             (?k. (b = &k) \/ (b = --(&k))) /\
             (abs(a) = &2 pow m) /\
             &2 * abs(a * b - &2 pow n) <= abs(a)
             ==> (a * b = &2 pow n)`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
  REWRITE_TAC[REAL_NDIV_LEMMA2]);;

(* ------------------------------------------------------------------------- *)
(* Surely there is already an efficient way to do this...                    *)
(* ------------------------------------------------------------------------- *)

let log2 =                              (*** least p >= 0 with x <= 2^p ***)
  let rec log2 x y =
    if x </ Int 1 then y
    else log2 (quo_num x (Int 2)) (y +/ Int 1) in
  fun x -> log2 (x -/ Int 1) (Int 0);;

(* ------------------------------------------------------------------------- *)
(* Theorems justifying the steps.                                            *)
(* ------------------------------------------------------------------------- *)

let REALCALC_DOWNGRADE = prove
 (`(SUC d0 = d) ==>
   (n + d = n0) ==>
   abs(a - &2 pow n0 * x) < &1 ==>
   abs((&2 pow d) * b - a) <= &2 pow d0 ==>
   abs(b - &2 pow n * x) < &1`,
  DISCH_THEN(SUBST1_TAC o SYM) THEN
  DISCH_THEN(SUBST1_TAC o SYM) THEN
  REPEAT DISCH_TAC THEN
  MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `&2 pow (SUC d0)` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC REAL_POW_LT THEN REAL_ARITH_TAC;
    REWRITE_TAC[REAL_ABS_LEMMA; REAL_MUL_RID; REAL_SUB_LDISTRIB] THEN
    MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&2 pow d0 + &2 pow d0` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC REAL_ABS_TRIANGLE_LEMMA THEN EXISTS_TAC `a:real` THEN
      MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1` THEN
      REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_ADD] THEN
      ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_REWRITE_TAC[] THEN
      SPEC_TAC(`d0:num`,`d0:num`) THEN INDUCT_TAC THEN
      REWRITE_TAC[real_pow; REAL_LE_REFL] THEN
      MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1 + &1` THEN
      REWRITE_TAC[REAL_MUL_2] THEN CONJ_TAC THENL
       [REAL_ARITH_TAC;
        MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[]];
      REWRITE_TAC[real_pow; GSYM REAL_MUL_2; REAL_LE_REFL]]]);;

let REALCALC_INT = prove
 (`abs((&2 pow n) * a - (&2 pow n) * a) < &1`,
  REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_0; REAL_LT_01]);;

let REALCALC_NEG = prove
 (`abs(a - (&2 pow n) * x) < &1
   ==> abs(--a - (&2 pow n) * --x) < &1`,
  REWRITE_TAC[real_sub; GSYM REAL_NEG_ADD] THEN
  REWRITE_TAC[REAL_ABS_NEG; REAL_MUL_RNEG]);;

let REALCALC_ABS = prove
 (`abs(a - &2 pow n * x) < &1
   ==> abs(abs(a) - &2 pow n * abs(x)) < &1`,
  DISCH_TAC THEN REWRITE_TAC[REAL_ABS_LEMMA] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `abs(a - (&2 pow n) * x)` THEN
  ASM_REWRITE_TAC[REAL_ABS_SUB_ABS]);;

let REALCALC_INV_LEMMA = prove
 (`(?m. (b = &m) \/ (b = --(&m))) /\
   (?m. (a = &m) \/ (a = --(&m))) /\
   SUC(n + k) <= (2 * e) /\
   &2 pow e <= abs(a) /\
   abs(a - &2 pow k * x) < &1 /\
   &2 * abs(a * b - &2 pow (n + k)) <= abs(a)
   ==> abs(b - &2 pow n * inv(x)) < &1`,
  let lemma1 = REAL_ARITH
   `!x y z b. &2 * abs(x - y) <= b /\ &2 * abs(y - z) < b
              ==> &2 * abs(x - z) < &2 * b` in
  let lemma2 = REAL_ARITH
   `!x y z. x + &1 <= abs(z) /\ abs(z - y) < &1 ==> x <= abs(y)` in
  let lemma3 = REAL_ARITH
    `(abs(x) <= &1 /\ &0 < abs(y) /\ abs(y) < &1) /\
     (&0 < x ==> &0 <= y) /\ (x < &0 ==> y <= &0)
      ==> abs(x - y) < &1` in
  let lemma4 = REAL_ARITH
    `!a b c. c <= abs(a) + abs(b) /\ abs(a - b) < c ==>
             (&0 < a ==> &0 <= b) /\ (a < &0 ==> b <= &0)` in
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  SUBGOAL_THEN `~(a = &0)` ASSUME_TAC THENL
   [DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `&2 pow e <= abs(&0)` THEN
    REWRITE_TAC[REAL_ABS_0; GSYM REAL_NOT_LT; REAL_LT_POW2]; ALL_TAC] THEN
  SUBGOAL_THEN `~(x = &0)` ASSUME_TAC THENL
   [DISCH_THEN SUBST_ALL_TAC THEN
    UNDISCH_TAC `abs(a - &2 pow k * &0) < &1` THEN
    REWRITE_TAC[REAL_MUL_RZERO; REAL_SUB_RZERO; REAL_NOT_LT] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow e` THEN
    ASM_REWRITE_TAC[REAL_LE_POW2]; ALL_TAC] THEN
  SUBGOAL_THEN `(&2 pow e + &1 <= abs(a)) \/ (&2 pow e = abs(a))` MP_TAC THENL
   [REWRITE_TAC[REAL_OF_NUM_POW] THEN
    FIRST_ASSUM(CHOOSE_THEN(DISJ_CASES_THEN SUBST_ALL_TAC)) THEN
    REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[REAL_ABS_NEG; REAL_ABS_NUM]) THEN
    REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; REAL_OF_NUM_EQ] THEN
    REWRITE_TAC[GSYM ADD1; LE_SUC_LT; GSYM LE_LT] THEN
    ASM_REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_POW];
    UNDISCH_TAC `&2 pow e <= abs(a)` THEN DISCH_THEN(K ALL_TAC)] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
   [DISCH_TAC THEN MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
    EXISTS_TAC `&2 * abs(a)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LT_MUL THEN
      ASM_REWRITE_TAC[GSYM REAL_ABS_NZ] THEN REAL_ARITH_TAC;
      REWRITE_TAC[GSYM REAL_MUL_ASSOC; GSYM REAL_ABS_MUL] THEN
      REWRITE_TAC[REAL_SUB_LDISTRIB; REAL_MUL_RID] THEN
      MATCH_MP_TAC lemma1 THEN EXISTS_TAC `&2 pow (n + k)` THEN
      ASM_REWRITE_TAC[]] THEN
    GEN_REWRITE_TAC (LAND_CONV o funpow 3 RAND_CONV) [REAL_MUL_SYM] THEN
    REWRITE_TAC[REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN
    REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ABS_MUL] THEN
    MATCH_MP_TAC REAL_LT_RCANCEL_IMP THEN
    EXISTS_TAC `abs(x)` THEN ASM_REWRITE_TAC[GSYM REAL_ABS_NZ] THEN
    REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
    ONCE_REWRITE_TAC[GSYM REAL_ABS_MUL] THEN
    MATCH_MP_TAC REAL_LTE_TRANS THEN
    EXISTS_TAC `&2 * abs(&2 pow n) * &1` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LT_LMUL THEN
      CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
      MATCH_MP_TAC REAL_LT_LMUL THEN CONJ_TAC THENL
       [REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_POW_EQ_0] THEN
        CONV_TAC(RAND_CONV(LAND_CONV REAL_INT_EQ_CONV)) THEN REWRITE_TAC[];
        REWRITE_TAC[REAL_SUB_RDISTRIB] THEN
        ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN
        GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN
        REWRITE_TAC[REAL_MUL_ASSOC] THEN
        FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_RINV th]) THEN
        ASM_REWRITE_TAC[REAL_MUL_LID]];
      ALL_TAC] THEN
    MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&2 pow k` THEN
    REWRITE_TAC[REAL_LT_POW2; REAL_MUL_RID; REAL_ABS_LEMMA] THEN
    ONCE_REWRITE_TAC
     [AC REAL_MUL_AC `a * b * c = (a * c) * b`] THEN
    REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `&2 pow e * &2 pow e` THEN CONJ_TAC THENL
     [ONCE_REWRITE_TAC
       [AC REAL_MUL_AC `(a * b) * c = c * b * a`] THEN
      REWRITE_TAC[GSYM REAL_POW_ADD; GSYM(CONJUNCT2 real_pow)] THEN
      MATCH_MP_TAC REAL_MONO_POW2 THEN ASM_REWRITE_TAC[GSYM MULT_2];
      MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2];
        REWRITE_TAC[REAL_ABS_LEMMA] THEN MATCH_MP_TAC lemma2 THEN
        EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[];
        MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2];
        MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow e + &1` THEN
        ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]];

    DISCH_TAC THEN
    DISJ_CASES_TAC (SPECL [`e:num`; `n + k:num`] LET_CASES) THENL
     [SUBGOAL_THEN `a * b = &2 pow (n + k)` ASSUME_TAC THENL
       [MATCH_MP_TAC REAL_NDIV_LEMMA3 THEN
        EXISTS_TAC `e:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
      MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `abs(a)` THEN
      ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; GSYM REAL_ABS_MUL] THEN
      ASM_REWRITE_TAC[REAL_SUB_LDISTRIB] THEN
      ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c = b * a * c`] THEN
      REWRITE_TAC[REAL_POW_ADD; GSYM REAL_SUB_LDISTRIB] THEN
      REWRITE_TAC[REAL_ABS_MUL; REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LT_RCANCEL_IMP THEN EXISTS_TAC `abs(x)` THEN
      ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; GSYM REAL_MUL_ASSOC] THEN
      GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_ABS_MUL] THEN
      REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN
      REWRITE_TAC[MATCH_MP REAL_MUL_LINV (ASSUME `~(x = &0)`)] THEN
      ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN
      MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&2 pow n * &1` THEN
      CONJ_TAC THENL
       [REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN
        MATCH_MP_TAC REAL_LT_LMUL THEN
        ASM_REWRITE_TAC[REAL_LT_POW2; REAL_MUL_RID];
        MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN EXISTS_TAC `&2 pow (SUC k)` THEN
        REWRITE_TAC[REAL_MUL_RID; REAL_LT_POW2]] THEN
      MATCH_MP_TAC REAL_LE_TRANS THEN
      EXISTS_TAC `&2 pow (2 * e)` THEN CONJ_TAC THENL
       [REWRITE_TAC[GSYM REAL_POW_ADD; ADD_CLAUSES] THEN
        MATCH_MP_TAC REAL_MONO_POW2 THEN ASM_REWRITE_TAC[];
        SUBST1_TAC(SYM(ASSUME `&2 pow e = abs(a)`)) THEN
        REWRITE_TAC[MULT_2; REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN
        MATCH_MP_TAC REAL_LE_LMUL THEN
        REWRITE_TAC[MATCH_MP REAL_LT_IMP_LE (SPEC_ALL REAL_LT_POW2)]] THEN
      ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[real_pow] THEN
      SUBGOAL_THEN `?d. e = SUC d` (CHOOSE_THEN SUBST_ALL_TAC) THENL
       [UNDISCH_TAC `SUC (n + k) <= (2 * e)` THEN
        SPEC_TAC(`e:num`,`e:num`) THEN INDUCT_TAC THEN
        REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; LE; NOT_SUC] THEN
        REWRITE_TAC[SUC_INJ; GSYM EXISTS_REFL];
        REWRITE_TAC[real_pow; GSYM REAL_MUL_ASSOC] THEN
        MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS] THEN
        MATCH_MP_TAC REAL_LE_TRANS THEN
        EXISTS_TAC `&2 pow (SUC d) - &1` THEN
        REWRITE_TAC[REAL_LE_SUB_RADD; REAL_LE_SUB_LADD] THEN
        REWRITE_TAC[REAL_LE_SUC_POW2] THEN
        SUBGOAL_THEN `abs(abs a - &2 pow k * abs(x)) < &1` MP_TAC THENL
         [REWRITE_TAC[REAL_ABS_LEMMA] THEN
          MATCH_MP_TAC(REAL_LET_IMP REAL_ABS_SUB_ABS) THEN
          ASM_REWRITE_TAC[];
          ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]];

      SUBGOAL_THEN `abs(b) <= &1 /\ &0 <= a * b` STRIP_ASSUME_TAC THENL
       [ASM_CASES_TAC `b = &0` THEN
        ASM_REWRITE_TAC[REAL_ABS_0; REAL_MUL_RZERO; REAL_POS] THEN
        SUBGOAL_THEN `abs(a) <= abs(a * b)` ASSUME_TAC THENL
         [GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_MUL_RID] THEN
          REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
          REWRITE_TAC[REAL_ABS_POS] THEN
          SUBGOAL_THEN `?q. abs(b) = &q` CHOOSE_TAC THENL
           [UNDISCH_TAC `?m. (b = &m) \/ (b = --(&m))` THEN
            DISCH_THEN(X_CHOOSE_THEN `p:num` DISJ_CASES_TAC) THEN
            EXISTS_TAC `p:num` THEN
            ASM_REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM];
            UNDISCH_TAC `~(b = &0)` THEN ASM_REWRITE_TAC[REAL_ABS_NZ] THEN
            REWRITE_TAC[REAL_ABS_NUM; REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN
            REWRITE_TAC[SYM(REWRITE_CONV[ARITH_SUC] `SUC 0`)] THEN
            REWRITE_TAC[LE_SUC_LT]];
          ALL_TAC] THEN
        SUBGOAL_THEN `abs(a * b) <= abs(a) /\ &0 <= a * b` ASSUME_TAC THENL
         [MP_TAC(SPEC `(n:num) + k` REAL_LT_POW2) THEN
          UNDISCH_TAC `&2 * abs(a * b - &2 pow (n + k)) <= abs a` THEN
          UNDISCH_TAC `abs(a) <= abs(a * b)` THEN
          SUBGOAL_THEN `~(a * b = &0)` MP_TAC THENL
           [ASM_REWRITE_TAC[REAL_ENTIRE]; ALL_TAC] THEN
          SUBGOAL_THEN `&2 * &2 pow (n + k) <= abs(a)` MP_TAC THENL
           [REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN
            FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
            MATCH_MP_TAC REAL_MONO_POW2 THEN ASM_REWRITE_TAC[LE_SUC_LT];
            REAL_ARITH_TAC];
          ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
          EXISTS_TAC `abs(a)` THEN ASM_REWRITE_TAC
            [GSYM REAL_ABS_NZ; GSYM REAL_ABS_MUL; REAL_MUL_RID]];
        ALL_TAC] THEN
      MATCH_MP_TAC lemma3 THEN CONJ_TAC THENL
       [ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
         [ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_ENTIRE; REAL_INV_EQ_0] THEN
          MATCH_MP_TAC REAL_LT_IMP_NZ THEN REWRITE_TAC[REAL_LT_POW2];
          MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `abs(x)` THEN
          ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; GSYM REAL_ABS_MUL] THEN
          ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c = b * c * a`] THEN
          SUBGOAL_THEN `inv(x) * x = &1` SUBST1_TAC THENL
           [MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[];
            REWRITE_TAC[REAL_MUL_RID] THEN
            MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `&2 pow k` THEN
            REWRITE_TAC[REAL_LT_POW2; REAL_ABS_LEMMA] THEN
            MATCH_MP_TAC REAL_LET_TRANS THEN
            EXISTS_TAC `&2 pow (SUC(n + k)) - &1` THEN
            REWRITE_TAC[REAL_LT_SUB_RADD; REAL_LE_SUB_LADD] THEN
            ONCE_REWRITE_TAC[ADD_SYM] THEN
            REWRITE_TAC[GSYM REAL_POW_ADD] THEN
            ONCE_REWRITE_TAC[ADD_SYM] THEN
            REWRITE_TAC[REAL_LE_SUC_POW2; REAL_ABS_POW; REAL_ABS_NUM] THEN
            MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&2 pow e` THEN
            CONJ_TAC THENL
             [MATCH_MP_TAC REAL_MONO_POW2 THEN
              ASM_REWRITE_TAC[LE_SUC_LT];
              UNDISCH_TAC `abs(a - &2 pow k * x) < &1` THEN
              ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]]];
        SUBGOAL_THEN `&0 <= b * (&2 pow n * inv x)` MP_TAC THENL
         [MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
          EXISTS_TAC `a * a` THEN ASM_REWRITE_TAC[REAL_LT_SQUARE] THEN
          REWRITE_TAC[REAL_MUL_RZERO] THEN
          ONCE_REWRITE_TAC[AC REAL_MUL_AC
            `(a * b) * c * d = (a * c) * (b * d)`] THEN
          MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN
          MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
          EXISTS_TAC `x * x` THEN ASM_REWRITE_TAC[REAL_LT_SQUARE] THEN
          REWRITE_TAC[REAL_MUL_RZERO] THEN
          ONCE_REWRITE_TAC[AC REAL_MUL_AC
           `(a * b) * c * d * e = d * (e * a) * c * b`] THEN
          MATCH_MP_TAC REAL_LE_MUL THEN
          REWRITE_TAC[MATCH_MP REAL_LT_IMP_LE (SPEC_ALL REAL_LT_POW2)] THEN
          FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV)
            [MATCH_MP REAL_MUL_LINV th]) THEN
          MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&2 pow k` THEN
          REWRITE_TAC[REAL_LT_POW2; REAL_MUL_RZERO; REAL_MUL_LID] THEN
          ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c = b * (a * c)`] THEN
          ONCE_REWRITE_TAC[GSYM REAL_OPPSIGN] THEN
          MATCH_MP_TAC lemma4 THEN EXISTS_TAC `&1` THEN
          ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
          EXISTS_TAC `abs(a)` THEN CONJ_TAC THENL
           [UNDISCH_TAC `?m. (a = &m) \/ (a = -- (&m))` THEN
            DISCH_THEN(CHOOSE_THEN(DISJ_CASES_THEN SUBST_ALL_TAC)) THEN
            ASM_REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM] THEN
            REWRITE_TAC[REAL_OF_NUM_LE] THEN
            REWRITE_TAC[SYM(REWRITE_CONV[ARITH_SUC] `SUC 0`)] THEN
            REWRITE_TAC[LE_SUC_LT] THEN RULE_ASSUM_TAC
             (REWRITE_RULE[REAL_ARITH `(--x = &0) = (x = &0)`]) THEN
            UNDISCH_TAC `~(&m = &0)` THEN REWRITE_TAC[REAL_OF_NUM_EQ] THEN
            CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[NOT_LT; LE];
            REWRITE_TAC[REAL_LE_ADDR; REAL_ABS_POS]];
          REWRITE_TAC[REAL_OPPSIGN]]]]]);;

let REALCALC_INV = prove
 (`abs(a - &2 pow k * x) < &1 ==>
   (?m. (a = &m) \/ (a = --(&m))) ==>
   (?m. (b = &m) \/ (b = --(&m))) ==>
   SUC(n + k) <= (2 * e) ==>
   &2 pow e <= abs(a) ==>
   &2 * abs(a * b - &2 pow (n + k)) <= abs(a)
   ==> abs(b - &2 pow n * inv(x)) < &1`,
  REPEAT DISCH_TAC THEN MATCH_MP_TAC REALCALC_INV_LEMMA THEN
  ASM_REWRITE_TAC[]);;

let REALCALC_ADD = prove
 (`(n + 2 = n') ==>
   abs(a - &2 pow n' * x) < &1 ==>
   abs(b - &2 pow n' * y) < &1 ==>
   abs(&4 * c - (a + b)) <= &2
   ==> abs(c - &2 pow n * (x + y)) < &1`,
  DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REPEAT DISCH_TAC THEN
  MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
  EXISTS_TAC `&2 pow 2` THEN
  CONV_TAC(LAND_CONV REAL_INT_REDUCE_CONV) THEN
  REWRITE_TAC[REAL_ABS_LEMMA; REAL_SUB_LDISTRIB; REAL_MUL_RID] THEN
  REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_ADD] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN
  SUBST1_TAC(REAL_INT_REDUCE_CONV `&2 pow 2`) THEN
  MATCH_MP_TAC REAL_ABS_TRIANGLE_LEMMA THEN
  EXISTS_TAC `a + b` THEN
  GEN_REWRITE_TAC RAND_CONV [SYM(REAL_INT_REDUCE_CONV `&2 + &2`)] THEN
  MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC
   [REAL_ARITH `(x + y) - a * (u + v) = (x - a * u) + (y - a * v)`] THEN
  GEN_REWRITE_TAC RAND_CONV [SYM(REAL_INT_REDUCE_CONV `&1 + &1`)] THEN
  MATCH_MP_TAC(REAL_LET_IMP REAL_ABS_TRIANGLE) THEN
  MATCH_MP_TAC REAL_LT_ADD2 THEN ASM_REWRITE_TAC[]);;

let REALCALC_MUL = prove
 (`abs(a - &2 pow k * x) < &1 ==>
   abs(b - &2 pow l * y) < &1 ==>
   (n + m = k + l) ==>
   &2 * (abs(a) + abs(b) + &1) <= &2 pow m ==>
   &2 * abs(&2 pow m * c - a * b) <= &2 pow m
   ==> abs(c - &2 pow n * (x * y)) < &1`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `&2 pow m` THEN
  REWRITE_TAC[REAL_LT_POW2; REAL_ABS_LEMMA; REAL_SUB_LDISTRIB] THEN
  MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `&2` THEN
  CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN
  REWRITE_TAC[REAL_MUL_RID] THEN
  GEN_REWRITE_TAC RAND_CONV [REAL_MUL_2] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `&2 * abs(&2 pow m * c - a * b) +
              &2 * abs(a * b - &2 pow m * &2 pow n * x * y)` THEN
  CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN
  MATCH_MP_TAC REAL_LET_ADD2 THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_ADD] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[REAL_POW_ADD] THEN
  ONCE_REWRITE_TAC[AC REAL_MUL_AC `((a * b) * c) * d = (a * c) * (b * d)`] THEN
  SUBGOAL_THEN `?d. abs(d) < &1 /\ (&2 pow k * x = a + d)` MP_TAC THENL
   [EXISTS_TAC `&2 pow k * x - a` THEN
    UNDISCH_TAC `abs(a - &2 pow k * x) < &1` THEN REAL_ARITH_TAC;
    DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC))] THEN
  SUBGOAL_THEN `?e. abs(e) < &1 /\ (&2 pow l * y = b + e)` MP_TAC THENL
   [EXISTS_TAC `&2 pow l * y - b` THEN
    UNDISCH_TAC `abs(b - &2 pow l * y) < &1` THEN REAL_ARITH_TAC;
    DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC))] THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN
  EXISTS_TAC `&2 * (abs(a) * &1 + abs(b) * &1 + &1 * &1)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LT_LMUL THEN
    CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC REAL_LET_TRANS THEN
    EXISTS_TAC `abs(a) * abs(e) + abs(b) * abs(d) + abs(d) * abs(e)` THEN
    CONJ_TAC THENL
     [REWRITE_TAC[GSYM REAL_ABS_MUL] THEN REAL_ARITH_TAC;
      MATCH_MP_TAC REAL_LET_ADD2 THEN CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
        MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
        MATCH_MP_TAC REAL_LET_ADD2 THEN CONJ_TAC THENL
         [MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN
          MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
          MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS]]]];
    ASM_REWRITE_TAC[REAL_MUL_RID]]);;

(* ------------------------------------------------------------------------- *)
(* Square root.                                                              *)
(* ------------------------------------------------------------------------- *)

let REALCALC_SQRT = prove
 (`abs(a - &2 pow n * x) < &1
       ==> &1 <= x
           ==> abs(b pow 2 - &2 pow n * a) <= b
               ==> abs(b - &2 pow n * sqrt(x)) < &1`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
  EXISTS_TAC `abs(b + &2 pow n * sqrt(x))` THEN CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH
     `!z. abs(z) <= b /\ &0 < c ==> &0 < abs(b + c)`) THEN
    EXISTS_TAC `b pow 2 - &2 pow n * a` THEN ASM_REWRITE_TAC[] THEN
    ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; ARITH; REAL_LT_MUL;
                 SQRT_POS_LT; REAL_ARITH `&1 <= x ==> &0 < x`]; ALL_TAC] THEN
  REWRITE_TAC[GSYM REAL_ABS_MUL; REAL_MUL_RID] THEN
  ONCE_REWRITE_TAC[REAL_ARITH
    `(a + b) * (a - b) = a * a - b * b`] THEN
  MATCH_MP_TAC(REAL_ARITH
   `!c d. abs(b - c) <= d /\ abs(c - a) < e - d
          ==> abs(b - a) < e`) THEN
  MAP_EVERY EXISTS_TAC [`&2 pow n * a`; `b:real`] THEN
  ASM_REWRITE_TAC[GSYM REAL_POW_2] THEN
  REWRITE_TAC[REAL_POW_2; GSYM REAL_MUL_ASSOC] THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ABS_MUL] THEN
  MATCH_MP_TAC(REAL_ARITH `a < c ==> a < abs(b + c) - b`) THEN
  REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN
  MATCH_MP_TAC REAL_LT_LMUL THEN
  SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1` THEN
  ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; GSYM POW_2; SQRT_POW_2;
               REAL_ARITH `&1 <= x ==> &0 <= x`] THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP(REAL_ARITH `&1 <= x ==> &0 <= x`)) THEN
  UNDISCH_TAC `&1 <= x` THEN CONV_TAC CONTRAPOS_CONV THEN
  REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN
  SUBGOAL_THEN `x = sqrt(x) pow 2` SUBST1_TAC THENL
   [CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[SQRT_POW2];
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    REWRITE_TAC[POW_2] THEN MATCH_MP_TAC REAL_LT_MUL2 THEN
    ASM_SIMP_TAC[SQRT_POS_LE]]);;

(* ------------------------------------------------------------------------- *)
(* Lemmas common to all the Taylor series error analyses.                    *)
(* ------------------------------------------------------------------------- *)

let STEP_LEMMA1 = prove
 (`!a b c d x y.
        abs(a - c) <= x /\ abs(b - d) <= y
        ==> abs(a * b - c * d) <= abs(c) * y + abs(d) * x + x * y`,
  REPEAT GEN_TAC THEN
  ABBREV_TAC `u = a - c` THEN ABBREV_TAC `v = b - d` THEN
  SUBGOAL_THEN `a = c + u` SUBST1_TAC THENL
   [POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC; ALL_TAC] THEN
  SUBGOAL_THEN `b = d + v` SUBST1_TAC THENL
   [POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC; ALL_TAC] THEN
  STRIP_TAC THEN SUBST1_TAC
   (REAL_ARITH `(c + u) * (d + v) - c * d = c * v + d * u + u * v`) THEN
  REPEAT(MATCH_MP_TAC (REAL_LE_IMP REAL_ABS_TRIANGLE) THEN
         MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC) THEN
  REWRITE_TAC[REAL_ABS_MUL] THENL
   [MATCH_MP_TAC REAL_LE_LMUL;
    MATCH_MP_TAC REAL_LE_LMUL;
    MATCH_MP_TAC REAL_LE_MUL2] THEN
  ASM_REWRITE_TAC[REAL_ABS_POS]);;

let STEP_LEMMA2 = prove
 (`!n s t u x y k l a d.
        &0 < a /\
        &0 < d /\
        abs(s - &2 pow n * x) <= k /\
        abs(t - &2 pow n * y) <= l /\
        &2 * abs(u * &2 pow n * d - a * s * t) <= &2 pow n * d
        ==> abs(u - &2 pow n * (a / d) * (x * y)) <=
            (a / d) * (abs(x) + k / (&2 pow n)) * l +
            ((a / d) * k * abs(y) + &1 / &2)`,
   REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
   DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
   ONCE_REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN
    (CONJUNCTS_THEN2 (ASSUME_TAC o MATCH_MP STEP_LEMMA1) ASSUME_TAC) THEN
   SUBGOAL_THEN `&0 < &2 * &2 pow n * d` ASSUME_TAC THENL
    [REPEAT(MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC) THEN
     ASM_REWRITE_TAC[REAL_LT_POW2] THEN REAL_ARITH_TAC; ALL_TAC] THEN
   MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
   EXISTS_TAC `&2 * &2 pow n * d` THEN ASM_REWRITE_TAC[] THEN
   REWRITE_TAC[real_div; REAL_ADD_LDISTRIB; REAL_ADD_RDISTRIB] THEN
   SUBGOAL_THEN
     `!z. (&2 * &2 pow n * d) * abs(z) = abs((&2 * &2 pow n * d) * z)`
   (fun th -> REWRITE_TAC[th])
   THENL
    [GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ABS_MUL] THEN AP_THM_TAC THEN
     AP_TERM_TAC THEN UNDISCH_TAC `&0 < &2 * &2 pow n * d` THEN
     REAL_ARITH_TAC; ALL_TAC] THEN
   REWRITE_TAC[REAL_SUB_LDISTRIB] THEN
   (MATCH_MP_TAC o GEN_ALL o REAL_ARITH)
     `abs(a - b) + abs(b - c) <= d ==> abs(a - c) <= d` THEN
   EXISTS_TAC `&2 * a * s * t` THEN
   REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_ADD_ASSOC] THEN
   GEN_REWRITE_TAC RAND_CONV [REAL_ADD_SYM] THEN
   SUBGOAL_THEN `(inv(&2) * &2 = &1) /\
                 (inv(&2 pow n) * &2 pow n = &1) /\
                 (inv(d) * d = &1)`
   STRIP_ASSUME_TAC THENL
    [REPEAT CONJ_TAC THEN MATCH_MP_TAC REAL_MUL_LINV THEN
     REWRITE_TAC[REAL_POW_EQ_0] THEN
     UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC; ALL_TAC] THEN
   MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
    [GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN
     ASM_REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_RID] THEN
     REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_ABS_LEMMA1] THEN
     REWRITE_TAC[REAL_MUL_ASSOC] THEN
     GEN_REWRITE_TAC (LAND_CONV o funpow 2 RAND_CONV o LAND_CONV)
        [REAL_MUL_SYM] THEN ASM_REWRITE_TAC[GSYM REAL_MUL_ASSOC];

     REWRITE_TAC(map (GSYM o SPEC `&2`)
       [REAL_SUB_LDISTRIB; REAL_ADD_LDISTRIB]) THEN
     REWRITE_TAC[GSYM REAL_ABS_LEMMA1] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
     CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN
     GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
      [AC REAL_MUL_AC
        `a * b * c * d * e * f * g = d * (a * f) * (c * g) * (e * b)`] THEN
     GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV)
      [AC REAL_MUL_AC
        `a * b * c * d * e * f = c * (a * e) * f * (d * b)`] THEN
     GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV)
      [AC REAL_MUL_AC
        `a * b * c * d * e * f * g = c * (e * g) * (f * a) * (d * b)`] THEN
     GEN_REWRITE_TAC (RAND_CONV o RAND_CONV)
      [AC REAL_MUL_AC
        `a * b * c * d * e * f = c * (a * f) * e * (d * b)`] THEN
     GEN_REWRITE_TAC RAND_CONV
      [AC REAL_ADD_AC `(a + b) + c = a + c + b`] THEN
     ASM_REWRITE_TAC[REAL_MUL_RID] THEN
     REWRITE_TAC[GSYM REAL_ADD_LDISTRIB; GSYM REAL_SUB_LDISTRIB] THEN
     REWRITE_TAC[REAL_ABS_MUL] THEN
     SUBGOAL_THEN `abs(a) = a` SUBST1_TAC THENL
      [UNDISCH_TAC `&0 < a` THEN REAL_ARITH_TAC;
       MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REWRITE_TAC[REAL_ABS_LEMMA] THEN
       MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]]);;

(* ------------------------------------------------------------------------- *)
(* Now specific instances.                                                   *)
(* ------------------------------------------------------------------------- *)

let STEP_EXP = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) <= &1 /\
   abs(t - &2 pow n * (x pow i / &(FACT i))) <= k /\
   &2 * abs(u * &2 pow n * &(SUC i) - s * t) <= &2 pow n * &(SUC i)
   ==> abs(u - &2 pow n * (x pow (SUC i)) / &(FACT(SUC i))) <=
            (&2 / &(SUC i)) * k + &1 / &(FACT(SUC i)) + &1 / &2`,
  STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `s:real`; `t:real`; `u:real`;
                `x:real`; `x pow i / &(FACT i)`;
                `&1`; `k:real`; `&1`; `&(SUC i)`] STEP_LEMMA2) THEN
  ASM_REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN
  REWRITE_TAC[REAL_OF_NUM_LT; LT_0] THEN
  REWRITE_TAC[FACT; real_div; GSYM REAL_OF_NUM_MUL; real_pow] THEN
  REWRITE_TAC[REAL_MUL_LID; REAL_INV_MUL] THEN
  MATCH_MP_TAC(REAL_ARITH `(a = b) /\ c <= d ==> a <= c ==> b <= d`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[REAL_MUL_AC];
    REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN
    GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN
    REWRITE_TAC[GSYM REAL_ADD_LDISTRIB; GSYM REAL_MUL_ASSOC] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_INV THEN REWRITE_TAC[REAL_OF_NUM_LE; LE_0];
      MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL
         [GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `&2 = &1 + &1`] THEN
          MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[] THEN
          MATCH_MP_TAC REAL_INV_LE_1 THEN REWRITE_TAC[REAL_LE_POW2];
          MATCH_MP_TAC REAL_LE_TRANS THEN
          EXISTS_TAC `abs(t - &2 pow n * (x pow i / &(FACT i)))` THEN
          ASM_REWRITE_TAC[REAL_ABS_POS]];
        REWRITE_TAC[REAL_ABS_MUL] THEN
        GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
        MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN
        CONJ_TAC THENL
         [REWRITE_TAC[REAL_ABS_POW] THEN MATCH_MP_TAC REAL_POW_1_LE THEN
          ASM_REWRITE_TAC[REAL_ABS_POS];
          MATCH_MP_TAC(REAL_ARITH `&0 <= a ==> abs(a) <= a`) THEN
          MATCH_MP_TAC REAL_LE_INV THEN
          REWRITE_TAC[REAL_OF_NUM_LE; LE_0]]]]]);;

let STEP_SIN = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * --(x pow 2)) <= &1 /\
   abs(t - &2 pow n *
           x pow (2 * i + 1) / &(FACT (2 * i + 1)))
   <= &1 /\
   &2 * abs(u * &2 pow n * &(2 * i + 2) * &(2 * i + 3)
            - s * t)
   <= &2 pow n * &(2 * i + 2) * &(2 * i + 3)
   ==> abs(u - &2 pow n *
               --(x pow (2 * (SUC i) + 1)) /
               &(FACT (2 * (SUC i) + 1))) <= &1`,
  STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `s:real`; `t:real`; `u:real`;
                `--(x pow 2)`;
                `x pow (2 * i + 1) /
                 &(FACT(2 * i + 1))`;
                `&1`; `&1`; `&1`;
                `&(2 * i + 2) * &(2 * i + 3)`]
         STEP_LEMMA2) THEN
  ASM_REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN W(C SUBGOAL_THEN
  (fun th -> REWRITE_TAC[th]) o funpow 2 (fst o dest_imp) o snd) THENL
   [REWRITE_TAC(map num_CONV [`3`; `2`; `1`]) THEN
    REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LT] THEN
    REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; LT_0]; ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH `(a = b) /\ c <= d ==> a <= c ==> b <= d`) THEN
  CONJ_TAC THENL
   [AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN SUBGOAL_THEN
      `2 * (SUC i) + 1 = SUC(SUC(2 * i + 1))`
    SUBST1_TAC THENL
     [GEN_REWRITE_TAC I [GSYM REAL_OF_NUM_EQ] THEN
      REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD] THEN
      REAL_ARITH_TAC;
      REWRITE_TAC[real_pow; FACT] THEN
      REWRITE_TAC[ADD1; GSYM ADD_ASSOC] THEN
      REWRITE_TAC[ARITH] THEN
      REWRITE_TAC[real_div; REAL_INV_MUL; GSYM REAL_OF_NUM_MUL;
                  GSYM REAL_OF_NUM_ADD] THEN
      REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RNEG; REAL_MUL_LNEG] THEN
      REWRITE_TAC[REAL_POW_2; REAL_MUL_AC]];
    GEN_REWRITE_TAC RAND_CONV
     [SYM(REAL_RAT_REDUCE_CONV `&1 / &3 + &1 / &6 + &1 / &2`)] THEN
    REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN
    SUBGOAL_THEN `&1 / (&(2 * i + 2) * &(2 * i + 3))
                  <= &1 / &6` ASSUME_TAC THENL
     [REWRITE_TAC[real_div; REAL_MUL_LID] THEN
      MATCH_MP_TAC REAL_LE_INV2 THEN
      CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN
      REWRITE_TAC[REAL_ARITH `&6 = &2 * &3`] THEN
      REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
      MATCH_MP_TAC LE_MULT2 THEN ONCE_REWRITE_TAC[ADD_SYM] THEN
      REWRITE_TAC[LE_ADD]; ALL_TAC] THEN
    REWRITE_TAC[SYM(REAL_RAT_REDUCE_CONV `&1 / &6 * &2`)] THEN
    GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_MUL_RID] THEN
    REWRITE_TAC[GSYM REAL_ADD_LDISTRIB] THEN
    MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[] THEN
    REPEAT CONJ_TAC THENL
     [REWRITE_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ] THEN
      REWRITE_TAC[REAL_OF_NUM_MUL; REAL_POS];
      MATCH_MP_TAC REAL_LE_ADD THEN
      REWRITE_TAC[REAL_MUL_RID; REAL_ABS_POS] THEN
      MATCH_MP_TAC REAL_LE_ADD THEN
      REWRITE_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ; REAL_ABS_POS] THEN
      MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2];
      REWRITE_TAC[REAL_MUL_RID]] THEN
    MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
     [GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `&2 = &1 + &1`] THEN
      MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
       [REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_POW] THEN
        MATCH_MP_TAC REAL_POW_1_LE THEN ASM_REWRITE_TAC[REAL_ABS_POS];
        REWRITE_TAC[real_div; REAL_MUL_LID] THEN
        MATCH_MP_TAC REAL_INV_LE_1 THEN REWRITE_TAC[REAL_LE_POW2]];
      REWRITE_TAC[real_div; REAL_ABS_MUL] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN
      CONJ_TAC THENL
       [REWRITE_TAC[REAL_ABS_POW] THEN MATCH_MP_TAC REAL_POW_1_LE THEN
        ASM_REWRITE_TAC[REAL_ABS_POS];
        REWRITE_TAC[REAL_ABS_INV; REAL_ABS_NUM] THEN
        MATCH_MP_TAC REAL_INV_LE_1 THEN
        REWRITE_TAC[REAL_OF_NUM_LE; FACT_LE]]]]);;

let STEP_COS = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * --(x pow 2)) <= &1 /\
   abs(t - &2 pow n *
           x pow (2 * i) / &(FACT (2 * i)))
   <= k /\
   &2 * abs(u * &2 pow n * &(2 * i + 1) * &(2 * i + 2)
            - s * t)
   <= &2 pow n * &(2 * i + 1) * &(2 * i + 2)
   ==> abs(u - &2 pow n *
               --(x pow (2 * (SUC i))) /
               &(FACT (2 * (SUC i))))
       <= (&2 * inv(&(2 * i + 1) * &(2 * i + 2))) * k
          + inv(&(FACT(2 * i + 2))) + &1 / &2`,
  STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `s:real`; `t:real`; `u:real`;
                `--(x pow 2)`;
                `x pow (2 * i) /
                 &(FACT(2 * i))`;
                `&1`; `k:real`; `&1`;
                `&(2 * i + 1) * &(2 * i + 2)`]
         STEP_LEMMA2) THEN
  ASM_REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN W(C SUBGOAL_THEN
  (fun th -> REWRITE_TAC[th]) o funpow 2 (fst o dest_imp) o snd) THENL
   [REWRITE_TAC(map num_CONV [`3`; `2`; `1`]) THEN
    REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LT] THEN
    REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; LT_0]; ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH `(a = b) /\ c <= d ==> a <= c ==> b <= d`) THEN
  CONJ_TAC THENL
   [AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN SUBGOAL_THEN
      `2 * (SUC i) = SUC(SUC(2 * i))`
    SUBST1_TAC THENL
     [GEN_REWRITE_TAC I [GSYM REAL_OF_NUM_EQ] THEN
      REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD] THEN
      REAL_ARITH_TAC;
      REWRITE_TAC[real_pow; FACT] THEN
      REWRITE_TAC[ADD1; GSYM ADD_ASSOC] THEN
      REWRITE_TAC[ARITH] THEN
      REWRITE_TAC[real_div; REAL_INV_MUL; GSYM REAL_OF_NUM_MUL;
                  GSYM REAL_OF_NUM_ADD] THEN
      REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RNEG; REAL_MUL_LNEG] THEN
      REWRITE_TAC[REAL_POW_2; REAL_MUL_AC]];

    REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN
    MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
     [REWRITE_TAC[REAL_MUL_ASSOC] THEN
      MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL
       [REWRITE_TAC[real_div; REAL_MUL_LID] THEN
        GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_SYM] THEN
        MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL
         [MATCH_MP_TAC REAL_LE_INV THEN
          REWRITE_TAC[REAL_OF_NUM_MUL; REAL_POS];
          GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `&2 = &1 + &1`] THEN
          MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
           [REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_POW] THEN
            MATCH_MP_TAC REAL_POW_1_LE THEN
            ASM_REWRITE_TAC[REAL_ABS_POS];
            MATCH_MP_TAC REAL_INV_LE_1 THEN REWRITE_TAC[REAL_LE_POW2]]];
        MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
         `abs(t - &2 pow n * x pow (2 * i) / &(FACT (2 * i)))` THEN
        ASM_REWRITE_TAC[REAL_ABS_POS]];
      REWRITE_TAC[real_div; REAL_MUL_LID; REAL_INV_MUL; REAL_ABS_MUL] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      ONCE_REWRITE_TAC[AC REAL_MUL_AC
        `(a * b) * c * d = (d * a * b) * c`] THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN
      REPEAT CONJ_TAC THENL
       [REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) THEN
        REWRITE_TAC[REAL_POS; REAL_ABS_POS; REAL_LE_INV_EQ];
        REWRITE_TAC[REAL_ABS_INV] THEN
        REWRITE_TAC[GSYM REAL_INV_MUL; REAL_ABS_NUM] THEN
        MATCH_MP_TAC REAL_EQ_IMP_LE THEN AP_TERM_TAC THEN
        REWRITE_TAC[num_CONV `2`; num_CONV `1`; ADD_CLAUSES] THEN
        REWRITE_TAC[SYM(num_CONV `2`); SYM(num_CONV `1`)] THEN
        REWRITE_TAC[FACT; REAL_OF_NUM_MUL] THEN
        REWRITE_TAC[MULT_AC];
        REWRITE_TAC[REAL_ABS_POW] THEN MATCH_MP_TAC REAL_POW_1_LE THEN
        ASM_REWRITE_TAC[REAL_ABS_POS]]]]);;

let STEP_LN = prove
 (`2 <= n /\
   abs(x) <= &1 / &2 /\
   abs(s - &2 pow n * --x) <= &1 /\
   abs(t - &2 pow n * -- ((--x) pow (SUC i) / &(SUC i))) <= &3 /\
   &2 * abs(u * &2 pow n * &(SUC(SUC i)) - &(SUC i) * s * t)
   <= &2 pow n * &(SUC(SUC i))
   ==> abs(u - &2 pow n * -- ((--x) pow (SUC(SUC i)) / &(SUC(SUC i)))) <= &3`,
  STRIP_TAC THEN
  MP_TAC(SPECL [`n:num`; `s:real`; `t:real`; `u:real`;
                `--x`;
                `-- (--x pow (SUC i) / &(SUC i))`;
                `&1`; `&3`;
                `&(SUC i)`;
                `&(SUC(SUC i))`]
         STEP_LEMMA2) THEN
  ASM_REWRITE_TAC[REAL_LT_01; REAL_MUL_LID] THEN
  REWRITE_TAC[REAL_OF_NUM_LT; LT_0] THEN
  MATCH_MP_TAC(REAL_ARITH `(a = b) /\ c <= d ==> a <= c ==> b <= d`) THEN
  CONJ_TAC THENL
   [AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[real_pow; real_div; REAL_INV_MUL] THEN
    REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN
    AP_TERM_TAC THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN
    GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
    SUBGOAL_THEN `inv(&(SUC i)) * &(SUC i) = &1` ASSUME_TAC THENL
     [MATCH_MP_TAC REAL_MUL_LINV THEN
      REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC];
      ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID] THEN
      REWRITE_TAC[REAL_MUL_AC]];
    GEN_REWRITE_TAC RAND_CONV [SYM(REAL_RAT_REDUCE_CONV
      `(&1 / &2 + &1 / &4) * &3 + &1 / &4 + &1 / &2`)] THEN
    REWRITE_TAC[REAL_ADD_ASSOC; REAL_LE_RADD] THEN
    MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
     [REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
      CONV_TAC(RAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN REPEAT CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN
        EXISTS_TAC `&(SUC(SUC i))` THEN
        REWRITE_TAC[REAL_MUL_LZERO; REAL_OF_NUM_LT; LT_0] THEN
        REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
        MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN
        MATCH_MP_TAC(REAL_ARITH `(x = &1) ==> &0 <= x`) THEN
        MATCH_MP_TAC REAL_MUL_LINV THEN
        REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC];
        MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN
        EXISTS_TAC `&(SUC(SUC i))` THEN
        REWRITE_TAC[REAL_OF_NUM_LT; LT_0] THEN
        REWRITE_TAC[real_div; REAL_MUL_LID; GSYM REAL_MUL_ASSOC] THEN
        GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
        MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_POS] THEN
        REWRITE_TAC[REAL_OF_NUM_LE; LE] THEN
        MATCH_MP_TAC(REAL_ARITH `(x = &1) ==> &0 <= x /\ x <= &1`) THEN
        MATCH_MP_TAC REAL_MUL_LINV THEN
        REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC];
        MATCH_MP_TAC REAL_LE_ADD THEN REWRITE_TAC[REAL_ABS_POS] THEN
        REWRITE_TAC[real_div; REAL_MUL_LID; REAL_LE_INV_EQ] THEN
        MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2];
        MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[REAL_ABS_NEG] THEN
        REWRITE_TAC[real_div; REAL_MUL_LID] THEN
        MATCH_MP_TAC REAL_LE_INV2 THEN
        CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN
        SUBST1_TAC(SYM(REAL_INT_REDUCE_CONV `&2 pow 2`)) THEN
        MATCH_MP_TAC REAL_MONO_POW2 THEN ASM_REWRITE_TAC[]];
      REWRITE_TAC[real_div; REAL_ABS_MUL; REAL_ABS_NEG; REAL_ABS_INV] THEN
      REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NEG; REAL_MUL_LID] THEN
      REWRITE_TAC[REAL_ABS_NUM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
      ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN
      SUBGOAL_THEN `inv(&(SUC i)) * &(SUC i) = &1` ASSUME_TAC THENL
       [MATCH_MP_TAC REAL_MUL_LINV THEN REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC];
        GEN_REWRITE_TAC RAND_CONV
         [EQT_ELIM(REAL_RAT_REDUCE_CONV `inv(&4) = inv(&2) * inv(&2)`)] THEN
        ASM_REWRITE_TAC[REAL_MUL_RID; GSYM REAL_MUL_ASSOC] THEN
        MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC
          [REAL_POS; REAL_ABS_POS; REAL_LE_INV_EQ; GSYM REAL_ABS_POW] THEN
        CONJ_TAC THENL
         [MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_POS] THEN
          REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN
          MP_TAC(SPEC `i:num` REAL_POS) THEN REAL_ARITH_TAC;
          REWRITE_TAC[real_pow; REAL_ABS_POW] THEN
          GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
          MATCH_MP_TAC REAL_LE_MUL2 THEN
          REWRITE_TAC[REAL_LE_INV_EQ; REAL_ABS_POS] THEN
          REPEAT CONJ_TAC THENL
           [CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN ASM_REWRITE_TAC[];
            MATCH_MP_TAC REAL_POW_LE THEN REWRITE_TAC[REAL_ABS_POS];
            MATCH_MP_TAC REAL_POW_1_LE THEN REWRITE_TAC[REAL_ABS_POS] THEN
            MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1 / &2` THEN
            ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV]]]]]);;

(* ------------------------------------------------------------------------- *)
(* Expand the "!k. SUC k < r ==> P k" term for given numeral r.              *)
(* ------------------------------------------------------------------------- *)

let EXPAND_RANGE_CONV =
  let pth0 = prove
   (`(!k. SUC k < 0 ==> P k) <=> T`,
    REWRITE_TAC[LT])
  and pth1 = prove
   (`(!k. k < (SUC m) ==> P k) <=>
     (!k. k < m ==> P k) /\ P m`,
    REWRITE_TAC[LT] THEN MESON_TAC[])
  and pth2 = prove
   (`(!k. k < 0 ==> P k) <=> T`,
    REWRITE_TAC[LT]) in
  let triv_conv = GEN_REWRITE_CONV I [pth0]
  and trivial_conv = GEN_REWRITE_CONV I [pth2]
  and nontrivial_conv = GEN_REWRITE_CONV I [pth1] in
  let s_tm = `s:real`
  and m_tm = `m:num`
  and n_tm = `n:num` in
  let rec expand_conv tm =
    try trivial_conv tm
    with Failure _ ->
        let mth = num_CONV(rand(lhand(body(rand tm)))) in
        let th1 = BINDER_CONV(LAND_CONV(RAND_CONV(K mth))) tm in
        let th2 = TRANS th1 (nontrivial_conv (rand(concl th1))) in
        let th3 = COMB2_CONV (RAND_CONV expand_conv) (SUBS_CONV[SYM mth])
                             (rand(concl th2)) in
        TRANS th2 th3 in
  let hack_conv =
    triv_conv ORELSEC
    (BINDER_CONV (LAND_CONV
       ((RAND_CONV num_CONV) THENC REWR_CONV LT_SUC)) THENC
     expand_conv) in
  hack_conv;;

(* ------------------------------------------------------------------------- *)
(* Lemmas leading to iterative versions.                                     *)
(* ------------------------------------------------------------------------- *)

let STEP_EXP_THM = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   abs(t(i) - &2 pow n * (x pow i / &(FACT i))) <= k ==>
   &2 * abs(t(SUC i) * &2 pow n * &(SUC i) - s * t(i)) <= &2 pow n * &(SUC i)
   ==> abs(t(SUC i) - &2 pow n * (x pow (SUC i)) / &(FACT(SUC i))) <=
            (&2 / &(SUC i)) * k + &1 / &(FACT(SUC i)) + &1 / &2`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC(GEN_ALL STEP_EXP) THEN
  MAP_EVERY EXISTS_TAC [`s:real`; `t(i:num):real`] THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN
  ASM_REWRITE_TAC[]);;

let STEP_EXP_RULE th =
  let th1 = MATCH_MP STEP_EXP_THM th in
  let th2 = UNDISCH(PURE_REWRITE_RULE[ARITH_SUC] th1) in
  let th3 = CONV_RULE(RAND_CONV(ONCE_DEPTH_CONV NUM_FACT_CONV)) th2 in
  let th4 = CONV_RULE(RAND_CONV REAL_RAT_REDUCE_CONV) th3 in
  let th5 = ASSUME(find is_conj (hyp th)) in
  let th6a,th6b = (I F_F CONJUNCT1) (CONJ_PAIR th5) in
  CONJ th6a (CONJ th6b th4);;

let STEP_EXP_0 = (UNDISCH o prove)
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   (t(0) = &2 pow n) ==>
   abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   abs(t(0) - &2 pow n * (x pow 0 / &(FACT 0))) <= &0`,
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[real_pow; FACT; real_div; REAL_INV_1; REAL_MUL_RID] THEN
  REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_0; REAL_LE_REFL]);;

let STEP_EXP_1 = STEP_EXP_RULE STEP_EXP_0;;     (* e(1) = 3/2           *)
let STEP_EXP_2 = STEP_EXP_RULE STEP_EXP_1;;     (* e(2) = 5/2           *)
let STEP_EXP_3 = STEP_EXP_RULE STEP_EXP_2;;     (* e(3) = 7/3           *)
let STEP_EXP_4 = STEP_EXP_RULE STEP_EXP_3;;     (* e(4) = 41/24         *)
let STEP_EXP_5 = STEP_EXP_RULE STEP_EXP_4;;     (* e(5) = 143/120       *)

let STEP_EXP_4_PLUS = prove
 (`4 <= m /\
   abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   (t(0) = &2 pow n) /\
   (!k. SUC k < SUC m ==>
                &2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k))
                <= &2 pow n * &(SUC k))
   ==> abs(t m - &2 pow n * x pow m / &(FACT m)) <= &2`,
  let lemma = prove
   (`(!k. k < (SUC m) ==> P k) <=>
     (!k. k < m ==> P k) /\ P m`,
    REWRITE_TAC[LT] THEN MESON_TAC[]) in
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  POP_ASSUM(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[LT_SUC] THEN SPEC_TAC(`d:num`,`d:num`) THEN
  INDUCT_TAC THENL
   [REWRITE_TAC[ADD_CLAUSES] THEN
    SUBST1_TAC(TOP_DEPTH_CONV num_CONV `4`) THEN
    REWRITE_TAC[lemma] THEN REWRITE_TAC[ARITH_SUC] THEN
    REWRITE_TAC[LT] THEN STRIP_TAC THEN
    MP_TAC (DISCH_ALL STEP_EXP_4) THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC(REAL_ARITH `b <= c ==> a <= b ==> a <= c`) THEN
    CONV_TAC REAL_RAT_REDUCE_CONV;
    REWRITE_TAC[ADD_CLAUSES; lemma] THEN STRIP_TAC THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `&2 / &(SUC(4 + d)) * &2 +
                &1 / &(FACT(SUC(4 + d))) + &1 / &2` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC(GEN_ALL STEP_EXP) THEN ASM_REWRITE_TAC[] THEN
      EXISTS_TAC `s:real` THEN EXISTS_TAC `t(4 + d):real` THEN
      ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
        FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]];
      GEN_REWRITE_TAC RAND_CONV
        [SYM(REAL_RAT_REDUCE_CONV `&3 / &2 + &1 / &2`)] THEN
      REWRITE_TAC[REAL_LE_RADD; REAL_ADD_ASSOC] THEN
      MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&4 / &5 + &1 / &120` THEN
      CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN
      MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
       [ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
        REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN
        REWRITE_TAC[REAL_ARITH `&2 * &2 = &4`] THEN
        MATCH_MP_TAC REAL_LE_LMUL THEN
        REWRITE_TAC[REAL_ARITH `&0 <= &4`] THEN
        MATCH_MP_TAC REAL_LE_INV2 THEN
        REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN
        MP_TAC(SPEC `d':num` REAL_POS) THEN REAL_ARITH_TAC;
        REWRITE_TAC[real_div; REAL_MUL_LID] THEN
        MATCH_MP_TAC REAL_LE_INV2 THEN
        CONV_TAC(LAND_CONV (EQT_INTRO o REAL_ARITH)) THEN REWRITE_TAC[] THEN
        SUBST1_TAC(SYM(NUM_FACT_CONV `FACT 5`)) THEN
        REWRITE_TAC[REAL_OF_NUM_LE] THEN MATCH_MP_TAC FACT_MONO THEN
        REWRITE_TAC[num_CONV `5`; LE_SUC; LE_ADD]]]]);;

let STEPS_EXP_0 = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   (t(0) = &2 pow n) /\
   (!k. SUC k < 0 ==>
                &2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k))
                <= &2 pow n * &(SUC k))
   ==> abs(sum(0,0) t -
           &2 pow n * sum(0,0) (\i. x pow i / &(FACT i))) <= &2 * &0`,
  STRIP_TAC THEN ASM_REWRITE_TAC[sum] THEN
  REWRITE_TAC[REAL_MUL_RZERO; REAL_ABS_0; REAL_SUB_REFL; REAL_LE_REFL]);;

let STEPS_EXP_1 = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   (t(0) = &2 pow n) /\
   (!k. SUC k < 1 ==>
                &2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k))
                <= &2 pow n * &(SUC k))
   ==> abs(sum(0,1) t - &2 pow n * sum(0,1)(\i. x pow i / &(FACT i)))
         <= &2 * &1`,
  CONV_TAC(ONCE_DEPTH_CONV EXPAND_RANGE_CONV) THEN REWRITE_TAC[] THEN
  STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN
  CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN
  MP_TAC (DISCH_ALL STEP_EXP_0) THEN ASM_REWRITE_TAC[]);;

let STEPS_EXP_2 = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   (t(0) = &2 pow n) /\
   (!k. SUC k < 2 ==>
                &2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k))
                <= &2 pow n * &(SUC k))
   ==> abs(sum(0,2) t - &2 pow n * sum(0,2) (\i. x pow i / &(FACT i)))
       <= &2 * &2`,
  CONV_TAC(ONCE_DEPTH_CONV EXPAND_RANGE_CONV) THEN REWRITE_TAC[] THEN
  STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN
  REWRITE_TAC[REAL_ADD_LDISTRIB] THEN
  REWRITE_TAC[REAL_ARITH `(a + b) - (c + d) = (a - c) + (b - d)`] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0 + &3 / &2` THEN
  CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN
  MATCH_MP_TAC(REAL_LE_IMP(REAL_ARITH `abs(a + b) <= abs(a) + abs(b)`)) THEN
  MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
   [MP_TAC (DISCH_ALL STEP_EXP_0) THEN ASM_REWRITE_TAC[];
    MP_TAC (DISCH_ALL STEP_EXP_1) THEN
    ASM_REWRITE_TAC[ADD_CLAUSES]]);;

let STEPS_EXP_3 = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   (t(0) = &2 pow n) /\
   (!k. SUC k < 3 ==>
                &2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k))
                <= &2 pow n * &(SUC k))
   ==> abs(sum(0,3) t - &2 pow n * sum(0,3) (\i. x pow i / &(FACT i)))
       <= &2 * &3`,
  CONV_TAC(ONCE_DEPTH_CONV EXPAND_RANGE_CONV) THEN REWRITE_TAC[] THEN
  STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN
  REWRITE_TAC[REAL_ADD_LDISTRIB] THEN
  REWRITE_TAC[REAL_ARITH `(a + b) - (c + d) = (a - c) + (b - d)`] THEN
  REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0 + &3 / &2 + &5 / &2` THEN
  CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN
  REPEAT
   (MATCH_MP_TAC(REAL_LE_IMP(REAL_ARITH `abs(a + b) <= abs(a) + abs(b)`)) THEN
    MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC)
  THENL
   [MP_TAC (DISCH_ALL STEP_EXP_0) THEN ASM_REWRITE_TAC[];
    MP_TAC (DISCH_ALL STEP_EXP_1) THEN ASM_REWRITE_TAC[ADD_CLAUSES];
    MP_TAC (DISCH_ALL STEP_EXP_2) THEN ASM_REWRITE_TAC[ADD_CLAUSES]]);;

let STEPS_EXP_4 = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   (t(0) = &2 pow n) /\
   (!k. SUC k < 4 ==>
                &2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k))
                <= &2 pow n * &(SUC k))
   ==> abs(sum(0,4) t - &2 pow n * sum(0,4) (\i. x pow i / &(FACT i)))
       <= &2 * &4`,
  CONV_TAC(ONCE_DEPTH_CONV EXPAND_RANGE_CONV) THEN REWRITE_TAC[] THEN
  STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN
  REWRITE_TAC[REAL_ADD_LDISTRIB] THEN
  REWRITE_TAC[REAL_ARITH `(a + b) - (c + d) = (a - c) + (b - d)`] THEN
  REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `&0 + &3 / &2 + &5 / &2 + &7 / &3` THEN
  CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN
  REPEAT
   (MATCH_MP_TAC(REAL_LE_IMP(REAL_ARITH `abs(a + b) <= abs(a) + abs(b)`)) THEN
    MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC)
  THENL
   [MP_TAC (DISCH_ALL STEP_EXP_0) THEN ASM_REWRITE_TAC[];
    MP_TAC (DISCH_ALL STEP_EXP_1) THEN ASM_REWRITE_TAC[ADD_CLAUSES];
    MP_TAC (DISCH_ALL STEP_EXP_2) THEN ASM_REWRITE_TAC[ADD_CLAUSES];
    MP_TAC (DISCH_ALL STEP_EXP_3) THEN ASM_REWRITE_TAC[ADD_CLAUSES]]);;

(* ------------------------------------------------------------------------- *)
(* Iterated versions.                                                        *)
(* ------------------------------------------------------------------------- *)

let STEPS_EXP_LEMMA = prove
 (`(!k. P(SUC k) ==> P(k)) /\
   (P(0) ==> (abs(sum(0,0) z) <= &2 * &0)) /\
   (P(1) ==> (abs(sum(0,1) z) <= &2 * &1)) /\
   (P(2) ==> (abs(sum(0,2) z) <= &2 * &2)) /\
   (P(3) ==> (abs(sum(0,3) z) <= &2 * &3)) /\
   (P(4) ==> (abs(sum(0,4) z) <= &2 * &4)) /\
   (!m. 4 <= m /\ P(SUC m) ==> (abs(z m) <= &2))
   ==> !m. P(m) ==> (abs(sum(0,m) z) <= &2 * &m)`,
  STRIP_TAC THEN SUBGOAL_THEN
    `!d. P(d + 4) ==>
         abs(sum(0,d + 4) z) <= &2 * &(d + 4)`
  ASSUME_TAC THENL
   [INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN
    DISCH_TAC THEN REWRITE_TAC[sum; ADD1] THEN
    ONCE_REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
    REWRITE_TAC[REAL_ADD_LDISTRIB] THEN
    MATCH_MP_TAC(REAL_LE_IMP(REAL_ARITH `abs(a + b) <= abs(a) + abs(b)`)) THEN
    MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
     [FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
      REWRITE_TAC[REAL_MUL_RID] THEN FIRST_ASSUM MATCH_MP_TAC THEN
      ASM_REWRITE_TAC[ADD_CLAUSES] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN
      REWRITE_TAC[LE_ADD]];
    GEN_TAC THEN
    DISJ_CASES_THEN MP_TAC (SPECL [`4`; `m:num`] LE_CASES) THENL
     [DISCH_THEN(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN
      ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_REWRITE_TAC[];
      SUBST1_TAC(TOP_DEPTH_CONV num_CONV `4`) THEN
      REWRITE_TAC[LE] THEN REWRITE_TAC[ARITH_SUC] THEN
      DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC) THEN
      ASM_REWRITE_TAC[]]]);;

let STEPS_EXP = prove
 (`abs(x) <= &1 /\
   abs(s - &2 pow n * x) < &1 /\
   (t(0) = &2 pow n) /\
   (!k. SUC k < m ==>
                &2 * abs(t(SUC k) * &2 pow n * &(SUC k) - s * t(k))
                <= &2 pow n * &(SUC k))
   ==> abs(sum(0,m) t - &2 pow n * sum(0,m) (\i. x pow i / &(FACT i)))
       <= &2 * &m`,
  REWRITE_TAC[REAL_MUL_RSUM0; REAL_SUB_SUM0] THEN
  SPEC_TAC(`m:num`,`m:num`) THEN MATCH_MP_TAC STEPS_EXP_LEMMA THEN
  REWRITE_TAC[GSYM REAL_SUB_SUM0; GSYM REAL_MUL_RSUM0] THEN
  REWRITE_TAC[STEPS_EXP_0; STEPS_EXP_1; STEPS_EXP_2; STEPS_EXP_3] THEN
  REWRITE_TAC[STEPS_EXP_4; STEP_EXP_4_PLUS] THEN
  GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
  MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `k:num` THEN
  ASM_REWRITE_TAC[] THEN REWRITE_TAC[LT]);;

let STEPS_LN = prove
 (`2 <= n /\
   abs(x) <= &1 / &2 /\
   abs(s - &2 pow n * --x) < &1 /\
   (t(0) = --s) /\
   (!k. SUC k < m ==>
                &2 * abs(t(SUC k) * &2 pow n * &(SUC(SUC k))
                         - &(SUC k) * s * t(k))
                <= &2 pow n * &(SUC(SUC k)))
   ==> abs(sum(0,m) t - &2 pow n * sum(0,m)
                (\i. (--(&1)) pow i * x pow (SUC i) / &(SUC i))) <= &3 * &m`,
  REWRITE_TAC[REAL_MUL_RSUM0; REAL_SUB_SUM0] THEN
  STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN
  MATCH_MP_TAC (REAL_LE_IMP SUM_ABS_LE) THEN
  MATCH_MP_TAC SUM_BOUND THEN REWRITE_TAC[ADD_CLAUSES; LE_0] THEN
  INDUCT_TAC THENL
   [REWRITE_TAC[real_pow; ARITH; REAL_DIV_1; REAL_MUL_LID; REAL_MUL_RID] THEN
    DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[REAL_ARITH `-- a - b * c = --(a - b * --c)`] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1` THEN
    ASM_SIMP_TAC[REAL_ABS_NEG; REAL_LT_IMP_LE; REAL_OF_NUM_LE; ARITH];
    ALL_TAC] THEN
  DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
  DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
  SUBGOAL_THEN `p:num < m` (ANTE_RES_THEN MP_TAC) THENL
   [UNDISCH_TAC `SUC p < m` THEN ARITH_TAC; ALL_TAC] THEN
  DISCH_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC(REAL_ARITH
   `!y. abs(x - y) + abs(y - z) <= e ==> abs(x - z) <= e`) THEN
  EXISTS_TAC `&(SUC p) * s * t p / (&2 pow n * &(SUC(SUC p)))` THEN
  ONCE_REWRITE_TAC [SYM(REAL_RAT_REDUCE_CONV `&1 / &2 + &5 / &2`)] THEN
  MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN
    EXISTS_TAC `&2 pow n * &(SUC(SUC p))` THEN
    SUBGOAL_THEN `&0 < &2 pow n * &(SUC(SUC p))` ASSUME_TAC THENL
     [MATCH_MP_TAC REAL_LT_MUL THEN
      SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; LT_0; ARITH]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `!x y. &0 < y ==> (abs(x) * y = abs(x * y))`
     (fun th -> ASM_SIMP_TAC[th]) THENL
     [REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ABS_MUL] THEN
      AP_TERM_TAC THEN ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE]; ALL_TAC] THEN
    MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&2` THEN
    REWRITE_TAC[REAL_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LID] THEN
    REWRITE_TAC[REAL_SUB_RDISTRIB] THEN
    SUBGOAL_THEN `!a b c d. &0 < a ==> ((b * c * d / a) * a = b * c * d)`
     (fun th -> ASM_SIMP_TAC[th]) THEN
    SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_RID;
             REAL_LT_IMP_NZ];
    ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH
   `!y. abs(x - y) + abs(y - z) <= e ==> abs(x - z) <= e`) THEN
  EXISTS_TAC `--(&1) pow p * s * x pow (SUC p) / &(SUC(SUC p))` THEN
  ONCE_REWRITE_TAC [SYM(REAL_RAT_REDUCE_CONV `&9 / &4 + &1 / &4`)] THEN
  MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL
   [SUBGOAL_THEN `--(&1) pow p * s * x pow (SUC p) / &(SUC(SUC p)) =
                  &(SUC p) * s *
                  (&2 pow n * --(&1) pow p * x pow SUC p / &(SUC p)) /
                  (&2 pow n * &(SUC (SUC p)))`
    SUBST1_TAC THENL
     [REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_INV_MUL] THEN
      ONCE_REWRITE_TAC[AC REAL_MUL_AC
       `a * b * c * d * e * f * g * h =
        d * b * e * h * (g * c) * (f * a)`] THEN
      SIMP_TAC[REAL_MUL_LINV; REAL_POW_EQ_0; REAL_OF_NUM_EQ;
               ARITH; NOT_SUC] THEN
      REWRITE_TAC[REAL_MUL_RID]; ALL_TAC] THEN
    REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ABS_MUL] THEN
    REWRITE_TAC[real_div; REAL_MUL_ASSOC; GSYM REAL_SUB_RDISTRIB] THEN
    REWRITE_TAC[REAL_ABS_MUL; GSYM REAL_MUL_ASSOC] THEN
    REWRITE_TAC[GSYM real_div] THEN
    ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c * d = (a * b * d) * c`] THEN
    GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o REDEPTH_CONV)
                    [GSYM REAL_ABS_MUL] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `abs (&(SUC p) * s * inv (&2 pow n * &(SUC (SUC p)))) * &3` THEN
    ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ABS_POS] THEN
    REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NUM; REAL_ABS_INV; REAL_ABS_POW] THEN
    REWRITE_TAC[REAL_INV_MUL] THEN
    REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
    ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c * d * e =
                                     (d * a) * (b * c) * e`] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `inv(&1) * &3 / &4 * &3` THEN
    CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN
    REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
    REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN
    ONCE_REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
    MATCH_MP_TAC REAL_LE_MUL2 THEN
    SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; REAL_POS;
             REAL_POW_LE; REAL_ABS_POS] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN
      EXISTS_TAC `&(SUC(SUC p))` THEN
      SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_RINV; REAL_OF_NUM_EQ; NOT_SUC] THEN
      REWRITE_TAC[REAL_INV_1; REAL_MUL_LID; REAL_MUL_RID] THEN
      REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE] THEN ARITH_TAC;
      MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN
      EXISTS_TAC `&2 pow n` THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
      SIMP_TAC[REAL_MUL_LINV; REAL_POW_EQ_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN
      SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; ARITH; REAL_MUL_RID] THEN
      MATCH_MP_TAC(REAL_ARITH
       `!y. abs(x - y) < &1 /\ abs(y) <= d - &1 ==> abs(x) <= d`) THEN
      EXISTS_TAC `&2 pow n * --x` THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN EXISTS_TAC `inv(&2 pow n)` THEN
      SIMP_TAC[REAL_LT_INV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
      REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NEG; REAL_ABS_POW; REAL_ABS_NUM] THEN
      GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
      SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_POW_EQ_0; REAL_OF_NUM_EQ;
               ARITH_EQ] THEN
      REWRITE_TAC[REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
      EXISTS_TAC `&1 / &2` THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[real_div; REAL_SUB_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN
      SIMP_TAC[REAL_MUL_RINV; REAL_POW_EQ_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN
      REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RID] THEN
      REWRITE_TAC[REAL_LE_SUB_LADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
      REWRITE_TAC[GSYM REAL_LE_SUB_LADD] THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN
      REWRITE_TAC[real_div; REAL_MUL_LID] THEN
      MATCH_MP_TAC REAL_LE_INV2 THEN
      REWRITE_TAC[REAL_OF_NUM_LT; ARITH] THEN
      SUBST1_TAC(SYM(REAL_INT_REDUCE_CONV `&2 pow 2`)) THEN
      MATCH_MP_TAC REAL_POW_MONO THEN
      ASM_REWRITE_TAC[REAL_OF_NUM_LE; ARITH]];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `--(&1) pow p * s * x pow (SUC p) / &(SUC(SUC p)) -
    &2 pow n * --(&1) pow (SUC p) * x pow (SUC(SUC p)) / &(SUC(SUC p)) =
    (--(&1) pow p * x pow (SUC p) / &(SUC(SUC p))) *
    (s - &2 pow n * --x)`
  SUBST1_TAC THENL
   [REWRITE_TAC[real_pow; real_div; GSYM REAL_OF_NUM_SUC] THEN
    REWRITE_TAC[REAL_SUB_LDISTRIB; GSYM REAL_MUL_ASSOC] THEN
    REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_MUL_LID] THEN
    REWRITE_TAC[REAL_NEG_NEG; REAL_MUL_AC]; ALL_TAC] THEN
  ONCE_REWRITE_TAC[REAL_ABS_MUL] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `abs (-- (&1) pow p * x pow SUC p / &(SUC (SUC p))) * &1` THEN
  ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ABS_POS; REAL_LT_IMP_LE] THEN
  REWRITE_TAC[REAL_MUL_RID; real_div; REAL_ABS_MUL; REAL_ABS_POW;
              REAL_ABS_NEG; REAL_ABS_NUM; REAL_ABS_INV] THEN
  REWRITE_TAC[REAL_POW_ONE; REAL_MUL_LID] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2) pow 1 * inv(&2)` THEN
  CONJ_TAC THENL [ALL_TAC; CONV_TAC REAL_RAT_REDUCE_CONV] THEN
  MATCH_MP_TAC REAL_LE_MUL2 THEN
  SIMP_TAC[REAL_ABS_POS; REAL_POW_LE;
           REAL_LE_INV_EQ; LE_0; REAL_OF_NUM_LE] THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&2) pow (SUC p)` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC REAL_POW_LE2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
      ASM_REWRITE_TAC[REAL_ABS_POS];
      REWRITE_TAC[REAL_POW_INV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
      CONJ_TAC THENL [CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN
      MATCH_MP_TAC REAL_POW_MONO THEN
      REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN ARITH_TAC];
    MATCH_MP_TAC REAL_LE_INV2 THEN
    REWRITE_TAC[REAL_OF_NUM_LT; ARITH; REAL_OF_NUM_LE] THEN ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Special version of Taylor series for exponential in limited range.        *)
(* ------------------------------------------------------------------------- *)

let MCLAURIN_EXP_LE1 = prove
 (`!x n. abs(x) <= &1
         ==> ?t. abs(t) <= &1 /\
             (exp(x) = sum(0,n) (\m. x pow m / &(FACT m)) +
                       (exp(t) / &(FACT n)) * x pow n)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`x:real`; `n:num`] MCLAURIN_EXP_LE) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `t:real` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(x)` THEN
  ASM_REWRITE_TAC[]);;

let REAL_EXP_15 = prove
 (`exp(&1) < &5`,
  SUBST1_TAC(SYM(REAL_RAT_REDUCE_CONV `inv(&2) + inv(&2)`)) THEN
  REWRITE_TAC[REAL_EXP_ADD] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `(&1 + &2 * inv(&2)) * (&1 + &2 * inv(&2))` THEN
  CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN
  REWRITE_TAC[] THEN
  MATCH_MP_TAC REAL_LE_MUL2 THEN
  REWRITE_TAC[REAL_EXP_POS_LE] THEN
  MATCH_MP_TAC REAL_EXP_BOUND_LEMMA THEN
  CONV_TAC REAL_RAT_REDUCE_CONV);;

let TAYLOR_EXP_WEAK = prove
 (`abs(x) <= &1 ==>
   abs(exp(x) - sum(0,m) (\i. x pow i / &(FACT i))) < &5 * inv(&(FACT m))`,
  DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `m:num` o MATCH_MP MCLAURIN_EXP_LE1) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[REAL_ARITH `abs((x + y) - x) = abs(y)`] THEN
  REWRITE_TAC[real_div; REAL_ABS_MUL; GSYM REAL_MUL_ASSOC] THEN
  ASM_CASES_TAC `x = &0` THENL
   [ASM_REWRITE_TAC[] THEN
    SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THENL
     [REWRITE_TAC[real_pow; FACT; ABS_N; REAL_INV_1; REAL_MUL_RID] THEN
      ASM_REWRITE_TAC[real_abs; REAL_EXP_POS_LE] THEN
      MATCH_MP_TAC REAL_LET_TRANS THEN
      EXISTS_TAC `exp(&1)` THEN REWRITE_TAC[REAL_EXP_15] THEN
      REWRITE_TAC[REAL_EXP_MONO_LE] THEN
      UNDISCH_TAC `abs(t) <= &1` THEN REAL_ARITH_TAC;
      REWRITE_TAC[POW_0; REAL_ABS_0; REAL_MUL_RZERO] THEN
      MATCH_MP_TAC REAL_LT_MUL THEN REWRITE_TAC[REAL_OF_NUM_LT; ARITH] THEN
      MATCH_MP_TAC REAL_INV_POS THEN
      REWRITE_TAC[REAL_OF_NUM_LT; FACT_LT]];
    MATCH_MP_TAC REAL_LTE_TRANS THEN
    EXISTS_TAC `&5 * abs(inv(&(FACT m))) * abs(x pow m)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LT_RMUL_IMP THEN CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(exp(&1))` THEN
        ASM_REWRITE_TAC[real_abs; REAL_EXP_POS_LE; REAL_EXP_MONO_LE;
                       REAL_EXP_15] THEN
        UNDISCH_TAC `abs(t) <= &1` THEN REAL_ARITH_TAC;
        MATCH_MP_TAC REAL_LT_MUL THEN
        ASM_REWRITE_TAC[GSYM ABS_NZ; REAL_POW_EQ_0] THEN
        REWRITE_TAC[REAL_INV_EQ_0; REAL_OF_NUM_EQ] THEN
        MP_TAC(SPEC `m:num` FACT_LT) THEN ARITH_TAC];
      MATCH_MP_TAC REAL_LE_LMUL_IMP THEN
      REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN
      REWRITE_TAC[REAL_ABS_INV; ABS_N; REAL_LE_REFL] THEN
      REWRITE_TAC[REAL_ABS_POW] THEN
      MATCH_MP_TAC REAL_POW_1_LE THEN
      ASM_REWRITE_TAC[REAL_ABS_POS]]]);;

let REAL_EXP_13 = prove
 (`exp(&1) < &3`,
  MP_TAC(INST [`&1`,`x:real`; `5`,`m:num`] TAYLOR_EXP_WEAK) THEN
  CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN
  REWRITE_TAC[ADD_CLAUSES] THEN
  CONV_TAC(ONCE_DEPTH_CONV NUM_FACT_CONV) THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  MATCH_MP_TAC(REAL_ARITH
   `b + e <= c ==> abs(a - b) < e ==> a < c`) THEN
  CONV_TAC REAL_RAT_REDUCE_CONV);;

let TAYLOR_EXP = prove
 (`abs(x) <= &1 ==>
   abs(exp(x) - sum(0,m) (\i. x pow i / &(FACT i))) < &3 * inv(&(FACT m))`,
  DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `m:num` o MATCH_MP MCLAURIN_EXP_LE1) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[REAL_ARITH `abs((x + y) - x) = abs(y)`] THEN
  REWRITE_TAC[real_div; REAL_ABS_MUL; GSYM REAL_MUL_ASSOC] THEN
  ASM_CASES_TAC `x = &0` THENL
   [ASM_REWRITE_TAC[] THEN
    SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THENL
     [REWRITE_TAC[real_pow; FACT; ABS_N; REAL_INV_1; REAL_MUL_RID] THEN
      ASM_REWRITE_TAC[real_abs; REAL_EXP_POS_LE] THEN
      MATCH_MP_TAC REAL_LET_TRANS THEN
      EXISTS_TAC `exp(&1)` THEN REWRITE_TAC[REAL_EXP_13] THEN
      REWRITE_TAC[REAL_EXP_MONO_LE] THEN
      UNDISCH_TAC `abs(t) <= &1` THEN REAL_ARITH_TAC;
      REWRITE_TAC[POW_0; REAL_ABS_0; REAL_MUL_RZERO] THEN
      MATCH_MP_TAC REAL_LT_MUL THEN REWRITE_TAC[REAL_OF_NUM_LT; ARITH] THEN
      MATCH_MP_TAC REAL_INV_POS THEN
      REWRITE_TAC[REAL_OF_NUM_LT; FACT_LT]];
    MATCH_MP_TAC REAL_LTE_TRANS THEN
    EXISTS_TAC `&3 * abs(inv(&(FACT m))) * abs(x pow m)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LT_RMUL_IMP THEN CONJ_TAC THENL
       [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(exp(&1))` THEN
        ASM_REWRITE_TAC[real_abs; REAL_EXP_POS_LE; REAL_EXP_MONO_LE;
                        REAL_EXP_13] THEN
        UNDISCH_TAC `abs(t) <= &1` THEN REAL_ARITH_TAC;
        MATCH_MP_TAC REAL_LT_MUL THEN
        ASM_REWRITE_TAC[GSYM ABS_NZ; REAL_POW_EQ_0] THEN
        REWRITE_TAC[REAL_INV_EQ_0; REAL_OF_NUM_EQ] THEN
        MP_TAC(SPEC `m:num` FACT_LT) THEN ARITH_TAC];
      MATCH_MP_TAC REAL_LE_LMUL_IMP THEN
      REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN
      REWRITE_TAC[REAL_ABS_INV; ABS_N; REAL_LE_REFL] THEN
      REWRITE_TAC[REAL_ABS_POW] THEN
      MATCH_MP_TAC REAL_POW_1_LE THEN
      ASM_REWRITE_TAC[REAL_ABS_POS]]]);;

let TAYLOR_LN = prove
 (`&0 <= x /\ x <= inv(&2 pow k) ==>
   abs(ln(&1 + x) - sum(0,m) (\i. --(&1) pow i * x pow SUC i / &(SUC i)))
   < inv(&2 pow (k * SUC m) * &(SUC m))`,
  let lemma = INST [`1`,`k:num`] (SYM(SPEC_ALL SUM_REINDEX)) in
  STRIP_TAC THEN
  UNDISCH_TAC `&0 <= x` THEN REWRITE_TAC[REAL_LE_LT] THEN
  DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THENL
   [ALL_TAC;
    REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_MUL_RZERO; real_div] THEN
    REWRITE_TAC[SUM_0; REAL_ADD_RID; REAL_SUB_LZERO; LN_1] THEN
    REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_0] THEN
    SIMP_TAC[REAL_LT_INV_EQ; REAL_LT_MUL; REAL_POW_LT; REAL_OF_NUM_LT;
             LT_0; ARITH]] THEN
  SUBGOAL_THEN `!i. --(&1) pow i = --(&1) pow (SUC(SUC i))`
   (fun th -> ONCE_REWRITE_TAC[th]) THENL
   [REWRITE_TAC[real_pow; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG] THEN
    REWRITE_TAC[REAL_MUL_LID]; ALL_TAC] THEN
  REWRITE_TAC[ADD1; lemma] THEN
  REWRITE_TAC[ADD_CLAUSES] THEN
  ONCE_REWRITE_TAC[SUM_DIFF] THEN
  CONV_TAC(ONCE_DEPTH_CONV REAL_SUM_CONV) THEN
  REWRITE_TAC[real_div; REAL_INV_0; REAL_MUL_RZERO] THEN
  REWRITE_TAC[GSYM ADD1] THEN
  MP_TAC(SPECL [`x:real`; `SUC m`] MCLAURIN_LN_POS) THEN
  ASM_REWRITE_TAC[LT_0] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM ADD1] THEN
  REWRITE_TAC[GSYM real_div] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[REAL_SUB_RZERO; REAL_ARITH `(a + b) - a = b`] THEN
  REWRITE_TAC[real_div; REAL_ABS_MUL; REAL_ABS_INV; REAL_ABS_POW] THEN
  REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM; REAL_POW_ONE] THEN
  REWRITE_TAC[REAL_MUL_LID; REAL_INV_MUL; GSYM REAL_MUL_ASSOC] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC
   `inv (&2 pow (k * SUC m)) * inv (&(SUC m)) * inv(abs(&1 + t) pow SUC m)` THEN
  CONJ_TAC THENL
   [REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
    MATCH_MP_TAC REAL_LE_RMUL THEN
    SIMP_TAC[REAL_LE_MUL; REAL_LE_INV_EQ; REAL_POS; REAL_ABS_POS;
             REAL_POW_LE] THEN
    REWRITE_TAC[GSYM REAL_POW_INV] THEN
    REWRITE_TAC[GSYM REAL_POW_POW] THEN
    MATCH_MP_TAC REAL_POW_LE2 THEN
    ASM_SIMP_TAC[REAL_POW_INV; real_abs; REAL_LT_IMP_LE];
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
    REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LT_LMUL THEN
    SIMP_TAC[REAL_LT_MUL; REAL_LT_INV_EQ; REAL_OF_NUM_LT; LT_0; REAL_POW_LT;
             ARITH] THEN
    REWRITE_TAC[GSYM REAL_POW_INV; GSYM REAL_ABS_INV] THEN
    SUBGOAL_THEN `abs(inv(&1 + t)) < &1` ASSUME_TAC THENL
     [REWRITE_TAC[REAL_ABS_INV] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_1] THEN
      MATCH_MP_TAC REAL_LT_INV2 THEN
      UNDISCH_TAC `&0 < t` THEN REAL_ARITH_TAC;
      SUBST1_TAC(SYM(SPEC `SUC m` REAL_POW_ONE)) THEN
      MATCH_MP_TAC REAL_POW_LT2 THEN
      ASM_REWRITE_TAC[REAL_POW_ONE; NOT_SUC; REAL_ABS_POS]]]);;

(* ------------------------------------------------------------------------- *)
(* Leading from the summation to the actual function.                        *)
(* ------------------------------------------------------------------------- *)

let APPROX_LEMMA1 = prove
 (`abs(f(x:real) - sum(0,m) (\i. P i x)) < inv(&2 pow (n + 2)) /\
   abs(u - &2 pow (n + e + 2) * sum(0,m) (\i. P i x)) <= &k * &m /\
   &k * &m <= &2 pow e /\
   abs(s * &2 pow (e + 2) - u) <= &2 pow (e + 1)
   ==> abs(s - &2 pow n * f(x)) < &1`,
  STRIP_TAC THEN MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
  EXISTS_TAC `&2 pow (n + e + 2)` THEN
  REWRITE_TAC[REAL_LT_POW2] THEN
  REWRITE_TAC[REAL_ABS_LEMMA; REAL_SUB_LDISTRIB; REAL_MUL_RID] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN (MATCH_MP_TAC o GEN_ALL)
   (REAL_ARITH `abs(a - b) + abs(b - c) < d ==> abs(a - c) < d`) THEN
  EXISTS_TAC `&2 pow n * u` THEN
  CONV_TAC(funpow 4 RAND_CONV num_CONV) THEN
  REWRITE_TAC[ADD_CLAUSES; real_pow; REAL_MUL_2] THEN
  MATCH_MP_TAC REAL_LET_ADD2 THEN CONJ_TAC THENL
   [ONCE_REWRITE_TAC[REAL_POW_ADD] THEN
    GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [REAL_MUL_SYM] THEN
    REWRITE_TAC[GSYM REAL_MUL_ASSOC; GSYM REAL_SUB_LDISTRIB] THEN
    REWRITE_TAC[GSYM REAL_ABS_LEMMA] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_POW2];
    REWRITE_TAC[GSYM REAL_MUL_ASSOC; GSYM REAL_SUB_LDISTRIB] THEN
    GEN_REWRITE_TAC RAND_CONV [REAL_POW_ADD] THEN
    REWRITE_TAC[GSYM REAL_ABS_LEMMA] THEN
    MATCH_MP_TAC REAL_LT_LMUL THEN REWRITE_TAC[REAL_LT_POW2] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN (MATCH_MP_TAC o GEN_ALL)
      (REAL_ARITH `abs(a - b) + abs(b - c) < d ==> abs(a - c) < d`) THEN
    EXISTS_TAC
      `&2 pow (n + e + 2) * sum(0,m) (\i. P i (x:real))` THEN
    GEN_REWRITE_TAC RAND_CONV [REAL_POW_ADD] THEN
    GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN
    REWRITE_TAC[REAL_POW_1; REAL_MUL_2] THEN
    MATCH_MP_TAC REAL_LET_ADD2 THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&k * &m` THEN
      ASM_REWRITE_TAC[];
      REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_ABS_LEMMA] THEN
      ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM ADD_ASSOC] THEN
      ONCE_REWRITE_TAC[REAL_POW_ADD] THEN
      REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      MATCH_MP_TAC REAL_LT_LMUL THEN
      REWRITE_TAC[REAL_LT_POW2] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN
      MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN
      EXISTS_TAC `inv(&2 pow (n + 2))` THEN
      REWRITE_TAC[REAL_LT_INV_EQ; REAL_LT_POW2] THEN
      REWRITE_TAC[REAL_MUL_RID; REAL_MUL_ASSOC] THEN
      ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN
      SUBGOAL_THEN `inv(&2 pow (n + 2)) * &2 pow (n + 2) = &1`
      (fun th -> ASM_REWRITE_TAC[th; REAL_MUL_LID]) THEN
      MATCH_MP_TAC REAL_MUL_LINV THEN REWRITE_TAC[REAL_POW_EQ_0] THEN
      REWRITE_TAC[DE_MORGAN_THM] THEN DISJ1_TAC THEN REAL_ARITH_TAC]]);;

(* ------------------------------------------------------------------------- *)
(* Approximation theorems.                                                   *)
(* ------------------------------------------------------------------------- *)

let APPROX_EXP = prove
 (`(n + e + 2 = p) /\
   &3 * &2 pow (n + 2) <= &(FACT m) /\
   &2 * &m <= &2 pow e /\
   abs(x) <= &1 /\
   abs(s - &2 pow p * x) < &1 /\
   (t(0) = &2 pow p) /\
   (!k. SUC k < m ==>
                &2 * abs(t(SUC k) * &2 pow p * &(SUC k) - s * t(k))
                <= &2 pow p * &(SUC k)) /\
   abs(u * &2 pow (e + 2) - sum(0,m) t) <= &2 pow (e + 1)
   ==> abs(u - &2 pow n * exp(x)) < &1`,
  STRIP_TAC THEN MATCH_MP_TAC(GEN_ALL APPROX_LEMMA1) THEN
  MAP_EVERY EXISTS_TAC
   [`\i x. x pow i / &(FACT i)`; `2`; `m:num`; `sum(0,m) t`; `e:num`] THEN
  ASM_REWRITE_TAC[BETA_THM] THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&3 * inv(&(FACT m))` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC TAYLOR_EXP THEN ASM_REWRITE_TAC[];
      SUBST1_TAC(SYM(SPEC `&3` REAL_INV_INV)) THEN
      REWRITE_TAC[GSYM REAL_INV_MUL] THEN
      MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_POW2] THEN
      MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&3` THEN
      REWRITE_TAC[REAL_MUL_ASSOC] THEN
      REWRITE_TAC[MATCH_MP REAL_MUL_RINV (REAL_ARITH `~(&3 = &0)`)] THEN
      ASM_REWRITE_TAC[REAL_MUL_LID] THEN REAL_ARITH_TAC];
    MATCH_MP_TAC STEPS_EXP THEN ASM_REWRITE_TAC[]]);;

let APPROX_LN = prove
 (`~(k = 0) /\
   (n + e + 2 = p) /\
   &2 pow (n + 2) <= &2 pow (k * SUC m) * &(SUC m) /\
   &3 * &m <= &2 pow e /\
   (&0 <= x /\ x <= inv(&2 pow k)) /\
   abs(s - &2 pow p * --x) < &1 /\
   (t(0) = --s) /\
   (!k. SUC k < m ==>
                &2 * abs(t(SUC k) * &2 pow p * &(SUC(SUC k)) -
                         &(SUC k) * s * t(k))
                <= &2 pow p * &(SUC(SUC k))) /\
   abs(u * &2 pow (e + 2) - sum(0,m) t) <= &2 pow (e + 1)
   ==> abs(u - &2 pow n * ln(&1 + x)) < &1`,
  STRIP_TAC THEN
  (MATCH_MP_TAC o GEN_ALL o BETA_RULE)
    (INST [`\x. ln(&1 + x):real`,`f:real->real`] APPROX_LEMMA1) THEN
  MAP_EVERY EXISTS_TAC
   [`\i x. (--(&1)) pow i * x pow (SUC i) / &(SUC i)`;
    `3`; `m:num`; `sum(0,m) t`; `e:num`] THEN
  ASM_REWRITE_TAC[BETA_THM] THEN CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LTE_TRANS THEN
    EXISTS_TAC `inv(&2 pow (k * SUC m) * &(SUC m))` THEN CONJ_TAC THENL
     [MATCH_MP_TAC TAYLOR_LN THEN ASM_REWRITE_TAC[];
      MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_POW2]];
    MATCH_MP_TAC STEPS_LN THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `2 <= (n + e + 2)` MP_TAC THENL
     [REWRITE_TAC[ADD_ASSOC] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN
      REWRITE_TAC[LE_ADD];
      SUBGOAL_THEN `abs(x) <= &1 / &2` (fun th -> ASM_REWRITE_TAC[th]) THEN
      ASM_REWRITE_TAC[real_abs] THEN MATCH_MP_TAC REAL_LE_TRANS THEN
      EXISTS_TAC `inv(&2 pow k)` THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[real_div; REAL_MUL_LID] THEN
      GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_POW_1] THEN
      MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_LT_POW2] THEN
      MATCH_MP_TAC REAL_POW_MONO THEN
      REWRITE_TAC[REAL_OF_NUM_LE; ARITH] THEN
      UNDISCH_TAC `~(k = 0)` THEN ARITH_TAC]]);;

(* ------------------------------------------------------------------------- *)
(* Eliminate trivial definitions.                                            *)
(* ------------------------------------------------------------------------- *)

let ELIMINATE_DEF =
  let x_tm = `x:num`
  and a_tm = `&0`
  and sconv = REWRITE_CONV[ARITH] in
  fun tdefs th ->
  if tdefs = [] then th else
  let ctm =
    itlist (fun tm acc ->
              let l,r = (rand F_F I) (dest_eq tm) in
              mk_cond(mk_eq(x_tm,l),r,acc)) tdefs a_tm in
  let atm = mk_abs(x_tm,ctm) in
  let ttm = rator(lhs(hd tdefs)) in
  let tth = ASSUME(mk_eq(ttm,atm)) in
  let ths = map
    (EQT_ELIM o CONV_RULE(RAND_CONV sconv) o SUBS_CONV[tth]) tdefs in
  let dth = PROVE_HYP (end_itlist CONJ ths) th in
  MP (INST [atm,ttm] (DISCH_ALL dth)) (REFL atm);;

(* ------------------------------------------------------------------------- *)
(* Overall conversion.                                                       *)
(* ------------------------------------------------------------------------- *)

let realcalc_cache = ref [];;

let REALCALC_CONV,thm_eval,raw_eval,thm_wrap =
  let a_tm = `a:real` and n_tm = `n:num` and n'_tm = `n':num`

  and m_tm = `m:num`

  and b_tm = `b:real` and e_tm = `e:num`
  and c_tm = `c:real`

  and neg_tm = `(--)`
  and abs_tm = `abs`
  and inv_tm = `inv`
  and sqrt_tm = `sqrt`
  and add_tm = `(+)`
  and mul_tm = `(*)`
  and sub_tm = `(-)`
  and exp_tm = `exp:real->real`
  and ln_tm = `ln:real->real`
  and add1_tm = `(+) (&1)`
  and pow2_tm = `(pow) (&2)`
  and one_tm = `&1`
  and lt_tm = `(<)` in

  let INTEGER_PROVE =
    EQT_ELIM o REWRITE_CONV[REAL_EQ_NEG2; GSYM EXISTS_REFL;
                            EXISTS_OR_THM; REAL_OF_NUM_EQ] in

  let ndiv x y =
    let q = quo_num x y in
    let r = x -/ (q */ y) in
    if le_num (abs_num(Int 2 */ r)) (abs_num y) then q
    else if le_num (abs_num(Int 2 */ (r -/ y))) (abs_num y) then q +/ Int 1
    else if le_num (abs_num(Int 2 */ (r +/ y))) (abs_num y) then q -/ Int 1
    else let s = (string_of_num x)^" and "^(string_of_num y) in
         failwith ("ndiv: "^s) in

  let raw_wrap (f:num->num) = (ref(Int(-1),Int 0),f) in

  let raw_eval(r,(f:num->num)) n =
    let (n0,y0) = !r in
    if le_num n n0 then ndiv y0 (power_num (Int 2) (n0 -/ n))
    else let y = f n in (r := (n,y); y) in

  let thm_eval =
    let SUC_tm = `SUC`
    and mk_add = mk_binop `(+):num->num->num` in
    fun (r,(f:num->thm)) n ->
      let (n0,y0th) = !r in
      if le_num n n0 then
        if n =/ n0 then y0th else
          let th1 = NUM_SUC_CONV
            (mk_comb(SUC_tm,mk_numeral(n0 -/ (n +/ Int 1)))) in
          let th2 = MATCH_MP REALCALC_DOWNGRADE th1 in
          let th3 = NUM_ADD_CONV(mk_add(mk_numeral(n)) (mk_numeral(n0 -/ n))) in
          let th4 = MATCH_MP th2 th3 in
          let th5 = MATCH_MP th4 y0th in
          let tm5 = fst(dest_imp(concl th5)) in
          let tm5a,tm5b = dest_comb tm5 in
          let th6 = REAL_INT_POW_CONV tm5b in
          let tm5c = rand(rand tm5a) in
          let tm5d,tm5e = dest_comb tm5c in
          let tm5f,tm5g = dest_comb(rand tm5d) in
          let tm5h = rand(rand tm5f) in
          let bin = mk_realintconst
           (ndiv (dest_realintconst tm5e) (power_num (Int 2) (dest_numeral tm5h))) in
          let th7 = AP_TERM (rator(rand tm5f)) th1 in
          let th8 = GEN_REWRITE_RULE LAND_CONV [CONJUNCT2 real_pow] th7 in
          let th9 = SYM(GEN_REWRITE_RULE (LAND_CONV o RAND_CONV) [th6] th8) in
          let th10 = TRANS th9 (REAL_INT_MUL_CONV (rand(concl th9))) in
          let th11 = AP_THM (AP_TERM (rator tm5f) th10) bin in
          let th12 = TRANS th11 (REAL_INT_MUL_CONV (rand(concl th11))) in
          let th13 = AP_THM (AP_TERM (rator tm5d) th12) tm5e in
          let th14 = TRANS th13 (REAL_INT_SUB_CONV (rand(concl th13))) in
          let th15 = AP_TERM (rator(rand tm5a)) th14 in
          let th16 = TRANS th15 (REAL_INT_ABS_CONV (rand(concl th15))) in
          let th17 = MK_COMB(AP_TERM (rator tm5a) th16,th6) in
          let th18 = TRANS th17 (REAL_INT_LE_CONV (rand(concl th17))) in
          MATCH_MP th5 (EQT_ELIM th18)
      else let yth = f n in (r := (n,yth); yth) in

  let thm_wrap (f:num->thm) = (ref(Int(-1),TRUTH),f) in

  let find_msd =
    let rec find_msd n f =
      if Int 1 </ abs_num(raw_eval f n) then n
      else find_msd (n +/ Int 1) f in
    find_msd (Int 0) in

  let find_acc =
    let rec find_msd n f =
      if Int 32 </ abs_num(raw_eval f n) then n
      else find_msd (n +/ Int 1) f in
    find_msd (Int 0) in

  let find_ubound f =
    let k = find_acc f in
    let a = abs_num(raw_eval f k) in
    k -/ log2 (a +/ Int 1) in

  let REALCALC_EXP_CONV =
    let t_tm = `t:num->real`
    and n_tm = `n:num`
    and m_tm = `m:num`
    and e_tm = `e:num`
    and p_tm = `p:num`
    and s_tm = `s:real`
    and u_tm = `u:real`
    and x_tm = `x:real` in
    let rec calculate_m acc i r =
      if acc >=/ r then i else
      let i' = i +/ Int 1 in
      calculate_m (i' */ acc) i' r in
    let calculate_exp_sequence =
      let rec calculate_exp_sequence p2 s i =
        if i </ Int 0 then []
        else if i =/ Int 0 then [p2] else
        let acc = calculate_exp_sequence p2 s (i -/ Int 1) in
        let t = hd acc in
        let t' = ndiv (s */ t) (p2 */ i) in
        t'::acc in
      fun p s m -> let p2 = power_num (Int 2) p in
                   rev(calculate_exp_sequence p2 s (m -/ Int 1)) in
    let pth = prove
     (`abs(x) <= &1 ==>
       abs(s - &2 pow p * x) < &1 ==>
       (n + e + 2 = p) /\
       &3 * &2 pow (n + 2) <= &(FACT m) /\
       &2 * &m <= &2 pow e /\
       (t(0) = &2 pow p) /\
       (!k. SUC k < m ==>
                    &2 * abs(t(SUC k) * &2 pow p * &(SUC k) - s * t(k))
                    <= &2 pow p * &(SUC k)) /\
       abs(u * &2 pow (e + 2) - sum(0,m) t) <= &2 pow (e + 1)
       ==> abs(u - &2 pow n * exp(x)) < &1`,
      REPEAT STRIP_TAC THEN MATCH_MP_TAC APPROX_EXP THEN
      ASM_REWRITE_TAC[]) in
    let LEFT_ZERO_RULE =
      ONCE_REWRITE_RULE[prove(`0 + n = n`,REWRITE_TAC[ADD_CLAUSES])] in
    fun (fn1,fn2) ->
      let raw_fn n =
        let m = calculate_m (Int 1) (Int 0)
                  (Int 3 */ (power_num (Int 2) (n +/ Int 2))) in
        let e = log2 (Int 2 */ m) in
        let p = n +/ e +/ Int 2 in
        let s = raw_eval fn1 p in
        let seq = calculate_exp_sequence p s m in
        let u0 = itlist (+/) seq (Int 0) in
        ndiv u0 (power_num (Int 2) (e +/ Int 2))
      and thm_fn n =
        let m = calculate_m (Int 1) (Int 0)
                  (Int 3 */ (power_num (Int 2) (n +/ Int 2))) in
        let e = log2 (Int 2 */ m) in
        let p = n +/ e +/ Int 2 in
        let sth = thm_eval fn2 p in
        let tm1 = rand(lhand(concl sth)) in
        let s_num = lhand tm1 in
        let x_num = rand(rand tm1) in
        let s = dest_realintconst s_num in
        let seq = calculate_exp_sequence p s m in
        let u0 = itlist (+/) seq (Int 0) in
        let u = ndiv u0 (power_num (Int 2) (e +/ Int 2)) in
        let m_num = mk_numeral m
        and n_num = mk_numeral n
        and e_num = mk_numeral e
        and p_num = mk_numeral p
        and u_num = mk_realintconst u in
        let tdefs = map2 (fun a b -> mk_eq(mk_comb(t_tm,mk_small_numeral a),
                             mk_realintconst b)) (0--(length seq - 1)) seq in
        let p2th = REAL_INT_POW_CONV (mk_comb(pow2_tm,p_num)) in
        let th0 = INST [m_num,m_tm; n_num,n_tm; e_num,e_tm;
                        x_num,x_tm; p_num,p_tm; s_num,s_tm; u_num,u_tm] pth in
        let th0' = MP th0 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th0)))) in
        let th1 = MP th0' sth in
        let th2 = CONV_RULE (ONCE_DEPTH_CONV EXPAND_RANGE_CONV) th1 in
        let th3 = LEFT_ZERO_RULE
         (CONV_RULE (ONCE_DEPTH_CONV REAL_SUM_CONV) th2) in
        let ths = try CONJUNCTS(ASSUME(list_mk_conj tdefs))
                  with Failure _ -> [] in
        let th4 = SUBS (p2th::ths) th3 in
        let th5 = CONV_RULE (LAND_CONV
          (DEPTH_CONV NUM_ADD_CONV THENC
           ONCE_DEPTH_CONV NUM_FACT_CONV THENC
           REAL_INT_REDUCE_CONV)) th4 in
        MP (ELIMINATE_DEF tdefs th5) TRUTH in
     raw_wrap raw_fn,thm_wrap thm_fn in

  let REALCALC_LN_CONV =
    let t_tm = `t:num->real`
    and n_tm = `n:num`
    and m_tm = `m:num`
    and e_tm = `e:num`
    and p_tm = `p:num`
    and s_tm = `s:real`
    and u_tm = `u:real`
    and k_tm = `k:num`
    and x_tm = `x:real` in
    let rec calculate_m acc k2 m r =
      if acc */ (m +/ Int 1) >=/ r then m else
      calculate_m (k2 */ acc) k2 (m +/ Int 1) r in
    let calculate_ln_sequence =
      let rec calculate_ln_sequence p2 s i =
        if i </ Int 0 then []
        else if i =/ Int 0 then [s] else
        let acc = calculate_ln_sequence p2 s (i -/ Int 1) in
        let t = hd acc in
        let t' = ndiv (Int(-1) */ s */ t */ i) (p2 */ (i +/ Int 1)) in
        t'::acc in
      fun p s m -> let p2 = power_num (Int 2) p in
                   rev(calculate_ln_sequence p2 s (m -/ Int 1)) in
    let pth = prove
     (`&0 <= x /\ x <= inv(&2 pow k) ==>
       abs(s - &2 pow p * x) < &1 ==>
       ~(k = 0) /\
       (n + e + 2 = p) /\
       &2 pow (n + 2) <= &2 pow (k * SUC m) * &(SUC m) /\
       &3 * &m <= &2 pow e /\
       (t(0) = s) /\
       (!k. SUC k < m ==>
                    &2 * abs(t(SUC k) * &2 pow p * &(SUC(SUC k)) -
                             &(SUC k) * --s * t(k))
                    <= &2 pow p * &(SUC(SUC k))) /\
       abs(u * &2 pow (e + 2) - sum(0,m) t) <= &2 pow (e + 1)
       ==> abs(u - &2 pow n * ln(&1 + x)) < &1`,
      REPEAT STRIP_TAC THEN MATCH_MP_TAC(INST [`--s`,`s:real`] APPROX_LN) THEN
      ASM_REWRITE_TAC[REAL_NEG_NEG] THEN
      REWRITE_TAC[REAL_MUL_RNEG] THEN
      REWRITE_TAC[REAL_ARITH `abs(--a - --b) = abs(a - b)`] THEN
      ASM_REWRITE_TAC[]) in
    let LEFT_ZERO_RULE =
      ONCE_REWRITE_RULE[prove(`0 + n = n`,REWRITE_TAC[ADD_CLAUSES])] in
    let pow2_tm = `(pow) (&2)` in
    let default_tdefs = [`t 0 = &0`] in
    fun (fn1,fn2) ->
      let raw_fn n =
        let k = find_ubound fn1 in
        if k </ Int 1 then failwith "ln of number not provably <= 1/2" else
        let k2 = power_num (Int 2) k in
        let m = calculate_m k2 k2 (Int 0) (power_num (Int 2) (n +/ Int 2)) in
        let e = log2 (Int 3 */ m) in
        let p = n +/ e +/ Int 2 in
        let s = raw_eval fn1 p in
        let seq = calculate_ln_sequence p s m in
        let u0 = itlist (+/) seq (Int 0) in
        ndiv u0 (power_num (Int 2) (e +/ Int 2))
      and thm_fn n =
        let k = find_ubound fn1 in
        if k </ Int 1 then failwith "ln of number not provably <= 1/2" else
        let k2 = power_num (Int 2) k in
        let m = calculate_m k2 k2 (Int 0) (power_num (Int 2) (n +/ Int 2)) in
        let e = log2 (Int 3 */ m) in
        let p = n +/ e +/ Int 2 in
        let sth = thm_eval fn2 p in
        let tm1 = rand(lhand(concl sth)) in
        let s_num = lhand tm1 in
        let x_num = rand(rand tm1) in
        let s = dest_realintconst s_num in
        let seq = calculate_ln_sequence p s m in
        let u0 = itlist (+/) seq (Int 0) in
        let u = ndiv u0 (power_num (Int 2) (e +/ Int 2)) in
        let m_num = mk_numeral m
        and n_num = mk_numeral n
        and e_num = mk_numeral e
        and p_num = mk_numeral p
        and k_num = mk_numeral k
        and u_num = mk_realintconst u in
        let tdefs0 = map2 (fun a b -> mk_eq(mk_comb(t_tm,mk_small_numeral a),
                             mk_realintconst b)) (0--(length seq - 1)) seq in
        let tdefs = if tdefs0 = [] then default_tdefs else tdefs0 in
        let p2th = REAL_INT_POW_CONV (mk_comb(pow2_tm,p_num)) in
        let th0 = INST [m_num,m_tm; n_num,n_tm; e_num,e_tm; k_num,k_tm;
                        x_num,x_tm; p_num,p_tm; s_num,s_tm; u_num,u_tm] pth in
        let th0' = MP th0 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th0)))) in
        let th1 = MP th0' sth in
        let th2 = CONV_RULE (ONCE_DEPTH_CONV EXPAND_RANGE_CONV) th1 in
        let th3 = LEFT_ZERO_RULE
                   (CONV_RULE (ONCE_DEPTH_CONV REAL_SUM_CONV) th2) in
        let ths = try CONJUNCTS(ASSUME(list_mk_conj tdefs))
                  with Failure _ -> [] in
        let th4 = SUBS (p2th::ths) th3 in
        let th5 = CONV_RULE (LAND_CONV
          (NUM_REDUCE_CONV THENC
           REAL_INT_REDUCE_CONV)) th4 in
        MP (ELIMINATE_DEF tdefs th5) TRUTH in
     raw_wrap raw_fn,thm_wrap thm_fn in

  let REALCALC_SQRT_CONV =
    let num_sqrt =
      let rec isolate_sqrt (a,b) y =
      if abs_num(a -/ b) <=/ Int 1 then
        if abs_num(a */ a -/ y) <=/ a then a else b
      else
        let c = quo_num (a +/ b) (Int 2) in
        if c */ c <=/ y then isolate_sqrt (c,b) y
        else isolate_sqrt (a,c) y in
      fun n -> isolate_sqrt (Int 0,n) n in
    let MATCH_pth = MATCH_MP REALCALC_SQRT in
    let b_tm = `b:real` in
    let PROVE_1_LE_SQRT =
      let pth = prove
       (`&1 <= x ==> &1 <= sqrt(x)`,
        DISCH_THEN(fun th ->
          ASSUME_TAC(MATCH_MP (REAL_ARITH `&1 <= x ==> &0 <= x`) th) THEN
          MP_TAC th) THEN
        CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[REAL_NOT_LE] THEN
        DISCH_TAC THEN
        SUBGOAL_THEN `x = sqrt(x) pow 2` SUBST1_TAC THENL
         [CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[SQRT_POW2];
          GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
          REWRITE_TAC[POW_2] THEN MATCH_MP_TAC REAL_LT_MUL2 THEN
          ASM_SIMP_TAC[SQRT_POS_LE]]) in
      let tac = REPEAT(MATCH_MP_TAC pth) THEN CONV_TAC REAL_RAT_LE_CONV in
      fun tm -> try prove(tm,tac)
                with Failure _ -> failwith "Need root body >= &1" in
    fun (fn1,fn2) ->
      let raw_fn n =
        num_sqrt(power_num (Int 2) n */ raw_eval fn1 n)
      and thm_fn n =
        let th1 = MATCH_pth(thm_eval fn2 n) in
        let th2 = MP th1 (PROVE_1_LE_SQRT(lhand(concl th1))) in
        let th3 = CONV_RULE(funpow 2 LAND_CONV
          (funpow 2 RAND_CONV REAL_RAT_REDUCE_CONV)) th2 in
        let k = dest_realintconst(rand(rand(lhand(lhand(concl th3))))) in
        let th4 = INST [mk_realintconst(num_sqrt k),b_tm] th3 in
        MP th4 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th4)))) in
     raw_wrap raw_fn,thm_wrap thm_fn in

  let rec REALCALC_CONV tm =
    try assoc tm (!realcalc_cache) with Failure _ ->
    if is_ratconst tm then
      let x = rat_of_term tm in
      let raw_fn acc =
        floor_num ((power_num (Int 2) acc) */ x)
      and thm_fn acc =
        let a = floor_num ((power_num (Int 2) acc) */ x) in
        let atm = mk_realintconst a in
        let rtm = mk_comb(mk_comb(mul_tm,mk_comb(pow2_tm,mk_numeral acc)),tm) in
        let btm = mk_comb(abs_tm,mk_comb(mk_comb(sub_tm,atm),rtm)) in
        let ftm = mk_comb(mk_comb(lt_tm,btm),one_tm) in
        EQT_ELIM(REAL_RAT_REDUCE_CONV ftm) in
      raw_wrap raw_fn,thm_wrap thm_fn else
    let lop,r = dest_comb tm in
    if lop = neg_tm then
      let rfn,tfn = REALCALC_CONV r in
      let raw_fn acc =
        minus_num (raw_eval rfn acc)
      and thm_fn acc =
        let th1 = thm_eval tfn acc in
        let th2 = MATCH_MP REALCALC_NEG th1 in
        try EQ_MP (LAND_CONV(RAND_CONV(LAND_CONV REAL_INT_NEG_CONV)) (concl th2))
                  th2
        with Failure _ -> th2 in
      raw_wrap raw_fn,thm_wrap thm_fn
    else if lop = abs_tm then
      let rfn,tfn = REALCALC_CONV r in
      let raw_fn acc =
        abs_num (raw_eval rfn acc)
      and thm_fn acc =
        let th1 = thm_eval tfn acc in
        let th2 = MATCH_MP REALCALC_ABS th1 in
        CONV_RULE (LAND_CONV(RAND_CONV(LAND_CONV REAL_INT_ABS_CONV))) th2 in
      raw_wrap raw_fn,thm_wrap thm_fn
    else if lop = sqrt_tm then
      REALCALC_SQRT_CONV(REALCALC_CONV r)
    else if lop = inv_tm then
      let rfn,tfn = REALCALC_CONV r in
      let x0 = raw_eval rfn (Int 0) in
      let ax0 = abs_num x0 in
      let r = log2(ax0) -/ Int 1 in
      let get_ek(acc) =
        if r < Int 0 then
          let p = find_msd rfn in
          let e = acc +/ p +/ Int 1 in
          let k = e +/ p in e,k
        else
          let k = let k0 = acc +/ Int 1 -/ (Int 2 */ r) in
                  if k0 </ Int 0 then Int 0 else k0 in
          let e = r +/ k in e,k in
      let raw_fn acc =
        let _,k = get_ek(acc) in
        let nk2 = power_num (Int 2) (acc +/ k) in
        ndiv nk2 (raw_eval rfn k) in
      let thm_fn acc =
        let e,k = get_ek(acc) in
        let nk2 = power_num (Int 2) (acc +/ k) in
        let th1 = thm_eval tfn k in
        let atm = lhand(rand(lhand(concl th1))) in
        let a = dest_realintconst atm in
        let b = ndiv nk2 a in
        let btm = mk_realintconst b in
        let etm = mk_numeral e in
        let ntm = mk_numeral acc in
        let th2 = MATCH_MP REALCALC_INV th1 in
        let th3 = INST [btm,b_tm; etm,e_tm; ntm,n_tm] th2 in
        let th4 = MP th3 (INTEGER_PROVE(lhand(concl th3))) in
        let th5 = MP th4 (INTEGER_PROVE(lhand(concl th4))) in
        let th6 = MP th5 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th5)))) in
        let th7 = MP th6 (EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th6)))) in
        MP th7
         (EQT_ELIM(((LAND_CONV (funpow 4 RAND_CONV NUM_ADD_CONV) THENC
                    REAL_INT_REDUCE_CONV) (lhand(concl th7))))) in
      raw_wrap raw_fn,thm_wrap thm_fn
    else if lop = exp_tm then
      let rfn,tfn = REALCALC_CONV r in
      REALCALC_EXP_CONV (rfn,tfn)
    else if lop = ln_tm then
      let r1,r2 = dest_comb r in
      if r1 = add1_tm then
        let rfn,tfn = REALCALC_CONV r2 in
        REALCALC_LN_CONV (rfn,tfn)
      else
        failwith "Can only do logs like ln(&1 + x) for small rational x" else
    let op,l = dest_comb lop in
    if op = add_tm then
      let rfn1,tfn1 = REALCALC_CONV l
      and rfn2,tfn2 = REALCALC_CONV r in
      let raw_fn acc =
        let acc' = acc +/ Int 2 in
        ndiv (raw_eval rfn1 acc' +/ raw_eval rfn2 acc') (Int 4)
      and thm_fn acc =
        let acc' = acc +/ Int 2 in
        let th1 = INST [mk_numeral acc,n_tm] REALCALC_ADD in
        let th2 = MATCH_MP th1 (NUM_ADD_CONV (lhand(lhand(concl th1)))) in
        let th3 = thm_eval tfn1 acc' in
        let th4 = MATCH_MP th2 th3 in
        let th5 = thm_eval tfn2 acc' in
        let th6 = MATCH_MP th4 th5 in
        let n1 = dest_realintconst(lhand(rand(lhand(concl th3))))
        and n2 = dest_realintconst(lhand(rand(lhand(concl th5)))) in
        let ci = mk_realintconst(ndiv (n1 +/ n2) (Int 4)) in
        let th7 = INST [ci,c_tm] th6 in
        let th8 = EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th7))) in
        MP th7 th8 in
      raw_wrap raw_fn,thm_wrap thm_fn
    else if op = mul_tm then
      let rfn1,tfn1 = REALCALC_CONV l
      and rfn2,tfn2 = REALCALC_CONV r in
      let get_kl(acc) =
        let n' = acc +/ Int 2 in
        let r = quo_num n' (Int 2) in
        let s = n' -/ r in
        let p = log2(abs_num(raw_eval rfn1 r))
        and q = log2(abs_num(raw_eval rfn2 s)) in
        let k = q +/ r +/ Int 1
        and l = p +/ s +/ Int 1 in
        if p =/ Int 0 && q = Int 0 then
          if k </ l then k +/ Int 1,l else k,l +/ Int 1
        else k,l in
      let raw_fn acc =
        let k,l = get_kl acc in
        let m = (k +/ l) -/ acc in
        ndiv (raw_eval rfn1 k */ raw_eval rfn2 l) (power_num (Int 2) m) in
      let thm_fn acc =
        let k,l = get_kl acc in
        let m = (k +/ l) -/ acc in
        let th1a = thm_eval tfn1 k
        and th1b = thm_eval tfn2 l in
        let a = dest_realintconst(lhand(rand(lhand(concl th1a))))
        and b = dest_realintconst(lhand(rand(lhand(concl th1b)))) in
        let c = ndiv (a */ b) (power_num (Int 2) m) in
        let ntm = mk_numeral acc
        and mtm = mk_numeral m
        and ctm = mk_realintconst c in
        let th1 = MATCH_MP REALCALC_MUL th1a in
        let th2 = MATCH_MP th1 th1b in
        let th3 = INST [ntm,n_tm; mtm,m_tm; ctm,c_tm] th2 in
        let th4 = MP th3 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th3)))) in
        let th5 = MP th4 (EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th4)))) in
        MP th5 (EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th5)))) in
      raw_wrap raw_fn,thm_wrap thm_fn
    else failwith "No other operators work yet, sorry!" in
  REALCALC_CONV,thm_eval,raw_eval,thm_wrap;;

(* ------------------------------------------------------------------------- *)
(* Apply some conversion before doing approximation.                         *)
(* ------------------------------------------------------------------------- *)

let REALCALC_PRECONV conv tm =
  let th = conv tm in
  let rfn,tfn = REALCALC_CONV (rand(concl th)) in
  rfn,
  thm_wrap(fun n ->
        let th1 = thm_eval tfn n in
        GEN_REWRITE_RULE (LAND_CONV o funpow 3 RAND_CONV) [SYM th] th1);;

(* ------------------------------------------------------------------------- *)
(* Calculate ordering relation between two expressions.                      *)
(* ------------------------------------------------------------------------- *)

let REALCALC_LT = prove
 (`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1
   ==> &2 <= abs(a - b) ==> (x < y <=> a < b)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `&2 pow n * x < &2 pow n * y` THEN CONJ_TAC THENL
   [SIMP_TAC[REAL_LT_LMUL_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH];
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC]);;

let REALCALC_LE = prove
 (`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1
   ==> &2 <= abs(a - b) ==> (x <= y <=> a <= b)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `&2 pow n * x <= &2 pow n * y` THEN CONJ_TAC THENL
   [SIMP_TAC[REAL_LE_LMUL_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH];
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC]);;

let REALCALC_GT = prove
 (`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1
   ==> &2 <= abs(a - b) ==> (x > y <=> a > b)`,
  ONCE_REWRITE_TAC[CONJ_SYM; REAL_ABS_SUB] THEN
  REWRITE_TAC[real_gt; REALCALC_LT]);;

let REALCALC_GE = prove
 (`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1
   ==> &2 <= abs(a - b) ==> (x >= y <=> a >= b)`,
  ONCE_REWRITE_TAC[CONJ_SYM; REAL_ABS_SUB] THEN
  REWRITE_TAC[real_ge; REALCALC_LE]);;

let REALCALC_EQ = prove
 (`abs(a - &2 pow n * x) < &1 /\ abs(b - &2 pow n * y) < &1
   ==> &2 <= abs(a - b) ==> ((x = y) <=> F)`,
  ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;

let realcalc_rel_conv =
  let pops =
   [`(<)`,(</); `(<=)`,(<=/);
    `(>)`,(>/); `(>=)`,(>=/);
    `(=):real->real->bool`,(=/)] in
  let rec find_n rfn1 rfn2 n =
    if n >/ Int 1000 then
       failwith "realcalc_rel_conv: too close to discriminate" else
    if abs_num(raw_eval rfn1 n -/ raw_eval rfn2 n) >=/ Int 4 then n
    else find_n rfn1 rfn2 (n +/ Int 1) in
  fun tm ->
    let lop,r = dest_comb tm in
    let op,l = dest_comb lop in
    let pop =
      try assoc op pops
      with Failure _ -> failwith "realcalc_rel_conv: unknown operator" in
    let rfn1,tfn1 = REALCALC_CONV l
    and rfn2,tfn2 = REALCALC_CONV r in
    let n = find_n rfn1 rfn2 (Int 1) in
    pop (raw_eval rfn1 n) (raw_eval rfn2 n);;

let REALCALC_REL_CONV =
  let pths =
   [`(<)`,REALCALC_LT; `(<=)`,REALCALC_LE;
    `(>)`,REALCALC_GT; `(>=)`,REALCALC_GE;
    `(=):real->real->bool`,REALCALC_EQ] in
  let rec find_n rfn1 rfn2 n =
    if n >/ Int 1000 then
       failwith "realcalc_rel_conv: too close to discriminate" else
    if abs_num(raw_eval rfn1 n -/ raw_eval rfn2 n) >=/ Int 4 then n
    else find_n rfn1 rfn2 (n +/ Int 1) in
  fun tm ->
    let lop,r = dest_comb tm in
    let op,l = dest_comb lop in
    let pth = try assoc op pths
    with Failure _ -> failwith "realcalc_rel_conv: unknown operator" in
    let rfn1,tfn1 = REALCALC_CONV l
    and rfn2,tfn2 = REALCALC_CONV r in
    let n = find_n rfn1 rfn2 (Int 1) in
    let th1 = thm_eval tfn1 n
    and th2 = thm_eval tfn2 n in
    let th3 = MATCH_MP pth (CONJ th1 th2) in
    let th4 = MP th3 (EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th3)))) in
    CONV_RULE(RAND_CONV REAL_RAT_REDUCE_CONV) th4;;