Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 37,170 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
(* ========================================================================= *)
(* The integer/rational-valued reals, and the "floor" and "frac" functions.  *)
(* ========================================================================= *)

prioritize_real();;

(* ------------------------------------------------------------------------- *)
(* Closure theorems and other lemmas for the integer-valued reals.           *)
(* ------------------------------------------------------------------------- *)

let INTEGER_CASES = prove
 (`integer x <=> (?n. x = &n) \/ (?n. x = -- &n)`,
  REWRITE_TAC[is_int; OR_EXISTS_THM]);;

let REAL_ABS_INTEGER_LEMMA = prove
 (`!x. integer(x) /\ ~(x = &0) ==> &1 <= abs(x)`,
  GEN_TAC THEN REWRITE_TAC[integer] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ONCE_REWRITE_TAC[REAL_ARITH `(x = &0) <=> (abs(x) = &0)`] THEN
  POP_ASSUM(CHOOSE_THEN SUBST1_TAC) THEN
  REWRITE_TAC[REAL_OF_NUM_EQ; REAL_OF_NUM_LE] THEN ARITH_TAC);;

let INTEGER_CLOSED = prove
 (`(!n. integer(&n)) /\
   (!x y. integer(x) /\ integer(y) ==> integer(x + y)) /\
   (!x y. integer(x) /\ integer(y) ==> integer(x - y)) /\
   (!x y. integer(x) /\ integer(y) ==> integer(x * y)) /\
   (!x r. integer(x) ==> integer(x pow r)) /\
   (!x. integer(x) ==> integer(--x)) /\
   (!x. integer(x) ==> integer(abs x)) /\
   (!x y. integer(x) /\ integer(y) ==> integer(max x y)) /\
   (!x y. integer(x) /\ integer(y) ==> integer(min x y))`,
  REWRITE_TAC[integer] THEN
  MATCH_MP_TAC(TAUT
   `g /\ h /\ x /\ c /\ d /\ e /\ f /\ (a /\ e ==> b) /\ a
    ==> x /\ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h`) THEN
  REPEAT CONJ_TAC THENL
   [REWRITE_TAC[real_max] THEN MESON_TAC[];
    REWRITE_TAC[real_min] THEN MESON_TAC[];
    REWRITE_TAC[REAL_ABS_NUM] THEN MESON_TAC[];
    REWRITE_TAC[REAL_ABS_MUL] THEN MESON_TAC[REAL_OF_NUM_MUL];
    REWRITE_TAC[REAL_ABS_POW] THEN MESON_TAC[REAL_OF_NUM_POW];
    REWRITE_TAC[REAL_ABS_NEG]; REWRITE_TAC[REAL_ABS_ABS];
    REWRITE_TAC[real_sub] THEN MESON_TAC[]; ALL_TAC] THEN
  SIMP_TAC[REAL_ARITH `&0 <= a ==> ((abs(x) = a) <=> (x = a) \/ (x = --a))`;
           REAL_POS] THEN
  REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[GSYM REAL_NEG_ADD; REAL_OF_NUM_ADD] THENL
   [MESON_TAC[]; ALL_TAC; ALL_TAC; MESON_TAC[]] THEN
  REWRITE_TAC[REAL_ARITH `(--a + b = c) <=> (a + c = b)`;
              REAL_ARITH `(a + --b = c) <=> (b + c = a)`] THEN
  REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
  MESON_TAC[LE_EXISTS; ADD_SYM; LE_CASES]);;

let INTEGER_ADD = prove
 (`!x y. integer(x) /\ integer(y) ==> integer(x + y)`,
  REWRITE_TAC[INTEGER_CLOSED]);;

let INTEGER_SUB = prove
 (`!x y. integer(x) /\ integer(y) ==> integer(x - y)`,
  REWRITE_TAC[INTEGER_CLOSED]);;

let INTEGER_MUL = prove
 (`!x y. integer(x) /\ integer(y) ==> integer(x * y)`,
  REWRITE_TAC[INTEGER_CLOSED]);;

let INTEGER_POW = prove
 (`!x n. integer(x) ==> integer(x pow n)`,
  REWRITE_TAC[INTEGER_CLOSED]);;

let REAL_LE_INTEGERS = prove
 (`!x y. integer(x) /\ integer(y) ==> (x <= y <=> (x = y) \/ x + &1 <= y)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `y - x` REAL_ABS_INTEGER_LEMMA) THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;

let REAL_LE_CASES_INTEGERS = prove
 (`!x y. integer(x) /\ integer(y) ==> x <= y \/ y + &1 <= x`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `y - x` REAL_ABS_INTEGER_LEMMA) THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;

let REAL_LE_REVERSE_INTEGERS = prove
 (`!x y. integer(x) /\ integer(y) /\ ~(y + &1 <= x) ==> x <= y`,
  MESON_TAC[REAL_LE_CASES_INTEGERS]);;

let REAL_LT_INTEGERS = prove
 (`!x y. integer(x) /\ integer(y) ==> (x < y <=> x + &1 <= y)`,
  MESON_TAC[REAL_NOT_LT; REAL_LE_CASES_INTEGERS;
            REAL_ARITH `x + &1 <= y ==> x < y`]);;

let REAL_EQ_INTEGERS = prove
 (`!x y. integer x /\ integer y ==> (x = y <=> abs(x - y) < &1)`,
  REWRITE_TAC[REAL_ARITH `x = y <=> ~(x < y \/ y < x)`] THEN
  SIMP_TAC[REAL_LT_INTEGERS] THEN REAL_ARITH_TAC);;

let REAL_EQ_INTEGERS_IMP = prove
 (`!x y. integer x /\ integer y /\ abs(x - y) < &1 ==> x = y`,
  SIMP_TAC[REAL_EQ_INTEGERS]);;

let INTEGER_NEG = prove
 (`!x. integer(--x) <=> integer(x)`,
  MESON_TAC[INTEGER_CLOSED; REAL_NEG_NEG]);;

let INTEGER_ABS = prove
 (`!x. integer(abs x) <=> integer(x)`,
  GEN_TAC THEN REWRITE_TAC[real_abs] THEN COND_CASES_TAC THEN
  REWRITE_TAC[INTEGER_NEG]);;

let INTEGER_POS = prove
 (`!x. &0 <= x ==> (integer(x) <=> ?n. x = &n)`,
  SIMP_TAC[integer; real_abs]);;

let NONNEGATIVE_INTEGER = prove
 (`!x. integer x /\ &0 <= x <=> ?n. x = &n`,
  MESON_TAC[INTEGER_POS; INTEGER_CLOSED; REAL_POS]);;

let NONPOSITIVE_INTEGER = prove
 (`!x. integer x /\ x <= &0 <=> ?n. x = -- &n`,
  GEN_TAC THEN REWRITE_TAC[is_int] THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM; REAL_ARITH `a + b = &0 <=> a = --b`] THEN
  AP_TERM_TAC THEN ABS_TAC THEN REAL_ARITH_TAC);;

let NONPOSITIVE_INTEGER_ALT = prove
 (`!x. integer x /\ x <= &0 <=> ?n. x + &n = &0`,
  GEN_TAC THEN REWRITE_TAC[NONPOSITIVE_INTEGER] THEN
  AP_TERM_TAC THEN ABS_TAC THEN REAL_ARITH_TAC);;

let INTEGER_ADD_EQ = prove
 (`(!x y. integer(x) ==> (integer(x + y) <=> integer(y))) /\
   (!x y. integer(y) ==> (integer(x + y) <=> integer(x)))`,
  MESON_TAC[REAL_ADD_SUB; REAL_ADD_SYM; INTEGER_CLOSED]);;

let INTEGER_SUB_EQ = prove
 (`(!x y. integer(x) ==> (integer(x - y) <=> integer(y))) /\
   (!x y. integer(y) ==> (integer(x - y) <=> integer(x)))`,
  MESON_TAC[REAL_SUB_ADD; REAL_NEG_SUB; INTEGER_CLOSED]);;

let FORALL_INTEGER = prove
 (`!P. (!n. P(&n)) /\ (!x. P x ==> P(--x)) ==> !x. integer x ==> P x`,
  MESON_TAC[INTEGER_CASES]);;

let INTEGER_SUM = prove
 (`!f:A->real s. (!x. x IN s ==> integer(f x)) ==> integer(sum s f)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_CLOSED THEN
  ASM_REWRITE_TAC[INTEGER_CLOSED]);;

let INTEGER_ABS_MUL_EQ_1 = prove
 (`!x y. integer x /\ integer y
         ==> (abs(x * y) = &1 <=> abs x = &1 /\ abs y = &1)`,
  REWRITE_TAC[integer] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_MUL] THEN
  REWRITE_TAC[REAL_OF_NUM_EQ; REAL_OF_NUM_MUL; MULT_EQ_1]);;

let INTEGER_DIV = prove
 (`!m n. integer(&m / &n) <=> n = 0 \/ n divides m`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[real_div; REAL_INV_0; REAL_MUL_RZERO; INTEGER_CLOSED];
    ASM_SIMP_TAC[INTEGER_POS; REAL_POS; REAL_LE_DIV; divides] THEN
    ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD
     `~(n = &0) ==> (x / n = y <=> x = n * y)`] THEN
    REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]]);;

(* ------------------------------------------------------------------------- *)
(* Similar theorems for rational-valued reals.                               *)
(* ------------------------------------------------------------------------- *)

let rational = new_definition
 `rational x <=> ?m n. integer m /\ integer n /\ ~(n = &0) /\ x = m / n`;;

let RATIONAL_INTEGER = prove
 (`!x. integer x ==> rational x`,
  GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[rational] THEN
  MAP_EVERY EXISTS_TAC [`x:real`; `&1`] THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN CONV_TAC REAL_FIELD);;

let RATIONAL_NUM = prove
 (`!n. rational(&n)`,
  SIMP_TAC[RATIONAL_INTEGER; INTEGER_CLOSED]);;

let RATIONAL_NEG = prove
 (`!x. rational(x) ==> rational(--x)`,
  REWRITE_TAC[rational; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`x:real`; `m:real`; `n:real`] THEN
  STRIP_TAC THEN
  MAP_EVERY EXISTS_TAC [`--m:real`; `n:real`] THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN CONV_TAC REAL_FIELD);;

let RATIONAL_ABS = prove
 (`!x. rational(x) ==> rational(abs x)`,
  REWRITE_TAC[real_abs] THEN MESON_TAC[RATIONAL_NEG]);;

let RATIONAL_INV = prove
 (`!x. rational(x) ==> rational(inv x)`,
  GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN
  ASM_SIMP_TAC[REAL_INV_0; RATIONAL_NUM] THEN
  REWRITE_TAC[rational; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`m:real`; `n:real`] THEN STRIP_TAC THEN
  MAP_EVERY EXISTS_TAC [`n:real`; `m:real`] THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;

let RATIONAL_ADD = prove
 (`!x y. rational(x) /\ rational(y) ==> rational(x + y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[rational; LEFT_AND_EXISTS_THM] THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`m1:real`; `n1:real`; `m2:real`; `n2:real`] THEN
  STRIP_TAC THEN
  MAP_EVERY EXISTS_TAC [`m1 * n2 + m2 * n1:real`; `n1 * n2:real`] THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;

let RATIONAL_SUB = prove
 (`!x y. rational(x) /\ rational(y) ==> rational(x - y)`,
  SIMP_TAC[real_sub; RATIONAL_NEG; RATIONAL_ADD]);;

let RATIONAL_MUL = prove
 (`!x y. rational(x) /\ rational(y) ==> rational(x * y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[rational; LEFT_AND_EXISTS_THM] THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`m1:real`; `n1:real`; `m2:real`; `n2:real`] THEN
  STRIP_TAC THEN
  MAP_EVERY EXISTS_TAC [`m1 * m2:real`; `n1 * n2:real`] THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;

let RATIONAL_DIV = prove
 (`!x y. rational(x) /\ rational(y) ==> rational(x / y)`,
  SIMP_TAC[real_div; RATIONAL_INV; RATIONAL_MUL]);;

let RATIONAL_POW = prove
 (`!x n. rational(x) ==> rational(x pow n)`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_SIMP_TAC[real_pow; RATIONAL_NUM; RATIONAL_MUL]);;

let RATIONAL_CLOSED = prove
 (`(!n. rational(&n)) /\
   (!x. integer x ==> rational x) /\
   (!x y. rational(x) /\ rational(y) ==> rational(x + y)) /\
   (!x y. rational(x) /\ rational(y) ==> rational(x - y)) /\
   (!x y. rational(x) /\ rational(y) ==> rational(x * y)) /\
   (!x y. rational(x) /\ rational(y) ==> rational(x / y)) /\
   (!x r. rational(x) ==> rational(x pow r)) /\
   (!x. rational(x) ==> rational(--x)) /\
   (!x. rational(x) ==> rational(inv x)) /\
   (!x. rational(x) ==> rational(abs x))`,
  SIMP_TAC[RATIONAL_NUM; RATIONAL_NEG; RATIONAL_ABS; RATIONAL_INV;
           RATIONAL_ADD; RATIONAL_SUB; RATIONAL_MUL; RATIONAL_DIV;
           RATIONAL_POW; RATIONAL_INTEGER]);;

let RATIONAL_NEG_EQ = prove
 (`!x. rational(--x) <=> rational x`,
  MESON_TAC[REAL_NEG_NEG; RATIONAL_NEG]);;

let RATIONAL_ABS_EQ = prove
 (`!x. rational(abs x) <=> rational x`,
  REWRITE_TAC[real_abs] THEN MESON_TAC[RATIONAL_NEG_EQ; RATIONAL_NUM]);;

let RATIONAL_INV_EQ = prove
 (`!x. rational(inv x) <=> rational x`,
  MESON_TAC[REAL_INV_INV; RATIONAL_INV]);;

let RATIONAL_SUM = prove
 (`!s x. (!i. i IN s ==> rational(x i)) ==> rational(sum s x)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_CLOSED THEN
  ASM_SIMP_TAC[RATIONAL_CLOSED]);;

let RATIONAL_ALT = prove
 (`!x. rational(x) <=> ?p q. ~(q = 0) /\ abs x = &p / &q`,
  GEN_TAC THEN REWRITE_TAC[rational] THEN EQ_TAC THENL
   [REWRITE_TAC[integer] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_DIV] THEN
    ASM_MESON_TAC[REAL_OF_NUM_EQ; REAL_ABS_ZERO];
    STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP
     (REAL_ARITH `abs(x:real) = a ==> x = a \/ x = --a`)) THEN
    ASM_REWRITE_TAC[real_div; GSYM REAL_MUL_LNEG] THEN
    REWRITE_TAC[GSYM real_div] THEN
    ASM_MESON_TAC[INTEGER_CLOSED; REAL_OF_NUM_EQ]]);;

(* ------------------------------------------------------------------------- *)
(* The floor and frac functions.                                             *)
(* ------------------------------------------------------------------------- *)

let REAL_TRUNCATE_POS = prove
 (`!x. &0 <= x ==> ?n r. &0 <= r /\ r < &1 /\ (x = &n + r)`,
  REPEAT STRIP_TAC THEN MP_TAC(SPEC `x:real` REAL_ARCH_SIMPLE) THEN
  GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  INDUCT_TAC THEN REWRITE_TAC[LT_SUC_LE; CONJUNCT1 LT] THENL
   [DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`0`; `&0`] THEN ASM_REAL_ARITH_TAC;
    POP_ASSUM_LIST(K ALL_TAC)] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `n:num`)) THEN
  REWRITE_TAC[LE_REFL; REAL_NOT_LE] THEN DISCH_TAC THEN
  FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC o REWRITE_RULE[REAL_LE_LT])
  THENL
   [MAP_EVERY EXISTS_TAC [`n:num`; `x - &n`] THEN ASM_REAL_ARITH_TAC;
    MAP_EVERY EXISTS_TAC [`SUC n`; `x - &(SUC n)`] THEN
    REWRITE_TAC[REAL_ADD_SUB; GSYM REAL_OF_NUM_SUC] THEN ASM_REAL_ARITH_TAC]);;

let REAL_TRUNCATE = prove
 (`!x. ?n r. integer(n) /\ &0 <= r /\ r < &1 /\ (x = n + r)`,
  GEN_TAC THEN DISJ_CASES_TAC(SPECL [`x:real`; `&0`] REAL_LE_TOTAL) THENL
   [MP_TAC(SPEC `--x` REAL_ARCH_SIMPLE) THEN
    REWRITE_TAC[REAL_ARITH `--a <= b <=> &0 <= a + b`] THEN
    DISCH_THEN(X_CHOOSE_THEN `n:num`
     (MP_TAC o MATCH_MP REAL_TRUNCATE_POS)) THEN
    REWRITE_TAC[REAL_ARITH `(a + b = c + d) <=> (a = (c - b) + d)`];
    ALL_TAC] THEN
  ASM_MESON_TAC[integer; INTEGER_CLOSED; REAL_TRUNCATE_POS]);;

let FLOOR_FRAC =
    new_specification ["floor"; "frac"]
       (REWRITE_RULE[SKOLEM_THM] REAL_TRUNCATE);;

(* ------------------------------------------------------------------------- *)
(* Useful lemmas about floor and frac.                                       *)
(* ------------------------------------------------------------------------- *)

let FLOOR_UNIQUE = prove
 (`!x a. integer(a) /\ a <= x /\ x < a + &1 <=> (floor x = a)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [STRIP_TAC THEN STRIP_ASSUME_TAC(SPEC `x:real` FLOOR_FRAC) THEN
    SUBGOAL_THEN `abs(floor x - a) < &1` MP_TAC THENL
     [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    DISCH_TAC THEN REWRITE_TAC[REAL_NOT_LT] THEN
    MATCH_MP_TAC REAL_ABS_INTEGER_LEMMA THEN CONJ_TAC THENL
     [ASM_MESON_TAC[INTEGER_CLOSED]; ASM_REAL_ARITH_TAC];
    DISCH_THEN(SUBST1_TAC o SYM) THEN
    MP_TAC(SPEC `x:real` FLOOR_FRAC) THEN
    SIMP_TAC[] THEN REAL_ARITH_TAC]);;

let FLOOR_EQ_0 = prove
 (`!x. (floor x = &0) <=> &0 <= x /\ x < &1`,
  GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN
  REWRITE_TAC[INTEGER_CLOSED; REAL_ADD_LID]);;

let FLOOR = prove
 (`!x. integer(floor x) /\ floor(x) <= x /\ x < floor(x) + &1`,
  GEN_TAC THEN MP_TAC(SPEC `x:real` FLOOR_FRAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;

let FLOOR_DOUBLE = prove
 (`!u. &2 * floor(u) <= floor(&2 * u) /\ floor(&2 * u) <= &2 * floor(u) + &1`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_REVERSE_INTEGERS THEN
  SIMP_TAC[INTEGER_CLOSED; FLOOR] THEN
  MP_TAC(SPEC `u:real` FLOOR) THEN MP_TAC(SPEC `&2 * u` FLOOR) THEN
  REAL_ARITH_TAC);;

let FRAC_FLOOR = prove
 (`!x. frac(x) = x - floor(x)`,
  MP_TAC FLOOR_FRAC THEN MATCH_MP_TAC MONO_FORALL THEN REAL_ARITH_TAC);;

let FLOOR_NUM = prove
 (`!n. floor(&n) = &n`,
  REWRITE_TAC[GSYM FLOOR_UNIQUE; INTEGER_CLOSED] THEN REAL_ARITH_TAC);;

let REAL_LE_FLOOR = prove
 (`!x n. integer(n) ==> (n <= floor x <=> n <= x)`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [ASM_MESON_TAC[FLOOR; REAL_LE_TRANS]; ALL_TAC] THEN
  REWRITE_TAC[GSYM REAL_NOT_LT] THEN ASM_SIMP_TAC[REAL_LT_INTEGERS; FLOOR] THEN
  MP_TAC(SPEC `x:real` FLOOR) THEN REAL_ARITH_TAC);;

let REAL_FLOOR_LE = prove
 (`!x n. integer n ==> (floor x <= n <=> x - &1 < n)`,
  REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[REAL_ARITH `x <= y <=> x + &1 <= y + &1`] THEN
  ASM_SIMP_TAC[GSYM REAL_LT_INTEGERS; FLOOR; INTEGER_CLOSED] THEN
  ONCE_REWRITE_TAC[TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
  ASM_SIMP_TAC[REAL_NOT_LT; REAL_LE_FLOOR; INTEGER_CLOSED] THEN
  REAL_ARITH_TAC);;

let REAL_FLOOR_LT = prove
 (`!x n. integer n ==> (floor x < n <=> x < n)`,
  SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_FLOOR]);;

let REAL_LT_FLOOR = prove
 (`!x n. integer n ==> (n < floor x <=> n <= x - &1)`,
  SIMP_TAC[GSYM REAL_NOT_LE; REAL_FLOOR_LE]);;

let FLOOR_POS = prove
 (`!x. &0 <= x ==> ?n. floor(x) = &n`,
  REPEAT STRIP_TAC THEN MP_TAC(CONJUNCT1(SPEC `x:real` FLOOR)) THEN
  REWRITE_TAC[integer] THEN
  ASM_SIMP_TAC[real_abs; REAL_LE_FLOOR; FLOOR; INTEGER_CLOSED]);;

let FLOOR_DIV_DIV = prove
 (`!m n. ~(m = 0) ==> floor(&n / &m) = &(n DIV m)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE; INTEGER_CLOSED] THEN
  ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT;
               REAL_OF_NUM_LE; REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; LT_NZ] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN ARITH_TAC);;

let FLOOR_MONO = prove
 (`!x y. x <= y ==> floor x <= floor y`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_NOT_LT] THEN
  SIMP_TAC[FLOOR; REAL_LT_INTEGERS] THEN
  MAP_EVERY (MP_TAC o C SPEC FLOOR) [`x:real`; `y:real`] THEN REAL_ARITH_TAC);;

let REAL_FLOOR_EQ = prove
 (`!x. floor x = x <=> integer x`,
  REWRITE_TAC[GSYM FLOOR_UNIQUE; REAL_LE_REFL; REAL_ARITH `x < x + &1`]);;

let REAL_FLOOR_LT_REFL = prove
 (`!x. floor x < x <=> ~(integer x)`,
  MESON_TAC[REAL_LT_LE; REAL_FLOOR_EQ; FLOOR]);;

let REAL_FRAC_EQ_0 = prove
 (`!x. frac x = &0 <=> integer x`,
  REWRITE_TAC[FRAC_FLOOR; REAL_SUB_0] THEN MESON_TAC[REAL_FLOOR_EQ]);;

let REAL_FRAC_POS_LT = prove
 (`!x. &0 < frac x <=> ~(integer x)`,
  REWRITE_TAC[FRAC_FLOOR; REAL_SUB_LT; REAL_FLOOR_LT_REFL]);;

let FRAC_NUM = prove
 (`!n. frac(&n) = &0`,
  REWRITE_TAC[REAL_FRAC_EQ_0; INTEGER_CLOSED]);;

let REAL_FLOOR_REFL = prove
 (`!x. integer x ==> floor x = x`,
  REWRITE_TAC[REAL_FLOOR_EQ]);;

let REAL_FRAC_ZERO = prove
 (`!x. integer x ==> frac x = &0`,
  REWRITE_TAC[REAL_FRAC_EQ_0]);;

let REAL_FLOOR_ADD = prove
 (`!x y. floor(x + y) = if frac x + frac y < &1 then floor(x) + floor(y)
                        else (floor(x) + floor(y)) + &1`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[INTEGER_CLOSED; FLOOR]; ALL_TAC] THEN
  MAP_EVERY (MP_TAC o C SPEC FLOOR_FRAC)[`x:real`; `y:real`; `x + y:real`] THEN
  REAL_ARITH_TAC);;

let REAL_FLOOR_TRIANGLE = prove
 (`!x y. floor(x) + floor(y) <= floor(x + y) /\
         floor(x + y) <= (floor x + floor y) + &1`,
  REPEAT GEN_TAC THEN REWRITE_TAC[REAL_FLOOR_ADD] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;

let REAL_FLOOR_NEG = prove
 (`!x. floor(--x) = if integer x then --x else --(floor x + &1)`,
  GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN
  MP_TAC(SPEC `x:real` FLOOR) THEN
  MP_TAC(SPEC `x:real` REAL_FLOOR_EQ) THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;

let REAL_FRAC_ADD = prove
 (`!x y. frac(x + y) = if frac x + frac y < &1 then frac(x) + frac(y)
                       else (frac(x) + frac(y)) - &1`,
  REWRITE_TAC[FRAC_FLOOR; REAL_FLOOR_ADD] THEN REAL_ARITH_TAC);;

let FLOOR_POS_LE = prove
 (`!x. &0 <= floor x <=> &0 <= x`,
  SIMP_TAC[REAL_LE_FLOOR; INTEGER_CLOSED]);;

let FRAC_UNIQUE = prove
 (`!x a. integer(x - a) /\ &0 <= a /\ a < &1 <=> frac x = a`,
  REWRITE_TAC[FRAC_FLOOR; REAL_ARITH `x - f:real = a <=> f = x - a`] THEN
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN
  AP_TERM_TAC THEN REAL_ARITH_TAC);;

let REAL_FRAC_EQ = prove
 (`!x. frac x = x <=> &0 <= x /\ x < &1`,
  REWRITE_TAC[GSYM FRAC_UNIQUE; REAL_SUB_REFL; INTEGER_CLOSED]);;

let INTEGER_ROUND = prove
 (`!x. ?n. integer n /\ abs(x - n) <= &1 / &2`,
  GEN_TAC THEN MATCH_MP_TAC(MESON[] `!a. P a \/ P(a + &1) ==> ?x. P x`) THEN
  EXISTS_TAC `floor x` THEN MP_TAC(ISPEC `x:real` FLOOR) THEN
  SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;

let FRAC_DIV_MOD = prove
 (`!m n. ~(n = 0) ==> frac(&m / &n) = &(m MOD n) / &n`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM FRAC_UNIQUE] THEN
  ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; LE_1;
               REAL_ARITH `x / a - y / a:real = (x - y) / a`] THEN
  MP_TAC(SPECL [`m:num`; `n:num`] DIVISION) THEN
  ASM_SIMP_TAC[REAL_OF_NUM_LT; REAL_MUL_LID] THEN
  DISCH_THEN(fun th ->
    GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV o RAND_CONV)
                    [CONJUNCT1 th]) THEN
  SIMP_TAC[REAL_OF_NUM_SUB; ONCE_REWRITE_RULE[ADD_SYM] LE_ADD; ADD_SUB] THEN
  ASM_SIMP_TAC[GSYM REAL_OF_NUM_MUL; REAL_OF_NUM_EQ; INTEGER_CLOSED;
               REAL_FIELD `~(n:real = &0) ==> (x * n) / n = x`]);;

let FRAC_NEG = prove
 (`!x. frac(--x) = if integer x then &0 else &1 - frac x`,
  GEN_TAC THEN REWRITE_TAC[FRAC_FLOOR; REAL_FLOOR_NEG] THEN
  COND_CASES_TAC THEN REAL_ARITH_TAC);;

let REAL_FLOOR_FLOOR_DIV = prove
 (`!x n. floor(floor x / &n) = floor(x / &n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[real_div; REAL_INV_0; REAL_MUL_RZERO] THEN
  REWRITE_TAC[GSYM real_div; GSYM FLOOR_UNIQUE; FLOOR] THEN
  ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  SIMP_TAC[REAL_FLOOR_LT; REAL_LE_FLOOR; FLOOR; INTEGER_CLOSED] THEN
  ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; GSYM REAL_LE_RDIV_EQ;
               REAL_OF_NUM_LT; LE_1; FLOOR]);;

(* ------------------------------------------------------------------------- *)
(* Assertions that there are integers between well-spaced reals.             *)
(* ------------------------------------------------------------------------- *)

let INTEGER_EXISTS_BETWEEN_ALT = prove
 (`!x y. x + &1 <= y ==> ?n. integer n /\ x < n /\ n <= y`,
  REPEAT STRIP_TAC THEN EXISTS_TAC `floor y` THEN
  MP_TAC(SPEC `y:real` FLOOR) THEN SIMP_TAC[] THEN ASM_REAL_ARITH_TAC);;

let INTEGER_EXISTS_BETWEEN_LT = prove
 (`!x y. x + &1 < y ==> ?n. integer n /\ x < n /\ n < y`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `integer y` THENL
   [EXISTS_TAC `y - &1:real` THEN
    ASM_SIMP_TAC[INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC;
    FIRST_ASSUM(MP_TAC o MATCH_MP INTEGER_EXISTS_BETWEEN_ALT o
      MATCH_MP REAL_LT_IMP_LE) THEN
    MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC[REAL_LT_LE] THEN ASM_MESON_TAC[]]);;

let INTEGER_EXISTS_BETWEEN = prove
 (`!x y. x + &1 <= y ==> ?n. integer n /\ x <= n /\ n < y`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `integer y` THENL
   [EXISTS_TAC `y - &1:real` THEN
    ASM_SIMP_TAC[INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC;
    FIRST_ASSUM(MP_TAC o MATCH_MP INTEGER_EXISTS_BETWEEN_ALT) THEN
    MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC[REAL_LT_LE] THENL [ASM_REAL_ARITH_TAC; ASM_MESON_TAC[]]]);;

let INTEGER_EXISTS_BETWEEN_ABS = prove
 (`!x y. &1 <= abs(x - y)
         ==> ?n. integer n /\ (x <= n /\ n < y \/ y <= n /\ n < x)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[real_abs] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL
   [MP_TAC(ISPECL [`y:real`; `x:real`] INTEGER_EXISTS_BETWEEN);
    MP_TAC(ISPECL [`x:real`; `y:real`] INTEGER_EXISTS_BETWEEN)] THEN
  (ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS]) THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;

let INTEGER_EXISTS_BETWEEN_ABS_LT = prove
 (`!x y. &1 < abs(x - y)
         ==> ?n. integer n /\ (x < n /\ n < y \/ y < n /\ n < x)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[real_abs] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL
   [MP_TAC(ISPECL [`y:real`; `x:real`] INTEGER_EXISTS_BETWEEN_LT);
    MP_TAC(ISPECL [`x:real`; `y:real`] INTEGER_EXISTS_BETWEEN_LT)] THEN
  (ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS]) THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* More trivial theorems about real_of_int.                                  *)
(* ------------------------------------------------------------------------- *)

let REAL_OF_INT_OF_REAL = prove
 (`!x. integer(x) ==> real_of_int(int_of_real x) = x`,
  SIMP_TAC[int_rep]);;

let IMAGE_REAL_OF_INT_UNIV = prove
 (`IMAGE real_of_int (:int) = integer`,
  REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV] THEN
  REWRITE_TAC[IN] THEN MESON_TAC[int_tybij]);;

(* ------------------------------------------------------------------------- *)
(* Finiteness of bounded set of integers.                                    *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_INTSEG_NUM = prove
 (`!m n. {x | integer(x) /\ &m <= x /\ x <= &n} HAS_SIZE ((n + 1) - m)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `{x | integer(x) /\ &m <= x /\ x <= &n} =
                IMAGE real_of_num (m..n)`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
    X_GEN_TAC `x:real` THEN ASM_CASES_TAC `?k. x = &k` THENL
     [FIRST_X_ASSUM(CHOOSE_THEN SUBST_ALL_TAC) THEN
      REWRITE_TAC[REAL_OF_NUM_LE; INTEGER_CLOSED; REAL_OF_NUM_EQ] THEN
      REWRITE_TAC[UNWIND_THM1; IN_NUMSEG];
      ASM_MESON_TAC[INTEGER_POS; REAL_ARITH `&n <= x ==> &0 <= x`]];
    MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN REWRITE_TAC[HAS_SIZE_NUMSEG] THEN
    SIMP_TAC[REAL_OF_NUM_EQ]]);;

let FINITE_INTSEG = prove
 (`!a b. FINITE {x | integer(x) /\ a <= x /\ x <= b}`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPEC `max (abs a) (abs b)` REAL_ARCH_SIMPLE) THEN
  REWRITE_TAC[REAL_MAX_LE; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `n:num` THEN STRIP_TAC THEN
  MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `{x | integer(x) /\ abs(x) <= &n}` THEN CONJ_TAC THENL
   [ALL_TAC; SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC] THEN
  MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `IMAGE (\x. &x) (0..n) UNION IMAGE (\x. --(&x)) (0..n)` THEN
  ASM_SIMP_TAC[FINITE_UNION; FINITE_IMAGE; FINITE_NUMSEG] THEN
  REWRITE_TAC[INTEGER_CASES; SUBSET; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
  REWRITE_TAC[IN_UNION; IN_IMAGE; REAL_OF_NUM_EQ; REAL_EQ_NEG2] THEN
  REWRITE_TAC[UNWIND_THM1; IN_NUMSEG] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN
  ASM_REAL_ARITH_TAC);;

let HAS_SIZE_INTSEG_INT = prove
 (`!a b. integer a /\ integer b
         ==> {x | integer(x) /\ a <= x /\ x <= b} HAS_SIZE
             if b < a then 0 else num_of_int(int_of_real(b - a + &1))`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `{x | integer(x) /\ a <= x /\ x <= b} =
    IMAGE (\n. a + &n) {n | &n <= b - a}`
  SUBST1_TAC THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
    ASM_SIMP_TAC[IN_ELIM_THM; INTEGER_CLOSED] THEN
    CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN
    X_GEN_TAC `c:real` THEN STRIP_TAC THEN
    ONCE_REWRITE_TAC[REAL_ARITH `a + x:real = y <=> y - a = x`] THEN
    ASM_SIMP_TAC[GSYM INTEGER_POS; REAL_SUB_LE; INTEGER_CLOSED];
    MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN

    SIMP_TAC[REAL_EQ_ADD_LCANCEL; REAL_OF_NUM_EQ] THEN
    COND_CASES_TAC THENL
     [ASM_SIMP_TAC[REAL_ARITH `b < a ==> ~(&n <= b - a)`] THEN
      REWRITE_TAC[HAS_SIZE_0; EMPTY_GSPEC];
      SUBGOAL_THEN `?m. b - a = &m` (CHOOSE_THEN SUBST1_TAC) THENL
       [ASM_MESON_TAC[INTEGER_POS; INTEGER_CLOSED; REAL_NOT_LT; REAL_SUB_LE];
        REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; GSYM int_of_num;
                    NUM_OF_INT_OF_NUM; HAS_SIZE_NUMSEG_LE]]]]);;

let CARD_INTSEG_INT = prove
 (`!a b. integer a /\ integer b
         ==> CARD {x | integer(x) /\ a <= x /\ x <= b} =
             if b < a then 0 else num_of_int(int_of_real(b - a + &1))`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(MP_TAC o MATCH_MP HAS_SIZE_INTSEG_INT) THEN
  SIMP_TAC[HAS_SIZE]);;

let REAL_CARD_INTSEG_INT = prove
 (`!a b. integer a /\ integer b
         ==> &(CARD {x | integer(x) /\ a <= x /\ x <= b}) =
             if b < a then &0 else b - a + &1`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CARD_INTSEG_INT] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_OF_INT_OF_REAL] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM int_of_num_th] THEN
  W(MP_TAC o PART_MATCH (lhs o rand) INT_OF_NUM_OF_INT o
    rand o lhand o snd) THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[int_le; int_of_num_th; REAL_OF_INT_OF_REAL;
                 INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC;
    DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC REAL_OF_INT_OF_REAL THEN
    ASM_SIMP_TAC[INTEGER_CLOSED]]);;

(* ------------------------------------------------------------------------- *)
(* Yet set of all integers or rationals is infinite.                         *)
(* ------------------------------------------------------------------------- *)

let INFINITE_INTEGER = prove
 (`INFINITE integer`,
  SUBGOAL_THEN `INFINITE(IMAGE real_of_num (:num))` MP_TAC THENL
   [SIMP_TAC[INFINITE_IMAGE_INJ; REAL_OF_NUM_EQ; num_INFINITE]; ALL_TAC] THEN
  REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
  REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV] THEN
  REWRITE_TAC[IN; INTEGER_CLOSED]);;

let INFINITE_RATIONAL = prove
 (`INFINITE rational`,
  MP_TAC INFINITE_INTEGER THEN
  REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
  REWRITE_TAC[SUBSET; IN; RATIONAL_INTEGER]);;

(* ------------------------------------------------------------------------- *)
(* Arbitrarily good rational approximations.                                 *)
(* ------------------------------------------------------------------------- *)

let PADIC_RATIONAL_APPROXIMATION_STRADDLE = prove
 (`!p x e. &0 < e /\ &1 < p
           ==> ?n q r. integer q /\ integer r /\
                       q / p pow n < x /\ x < r / p pow n /\
                       abs(q / p pow n - r / p pow n) < e`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`p:real`; `&2 / e:real`] REAL_ARCH_POW) THEN
  ASM_SIMP_TAC[REAL_LT_LDIV_EQ] THEN MATCH_MP_TAC MONO_EXISTS THEN
  X_GEN_TAC `n:num` THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN
  ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_POW_LT;
               REAL_ARITH `&1 < p ==> &0 < p`] THEN
  DISCH_TAC THEN MAP_EVERY EXISTS_TAC
   [`floor(p pow n * x) - &1`; `floor(p pow n * x) + &1`] THEN
  REWRITE_TAC[REAL_ARITH
   `abs((x - &1) / p - (x + &1) / p) = abs(&2 / p)`] THEN
  ASM_SIMP_TAC[FLOOR; INTEGER_CLOSED; REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ;
               REAL_POW_LT; REAL_ARITH `&1 < p ==> &0 < p`] THEN
  REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NUM] THEN
  ASM_SIMP_TAC[REAL_ARITH `&1 < p ==> abs p = p`] THEN
  MP_TAC(ISPEC `p pow n * x:real` FLOOR) THEN REAL_ARITH_TAC);;

let PADIC_RATIONAL_APPROXIMATION_STRADDLE_POS,
    PADIC_RATIONAL_APPROXIMATION_STRADDLE_POS_LE = (CONJ_PAIR o prove)
 (`(!p x e. &0 < e /\ &1 < p /\ &0 < x
            ==> ?n q r. &q / p pow n < x /\ x < &r / p pow n /\
                        abs(&q / p pow n - &r / p pow n) < e) /\
   (!p x e. &0 < e /\ &1 < p /\ &0 <= x
           ==> ?n q r. &q / p pow n <= x /\ x < &r / p pow n /\
                       abs(&q / p pow n - &r / p pow n) < e)`,
  REPEAT STRIP_TAC THEN
 (SUBGOAL_THEN `&0 < p /\ &0 <= p` STRIP_ASSUME_TAC THENL
   [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  MP_TAC(ISPECL [`p:real`; `x:real`; `e:real`]
    PADIC_RATIONAL_APPROXIMATION_STRADDLE) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN
  ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_POW_LT;
               REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; LEFT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`q:real`; `r:real`] THEN STRIP_TAC THEN
  MP_TAC(ISPEC `r:real` integer) THEN
  MP_TAC(ISPEC `max q (&0)` integer) THEN
  ASM_SIMP_TAC[INTEGER_CLOSED] THEN
  REWRITE_TAC[IMP_IMP; LEFT_AND_EXISTS_THM] THEN
  REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:num` THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num` THEN
  REWRITE_TAC[REAL_ARITH `abs(max q (&0)) = max q (&0)`] THEN
  SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL
   [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `a < r ==> &0 <= a ==> &0 < r`)) THEN
    MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
    MATCH_MP_TAC REAL_POW_LE THEN ASM_REAL_ARITH_TAC;
    ASM_SIMP_TAC[REAL_ARITH `&0 < r ==> abs r = r`]] THEN
  DISCH_THEN(CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
  REWRITE_TAC[REAL_ARITH `max q (&0) = if &0 <= q then q else &0`] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
  ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_MUL; REAL_POW_LE; REAL_POW_LT] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `abs(q - r) < e ==> &0 < --q /\ z = &0 /\ &0 < r
    ==> abs(z - r) < e`)) THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_POW_LT] THEN
  REWRITE_TAC[real_div; REAL_MUL_LZERO; GSYM REAL_MUL_LNEG] THEN
  MATCH_MP_TAC REAL_LT_MUL THEN
  ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_POW_LT] THEN ASM_REAL_ARITH_TAC));;

let RATIONAL_APPROXIMATION = prove
 (`!x e. &0 < e ==> ?r. rational r /\ abs(r - x) < e`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`&2:real`; `x:real`; `e:real`]
    PADIC_RATIONAL_APPROXIMATION_STRADDLE) THEN
  ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
  MAP_EVERY X_GEN_TAC [`n:num`; `q:real`; `r:real`] THEN
  STRIP_TAC THEN EXISTS_TAC `q / &2 pow n` THEN
  ASM_SIMP_TAC[RATIONAL_CLOSED] THEN ASM_REAL_ARITH_TAC);;

let RATIONAL_BETWEEN = prove
 (`!a b. a < b ==> ?q. rational q /\ a < q /\ q < b`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`(a + b) / &2`; `(b - a) / &4`] RATIONAL_APPROXIMATION) THEN
  ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]] THEN
  ASM_REAL_ARITH_TAC);;

let RATIONAL_BETWEEN_EQ = prove
 (`!a b. (?q. rational q /\ a < q /\ q < b) <=> a < b`,
  MESON_TAC[RATIONAL_BETWEEN; REAL_LT_TRANS]);;

let RATIONAL_APPROXIMATION_STRADDLE = prove
 (`!x e. &0 < e
         ==> ?a b. rational a /\ rational b /\
                   a < x /\ x < b /\ abs(b - a) < e`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`x - e / &4`; `e / &4`] RATIONAL_APPROXIMATION) THEN
  ANTS_TAC THENL
   [ASM_REAL_ARITH_TAC;
    MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC] THEN
  MP_TAC(ISPECL [`x + e / &4`; `e / &4`] RATIONAL_APPROXIMATION) THEN
  ANTS_TAC THENL
   [ASM_REAL_ARITH_TAC;
    MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC] THEN
  ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;

let RATIONAL_APPROXIMATION_ABOVE = prove
 (`!x e. &0 < e ==> ?q. rational q /\ x < q /\ q < x + e`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`x:real`; `e:real`] RATIONAL_APPROXIMATION_STRADDLE) THEN
  ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;

let RATIONAL_APPROXIMATION_BELOW = prove
 (`!x e. &0 < e ==> ?q. rational q /\ x - e < q /\ q < x`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`x:real`; `e:real`] RATIONAL_APPROXIMATION_STRADDLE) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;

let INFINITE_RATIONAL_IN_RANGE = prove
 (`!a b. a < b ==> INFINITE {q | rational q /\ a < q /\ q < b}`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `?q. (!n. rational(q n) /\ a < q n /\ q n < b) /\ (!n. q(SUC n) < q n)`
  STRIP_ASSUME_TAC THENL
   [MATCH_MP_TAC DEPENDENT_CHOICE THEN
    REWRITE_TAC[GSYM CONJ_ASSOC; GSYM REAL_LT_MIN] THEN
    REPEAT STRIP_TAC THEN MATCH_MP_TAC RATIONAL_BETWEEN THEN
    ASM_REWRITE_TAC[REAL_LT_MIN];
    MATCH_MP_TAC INFINITE_SUPERSET THEN
    EXISTS_TAC `IMAGE (q:num->real) (:num)` THEN
    CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    MATCH_MP_TAC INFINITE_IMAGE THEN REWRITE_TAC[num_INFINITE; IN_UNIV] THEN
    SUBGOAL_THEN `!m n. m < n ==> (q:num->real) n < q m`
     (fun th -> MESON_TAC[LT_CASES; th; REAL_LT_REFL]) THEN
    MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN
    ASM_MESON_TAC[REAL_LT_TRANS]]);;

(* ------------------------------------------------------------------------- *)
(* Converting a congruence over N or Z into a real equivalent.               *)
(* ------------------------------------------------------------------------- *)

let REAL_CONGRUENCE = prove
 (`!a b n. (a == b) (mod n) <=>
           if n = 0 then &a:real = &b
           else integer((&a - &b) / &n)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_EQ] THENL
   [CONV_TAC NUMBER_RULE; ALL_TAC] THEN
  REWRITE_TAC[GSYM IMAGE_REAL_OF_INT_UNIV] THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM IN] THEN
  REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN
  ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD
   `~(n:real = &0) ==> (x / n = y <=> n * y = x)`] THEN
  REWRITE_TAC[GSYM int_of_num_th] THEN
  REWRITE_TAC[GSYM int_sub_th; GSYM int_mul_th; GSYM int_eq] THEN
  REWRITE_TAC[num_congruent; int_congruent] THEN MESON_TAC[]);;

let REAL_INT_CONGRUENCE = prove
 (`!a b n. (a == b) (mod n) <=>
           if n = &0 then real_of_int a = real_of_int b
           else integer((real_of_int a - real_of_int b) / real_of_int n)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM int_eq] THENL
   [CONV_TAC INTEGER_RULE; ALL_TAC] THEN
  REWRITE_TAC[GSYM IMAGE_REAL_OF_INT_UNIV] THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM IN] THEN
  REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN
  ASM_SIMP_TAC[GSYM int_of_num_th; GSYM int_eq;  REAL_FIELD
   `~(n:real = &0) ==> (x / n = y <=> n * y = x)`] THEN
  REWRITE_TAC[GSYM int_mul_th; GSYM int_sub_th; GSYM int_eq] THEN
  CONV_TAC INTEGER_RULE);;

(* ------------------------------------------------------------------------- *)
(* A simple tactic to try and prove that a real expression is integral.      *)
(* ------------------------------------------------------------------------- *)

let (REAL_INTEGER_TAC:tactic) =
  let base = MATCH_ACCEPT_TAC(CONJUNCT1 INTEGER_CLOSED) ORELSE
             MATCH_ACCEPT_TAC INTEGER_REAL_OF_INT
  and step =
    MAP_FIRST MATCH_MP_TAC (CONJUNCTS(CONJUNCT2 INTEGER_CLOSED)) THEN
    TRY CONJ_TAC in
  let tac = REPEAT step THEN base in
  fun (asl,w) ->
   (match w with
     Comb(Const("integer",_),t) ->
      (tac ORELSE
       (CONV_TAC(RAND_CONV REAL_POLY_CONV) THEN tac)) (asl,w)
    | _ -> failwith "REAL_INTEGER_TAC: Goal not of expected form");;