Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 37,170 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 |
(* ========================================================================= *)
(* The integer/rational-valued reals, and the "floor" and "frac" functions. *)
(* ========================================================================= *)
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Closure theorems and other lemmas for the integer-valued reals. *)
(* ------------------------------------------------------------------------- *)
let INTEGER_CASES = prove
(`integer x <=> (?n. x = &n) \/ (?n. x = -- &n)`,
REWRITE_TAC[is_int; OR_EXISTS_THM]);;
let REAL_ABS_INTEGER_LEMMA = prove
(`!x. integer(x) /\ ~(x = &0) ==> &1 <= abs(x)`,
GEN_TAC THEN REWRITE_TAC[integer] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ONCE_REWRITE_TAC[REAL_ARITH `(x = &0) <=> (abs(x) = &0)`] THEN
POP_ASSUM(CHOOSE_THEN SUBST1_TAC) THEN
REWRITE_TAC[REAL_OF_NUM_EQ; REAL_OF_NUM_LE] THEN ARITH_TAC);;
let INTEGER_CLOSED = prove
(`(!n. integer(&n)) /\
(!x y. integer(x) /\ integer(y) ==> integer(x + y)) /\
(!x y. integer(x) /\ integer(y) ==> integer(x - y)) /\
(!x y. integer(x) /\ integer(y) ==> integer(x * y)) /\
(!x r. integer(x) ==> integer(x pow r)) /\
(!x. integer(x) ==> integer(--x)) /\
(!x. integer(x) ==> integer(abs x)) /\
(!x y. integer(x) /\ integer(y) ==> integer(max x y)) /\
(!x y. integer(x) /\ integer(y) ==> integer(min x y))`,
REWRITE_TAC[integer] THEN
MATCH_MP_TAC(TAUT
`g /\ h /\ x /\ c /\ d /\ e /\ f /\ (a /\ e ==> b) /\ a
==> x /\ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h`) THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[real_max] THEN MESON_TAC[];
REWRITE_TAC[real_min] THEN MESON_TAC[];
REWRITE_TAC[REAL_ABS_NUM] THEN MESON_TAC[];
REWRITE_TAC[REAL_ABS_MUL] THEN MESON_TAC[REAL_OF_NUM_MUL];
REWRITE_TAC[REAL_ABS_POW] THEN MESON_TAC[REAL_OF_NUM_POW];
REWRITE_TAC[REAL_ABS_NEG]; REWRITE_TAC[REAL_ABS_ABS];
REWRITE_TAC[real_sub] THEN MESON_TAC[]; ALL_TAC] THEN
SIMP_TAC[REAL_ARITH `&0 <= a ==> ((abs(x) = a) <=> (x = a) \/ (x = --a))`;
REAL_POS] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM REAL_NEG_ADD; REAL_OF_NUM_ADD] THENL
[MESON_TAC[]; ALL_TAC; ALL_TAC; MESON_TAC[]] THEN
REWRITE_TAC[REAL_ARITH `(--a + b = c) <=> (a + c = b)`;
REAL_ARITH `(a + --b = c) <=> (b + c = a)`] THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
MESON_TAC[LE_EXISTS; ADD_SYM; LE_CASES]);;
let INTEGER_ADD = prove
(`!x y. integer(x) /\ integer(y) ==> integer(x + y)`,
REWRITE_TAC[INTEGER_CLOSED]);;
let INTEGER_SUB = prove
(`!x y. integer(x) /\ integer(y) ==> integer(x - y)`,
REWRITE_TAC[INTEGER_CLOSED]);;
let INTEGER_MUL = prove
(`!x y. integer(x) /\ integer(y) ==> integer(x * y)`,
REWRITE_TAC[INTEGER_CLOSED]);;
let INTEGER_POW = prove
(`!x n. integer(x) ==> integer(x pow n)`,
REWRITE_TAC[INTEGER_CLOSED]);;
let REAL_LE_INTEGERS = prove
(`!x y. integer(x) /\ integer(y) ==> (x <= y <=> (x = y) \/ x + &1 <= y)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `y - x` REAL_ABS_INTEGER_LEMMA) THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;
let REAL_LE_CASES_INTEGERS = prove
(`!x y. integer(x) /\ integer(y) ==> x <= y \/ y + &1 <= x`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `y - x` REAL_ABS_INTEGER_LEMMA) THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;
let REAL_LE_REVERSE_INTEGERS = prove
(`!x y. integer(x) /\ integer(y) /\ ~(y + &1 <= x) ==> x <= y`,
MESON_TAC[REAL_LE_CASES_INTEGERS]);;
let REAL_LT_INTEGERS = prove
(`!x y. integer(x) /\ integer(y) ==> (x < y <=> x + &1 <= y)`,
MESON_TAC[REAL_NOT_LT; REAL_LE_CASES_INTEGERS;
REAL_ARITH `x + &1 <= y ==> x < y`]);;
let REAL_EQ_INTEGERS = prove
(`!x y. integer x /\ integer y ==> (x = y <=> abs(x - y) < &1)`,
REWRITE_TAC[REAL_ARITH `x = y <=> ~(x < y \/ y < x)`] THEN
SIMP_TAC[REAL_LT_INTEGERS] THEN REAL_ARITH_TAC);;
let REAL_EQ_INTEGERS_IMP = prove
(`!x y. integer x /\ integer y /\ abs(x - y) < &1 ==> x = y`,
SIMP_TAC[REAL_EQ_INTEGERS]);;
let INTEGER_NEG = prove
(`!x. integer(--x) <=> integer(x)`,
MESON_TAC[INTEGER_CLOSED; REAL_NEG_NEG]);;
let INTEGER_ABS = prove
(`!x. integer(abs x) <=> integer(x)`,
GEN_TAC THEN REWRITE_TAC[real_abs] THEN COND_CASES_TAC THEN
REWRITE_TAC[INTEGER_NEG]);;
let INTEGER_POS = prove
(`!x. &0 <= x ==> (integer(x) <=> ?n. x = &n)`,
SIMP_TAC[integer; real_abs]);;
let NONNEGATIVE_INTEGER = prove
(`!x. integer x /\ &0 <= x <=> ?n. x = &n`,
MESON_TAC[INTEGER_POS; INTEGER_CLOSED; REAL_POS]);;
let NONPOSITIVE_INTEGER = prove
(`!x. integer x /\ x <= &0 <=> ?n. x = -- &n`,
GEN_TAC THEN REWRITE_TAC[is_int] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; REAL_ARITH `a + b = &0 <=> a = --b`] THEN
AP_TERM_TAC THEN ABS_TAC THEN REAL_ARITH_TAC);;
let NONPOSITIVE_INTEGER_ALT = prove
(`!x. integer x /\ x <= &0 <=> ?n. x + &n = &0`,
GEN_TAC THEN REWRITE_TAC[NONPOSITIVE_INTEGER] THEN
AP_TERM_TAC THEN ABS_TAC THEN REAL_ARITH_TAC);;
let INTEGER_ADD_EQ = prove
(`(!x y. integer(x) ==> (integer(x + y) <=> integer(y))) /\
(!x y. integer(y) ==> (integer(x + y) <=> integer(x)))`,
MESON_TAC[REAL_ADD_SUB; REAL_ADD_SYM; INTEGER_CLOSED]);;
let INTEGER_SUB_EQ = prove
(`(!x y. integer(x) ==> (integer(x - y) <=> integer(y))) /\
(!x y. integer(y) ==> (integer(x - y) <=> integer(x)))`,
MESON_TAC[REAL_SUB_ADD; REAL_NEG_SUB; INTEGER_CLOSED]);;
let FORALL_INTEGER = prove
(`!P. (!n. P(&n)) /\ (!x. P x ==> P(--x)) ==> !x. integer x ==> P x`,
MESON_TAC[INTEGER_CASES]);;
let INTEGER_SUM = prove
(`!f:A->real s. (!x. x IN s ==> integer(f x)) ==> integer(sum s f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_CLOSED THEN
ASM_REWRITE_TAC[INTEGER_CLOSED]);;
let INTEGER_ABS_MUL_EQ_1 = prove
(`!x y. integer x /\ integer y
==> (abs(x * y) = &1 <=> abs x = &1 /\ abs y = &1)`,
REWRITE_TAC[integer] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_MUL] THEN
REWRITE_TAC[REAL_OF_NUM_EQ; REAL_OF_NUM_MUL; MULT_EQ_1]);;
let INTEGER_DIV = prove
(`!m n. integer(&m / &n) <=> n = 0 \/ n divides m`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[real_div; REAL_INV_0; REAL_MUL_RZERO; INTEGER_CLOSED];
ASM_SIMP_TAC[INTEGER_POS; REAL_POS; REAL_LE_DIV; divides] THEN
ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD
`~(n = &0) ==> (x / n = y <=> x = n * y)`] THEN
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]]);;
(* ------------------------------------------------------------------------- *)
(* Similar theorems for rational-valued reals. *)
(* ------------------------------------------------------------------------- *)
let rational = new_definition
`rational x <=> ?m n. integer m /\ integer n /\ ~(n = &0) /\ x = m / n`;;
let RATIONAL_INTEGER = prove
(`!x. integer x ==> rational x`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[rational] THEN
MAP_EVERY EXISTS_TAC [`x:real`; `&1`] THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN CONV_TAC REAL_FIELD);;
let RATIONAL_NUM = prove
(`!n. rational(&n)`,
SIMP_TAC[RATIONAL_INTEGER; INTEGER_CLOSED]);;
let RATIONAL_NEG = prove
(`!x. rational(x) ==> rational(--x)`,
REWRITE_TAC[rational; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `m:real`; `n:real`] THEN
STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`--m:real`; `n:real`] THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN CONV_TAC REAL_FIELD);;
let RATIONAL_ABS = prove
(`!x. rational(x) ==> rational(abs x)`,
REWRITE_TAC[real_abs] THEN MESON_TAC[RATIONAL_NEG]);;
let RATIONAL_INV = prove
(`!x. rational(x) ==> rational(inv x)`,
GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN
ASM_SIMP_TAC[REAL_INV_0; RATIONAL_NUM] THEN
REWRITE_TAC[rational; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`m:real`; `n:real`] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`n:real`; `m:real`] THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;
let RATIONAL_ADD = prove
(`!x y. rational(x) /\ rational(y) ==> rational(x + y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[rational; LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`m1:real`; `n1:real`; `m2:real`; `n2:real`] THEN
STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`m1 * n2 + m2 * n1:real`; `n1 * n2:real`] THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;
let RATIONAL_SUB = prove
(`!x y. rational(x) /\ rational(y) ==> rational(x - y)`,
SIMP_TAC[real_sub; RATIONAL_NEG; RATIONAL_ADD]);;
let RATIONAL_MUL = prove
(`!x y. rational(x) /\ rational(y) ==> rational(x * y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[rational; LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`m1:real`; `n1:real`; `m2:real`; `n2:real`] THEN
STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`m1 * m2:real`; `n1 * n2:real`] THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);;
let RATIONAL_DIV = prove
(`!x y. rational(x) /\ rational(y) ==> rational(x / y)`,
SIMP_TAC[real_div; RATIONAL_INV; RATIONAL_MUL]);;
let RATIONAL_POW = prove
(`!x n. rational(x) ==> rational(x pow n)`,
GEN_TAC THEN INDUCT_TAC THEN
ASM_SIMP_TAC[real_pow; RATIONAL_NUM; RATIONAL_MUL]);;
let RATIONAL_CLOSED = prove
(`(!n. rational(&n)) /\
(!x. integer x ==> rational x) /\
(!x y. rational(x) /\ rational(y) ==> rational(x + y)) /\
(!x y. rational(x) /\ rational(y) ==> rational(x - y)) /\
(!x y. rational(x) /\ rational(y) ==> rational(x * y)) /\
(!x y. rational(x) /\ rational(y) ==> rational(x / y)) /\
(!x r. rational(x) ==> rational(x pow r)) /\
(!x. rational(x) ==> rational(--x)) /\
(!x. rational(x) ==> rational(inv x)) /\
(!x. rational(x) ==> rational(abs x))`,
SIMP_TAC[RATIONAL_NUM; RATIONAL_NEG; RATIONAL_ABS; RATIONAL_INV;
RATIONAL_ADD; RATIONAL_SUB; RATIONAL_MUL; RATIONAL_DIV;
RATIONAL_POW; RATIONAL_INTEGER]);;
let RATIONAL_NEG_EQ = prove
(`!x. rational(--x) <=> rational x`,
MESON_TAC[REAL_NEG_NEG; RATIONAL_NEG]);;
let RATIONAL_ABS_EQ = prove
(`!x. rational(abs x) <=> rational x`,
REWRITE_TAC[real_abs] THEN MESON_TAC[RATIONAL_NEG_EQ; RATIONAL_NUM]);;
let RATIONAL_INV_EQ = prove
(`!x. rational(inv x) <=> rational x`,
MESON_TAC[REAL_INV_INV; RATIONAL_INV]);;
let RATIONAL_SUM = prove
(`!s x. (!i. i IN s ==> rational(x i)) ==> rational(sum s x)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_CLOSED THEN
ASM_SIMP_TAC[RATIONAL_CLOSED]);;
let RATIONAL_ALT = prove
(`!x. rational(x) <=> ?p q. ~(q = 0) /\ abs x = &p / &q`,
GEN_TAC THEN REWRITE_TAC[rational] THEN EQ_TAC THENL
[REWRITE_TAC[integer] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_DIV] THEN
ASM_MESON_TAC[REAL_OF_NUM_EQ; REAL_ABS_ZERO];
STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP
(REAL_ARITH `abs(x:real) = a ==> x = a \/ x = --a`)) THEN
ASM_REWRITE_TAC[real_div; GSYM REAL_MUL_LNEG] THEN
REWRITE_TAC[GSYM real_div] THEN
ASM_MESON_TAC[INTEGER_CLOSED; REAL_OF_NUM_EQ]]);;
(* ------------------------------------------------------------------------- *)
(* The floor and frac functions. *)
(* ------------------------------------------------------------------------- *)
let REAL_TRUNCATE_POS = prove
(`!x. &0 <= x ==> ?n r. &0 <= r /\ r < &1 /\ (x = &n + r)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `x:real` REAL_ARCH_SIMPLE) THEN
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
INDUCT_TAC THEN REWRITE_TAC[LT_SUC_LE; CONJUNCT1 LT] THENL
[DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`0`; `&0`] THEN ASM_REAL_ARITH_TAC;
POP_ASSUM_LIST(K ALL_TAC)] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `n:num`)) THEN
REWRITE_TAC[LE_REFL; REAL_NOT_LE] THEN DISCH_TAC THEN
FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC o REWRITE_RULE[REAL_LE_LT])
THENL
[MAP_EVERY EXISTS_TAC [`n:num`; `x - &n`] THEN ASM_REAL_ARITH_TAC;
MAP_EVERY EXISTS_TAC [`SUC n`; `x - &(SUC n)`] THEN
REWRITE_TAC[REAL_ADD_SUB; GSYM REAL_OF_NUM_SUC] THEN ASM_REAL_ARITH_TAC]);;
let REAL_TRUNCATE = prove
(`!x. ?n r. integer(n) /\ &0 <= r /\ r < &1 /\ (x = n + r)`,
GEN_TAC THEN DISJ_CASES_TAC(SPECL [`x:real`; `&0`] REAL_LE_TOTAL) THENL
[MP_TAC(SPEC `--x` REAL_ARCH_SIMPLE) THEN
REWRITE_TAC[REAL_ARITH `--a <= b <=> &0 <= a + b`] THEN
DISCH_THEN(X_CHOOSE_THEN `n:num`
(MP_TAC o MATCH_MP REAL_TRUNCATE_POS)) THEN
REWRITE_TAC[REAL_ARITH `(a + b = c + d) <=> (a = (c - b) + d)`];
ALL_TAC] THEN
ASM_MESON_TAC[integer; INTEGER_CLOSED; REAL_TRUNCATE_POS]);;
let FLOOR_FRAC =
new_specification ["floor"; "frac"]
(REWRITE_RULE[SKOLEM_THM] REAL_TRUNCATE);;
(* ------------------------------------------------------------------------- *)
(* Useful lemmas about floor and frac. *)
(* ------------------------------------------------------------------------- *)
let FLOOR_UNIQUE = prove
(`!x a. integer(a) /\ a <= x /\ x < a + &1 <=> (floor x = a)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[STRIP_TAC THEN STRIP_ASSUME_TAC(SPEC `x:real` FLOOR_FRAC) THEN
SUBGOAL_THEN `abs(floor x - a) < &1` MP_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
DISCH_TAC THEN REWRITE_TAC[REAL_NOT_LT] THEN
MATCH_MP_TAC REAL_ABS_INTEGER_LEMMA THEN CONJ_TAC THENL
[ASM_MESON_TAC[INTEGER_CLOSED]; ASM_REAL_ARITH_TAC];
DISCH_THEN(SUBST1_TAC o SYM) THEN
MP_TAC(SPEC `x:real` FLOOR_FRAC) THEN
SIMP_TAC[] THEN REAL_ARITH_TAC]);;
let FLOOR_EQ_0 = prove
(`!x. (floor x = &0) <=> &0 <= x /\ x < &1`,
GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN
REWRITE_TAC[INTEGER_CLOSED; REAL_ADD_LID]);;
let FLOOR = prove
(`!x. integer(floor x) /\ floor(x) <= x /\ x < floor(x) + &1`,
GEN_TAC THEN MP_TAC(SPEC `x:real` FLOOR_FRAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let FLOOR_DOUBLE = prove
(`!u. &2 * floor(u) <= floor(&2 * u) /\ floor(&2 * u) <= &2 * floor(u) + &1`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_REVERSE_INTEGERS THEN
SIMP_TAC[INTEGER_CLOSED; FLOOR] THEN
MP_TAC(SPEC `u:real` FLOOR) THEN MP_TAC(SPEC `&2 * u` FLOOR) THEN
REAL_ARITH_TAC);;
let FRAC_FLOOR = prove
(`!x. frac(x) = x - floor(x)`,
MP_TAC FLOOR_FRAC THEN MATCH_MP_TAC MONO_FORALL THEN REAL_ARITH_TAC);;
let FLOOR_NUM = prove
(`!n. floor(&n) = &n`,
REWRITE_TAC[GSYM FLOOR_UNIQUE; INTEGER_CLOSED] THEN REAL_ARITH_TAC);;
let REAL_LE_FLOOR = prove
(`!x n. integer(n) ==> (n <= floor x <=> n <= x)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL
[ASM_MESON_TAC[FLOOR; REAL_LE_TRANS]; ALL_TAC] THEN
REWRITE_TAC[GSYM REAL_NOT_LT] THEN ASM_SIMP_TAC[REAL_LT_INTEGERS; FLOOR] THEN
MP_TAC(SPEC `x:real` FLOOR) THEN REAL_ARITH_TAC);;
let REAL_FLOOR_LE = prove
(`!x n. integer n ==> (floor x <= n <=> x - &1 < n)`,
REPEAT STRIP_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `x <= y <=> x + &1 <= y + &1`] THEN
ASM_SIMP_TAC[GSYM REAL_LT_INTEGERS; FLOOR; INTEGER_CLOSED] THEN
ONCE_REWRITE_TAC[TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN
ASM_SIMP_TAC[REAL_NOT_LT; REAL_LE_FLOOR; INTEGER_CLOSED] THEN
REAL_ARITH_TAC);;
let REAL_FLOOR_LT = prove
(`!x n. integer n ==> (floor x < n <=> x < n)`,
SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_FLOOR]);;
let REAL_LT_FLOOR = prove
(`!x n. integer n ==> (n < floor x <=> n <= x - &1)`,
SIMP_TAC[GSYM REAL_NOT_LE; REAL_FLOOR_LE]);;
let FLOOR_POS = prove
(`!x. &0 <= x ==> ?n. floor(x) = &n`,
REPEAT STRIP_TAC THEN MP_TAC(CONJUNCT1(SPEC `x:real` FLOOR)) THEN
REWRITE_TAC[integer] THEN
ASM_SIMP_TAC[real_abs; REAL_LE_FLOOR; FLOOR; INTEGER_CLOSED]);;
let FLOOR_DIV_DIV = prove
(`!m n. ~(m = 0) ==> floor(&n / &m) = &(n DIV m)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE; INTEGER_CLOSED] THEN
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT;
REAL_OF_NUM_LE; REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; LT_NZ] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN ARITH_TAC);;
let FLOOR_MONO = prove
(`!x y. x <= y ==> floor x <= floor y`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_NOT_LT] THEN
SIMP_TAC[FLOOR; REAL_LT_INTEGERS] THEN
MAP_EVERY (MP_TAC o C SPEC FLOOR) [`x:real`; `y:real`] THEN REAL_ARITH_TAC);;
let REAL_FLOOR_EQ = prove
(`!x. floor x = x <=> integer x`,
REWRITE_TAC[GSYM FLOOR_UNIQUE; REAL_LE_REFL; REAL_ARITH `x < x + &1`]);;
let REAL_FLOOR_LT_REFL = prove
(`!x. floor x < x <=> ~(integer x)`,
MESON_TAC[REAL_LT_LE; REAL_FLOOR_EQ; FLOOR]);;
let REAL_FRAC_EQ_0 = prove
(`!x. frac x = &0 <=> integer x`,
REWRITE_TAC[FRAC_FLOOR; REAL_SUB_0] THEN MESON_TAC[REAL_FLOOR_EQ]);;
let REAL_FRAC_POS_LT = prove
(`!x. &0 < frac x <=> ~(integer x)`,
REWRITE_TAC[FRAC_FLOOR; REAL_SUB_LT; REAL_FLOOR_LT_REFL]);;
let FRAC_NUM = prove
(`!n. frac(&n) = &0`,
REWRITE_TAC[REAL_FRAC_EQ_0; INTEGER_CLOSED]);;
let REAL_FLOOR_REFL = prove
(`!x. integer x ==> floor x = x`,
REWRITE_TAC[REAL_FLOOR_EQ]);;
let REAL_FRAC_ZERO = prove
(`!x. integer x ==> frac x = &0`,
REWRITE_TAC[REAL_FRAC_EQ_0]);;
let REAL_FLOOR_ADD = prove
(`!x y. floor(x + y) = if frac x + frac y < &1 then floor(x) + floor(y)
else (floor(x) + floor(y)) + &1`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN
CONJ_TAC THENL [ASM_MESON_TAC[INTEGER_CLOSED; FLOOR]; ALL_TAC] THEN
MAP_EVERY (MP_TAC o C SPEC FLOOR_FRAC)[`x:real`; `y:real`; `x + y:real`] THEN
REAL_ARITH_TAC);;
let REAL_FLOOR_TRIANGLE = prove
(`!x y. floor(x) + floor(y) <= floor(x + y) /\
floor(x + y) <= (floor x + floor y) + &1`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_FLOOR_ADD] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let REAL_FLOOR_NEG = prove
(`!x. floor(--x) = if integer x then --x else --(floor x + &1)`,
GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN
MP_TAC(SPEC `x:real` FLOOR) THEN
MP_TAC(SPEC `x:real` REAL_FLOOR_EQ) THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;
let REAL_FRAC_ADD = prove
(`!x y. frac(x + y) = if frac x + frac y < &1 then frac(x) + frac(y)
else (frac(x) + frac(y)) - &1`,
REWRITE_TAC[FRAC_FLOOR; REAL_FLOOR_ADD] THEN REAL_ARITH_TAC);;
let FLOOR_POS_LE = prove
(`!x. &0 <= floor x <=> &0 <= x`,
SIMP_TAC[REAL_LE_FLOOR; INTEGER_CLOSED]);;
let FRAC_UNIQUE = prove
(`!x a. integer(x - a) /\ &0 <= a /\ a < &1 <=> frac x = a`,
REWRITE_TAC[FRAC_FLOOR; REAL_ARITH `x - f:real = a <=> f = x - a`] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN
AP_TERM_TAC THEN REAL_ARITH_TAC);;
let REAL_FRAC_EQ = prove
(`!x. frac x = x <=> &0 <= x /\ x < &1`,
REWRITE_TAC[GSYM FRAC_UNIQUE; REAL_SUB_REFL; INTEGER_CLOSED]);;
let INTEGER_ROUND = prove
(`!x. ?n. integer n /\ abs(x - n) <= &1 / &2`,
GEN_TAC THEN MATCH_MP_TAC(MESON[] `!a. P a \/ P(a + &1) ==> ?x. P x`) THEN
EXISTS_TAC `floor x` THEN MP_TAC(ISPEC `x:real` FLOOR) THEN
SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;
let FRAC_DIV_MOD = prove
(`!m n. ~(n = 0) ==> frac(&m / &n) = &(m MOD n) / &n`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM FRAC_UNIQUE] THEN
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; LE_1;
REAL_ARITH `x / a - y / a:real = (x - y) / a`] THEN
MP_TAC(SPECL [`m:num`; `n:num`] DIVISION) THEN
ASM_SIMP_TAC[REAL_OF_NUM_LT; REAL_MUL_LID] THEN
DISCH_THEN(fun th ->
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV o RAND_CONV)
[CONJUNCT1 th]) THEN
SIMP_TAC[REAL_OF_NUM_SUB; ONCE_REWRITE_RULE[ADD_SYM] LE_ADD; ADD_SUB] THEN
ASM_SIMP_TAC[GSYM REAL_OF_NUM_MUL; REAL_OF_NUM_EQ; INTEGER_CLOSED;
REAL_FIELD `~(n:real = &0) ==> (x * n) / n = x`]);;
let FRAC_NEG = prove
(`!x. frac(--x) = if integer x then &0 else &1 - frac x`,
GEN_TAC THEN REWRITE_TAC[FRAC_FLOOR; REAL_FLOOR_NEG] THEN
COND_CASES_TAC THEN REAL_ARITH_TAC);;
let REAL_FLOOR_FLOOR_DIV = prove
(`!x n. floor(floor x / &n) = floor(x / &n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[real_div; REAL_INV_0; REAL_MUL_RZERO] THEN
REWRITE_TAC[GSYM real_div; GSYM FLOOR_UNIQUE; FLOOR] THEN
ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
SIMP_TAC[REAL_FLOOR_LT; REAL_LE_FLOOR; FLOOR; INTEGER_CLOSED] THEN
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; GSYM REAL_LE_RDIV_EQ;
REAL_OF_NUM_LT; LE_1; FLOOR]);;
(* ------------------------------------------------------------------------- *)
(* Assertions that there are integers between well-spaced reals. *)
(* ------------------------------------------------------------------------- *)
let INTEGER_EXISTS_BETWEEN_ALT = prove
(`!x y. x + &1 <= y ==> ?n. integer n /\ x < n /\ n <= y`,
REPEAT STRIP_TAC THEN EXISTS_TAC `floor y` THEN
MP_TAC(SPEC `y:real` FLOOR) THEN SIMP_TAC[] THEN ASM_REAL_ARITH_TAC);;
let INTEGER_EXISTS_BETWEEN_LT = prove
(`!x y. x + &1 < y ==> ?n. integer n /\ x < n /\ n < y`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `integer y` THENL
[EXISTS_TAC `y - &1:real` THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC;
FIRST_ASSUM(MP_TAC o MATCH_MP INTEGER_EXISTS_BETWEEN_ALT o
MATCH_MP REAL_LT_IMP_LE) THEN
MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[REAL_LT_LE] THEN ASM_MESON_TAC[]]);;
let INTEGER_EXISTS_BETWEEN = prove
(`!x y. x + &1 <= y ==> ?n. integer n /\ x <= n /\ n < y`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `integer y` THENL
[EXISTS_TAC `y - &1:real` THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC;
FIRST_ASSUM(MP_TAC o MATCH_MP INTEGER_EXISTS_BETWEEN_ALT) THEN
MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[REAL_LT_LE] THENL [ASM_REAL_ARITH_TAC; ASM_MESON_TAC[]]]);;
let INTEGER_EXISTS_BETWEEN_ABS = prove
(`!x y. &1 <= abs(x - y)
==> ?n. integer n /\ (x <= n /\ n < y \/ y <= n /\ n < x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_abs] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL
[MP_TAC(ISPECL [`y:real`; `x:real`] INTEGER_EXISTS_BETWEEN);
MP_TAC(ISPECL [`x:real`; `y:real`] INTEGER_EXISTS_BETWEEN)] THEN
(ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS]) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;
let INTEGER_EXISTS_BETWEEN_ABS_LT = prove
(`!x y. &1 < abs(x - y)
==> ?n. integer n /\ (x < n /\ n < y \/ y < n /\ n < x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_abs] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL
[MP_TAC(ISPECL [`y:real`; `x:real`] INTEGER_EXISTS_BETWEEN_LT);
MP_TAC(ISPECL [`x:real`; `y:real`] INTEGER_EXISTS_BETWEEN_LT)] THEN
(ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS]) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* More trivial theorems about real_of_int. *)
(* ------------------------------------------------------------------------- *)
let REAL_OF_INT_OF_REAL = prove
(`!x. integer(x) ==> real_of_int(int_of_real x) = x`,
SIMP_TAC[int_rep]);;
let IMAGE_REAL_OF_INT_UNIV = prove
(`IMAGE real_of_int (:int) = integer`,
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV] THEN
REWRITE_TAC[IN] THEN MESON_TAC[int_tybij]);;
(* ------------------------------------------------------------------------- *)
(* Finiteness of bounded set of integers. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_INTSEG_NUM = prove
(`!m n. {x | integer(x) /\ &m <= x /\ x <= &n} HAS_SIZE ((n + 1) - m)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `{x | integer(x) /\ &m <= x /\ x <= &n} =
IMAGE real_of_num (m..n)`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
X_GEN_TAC `x:real` THEN ASM_CASES_TAC `?k. x = &k` THENL
[FIRST_X_ASSUM(CHOOSE_THEN SUBST_ALL_TAC) THEN
REWRITE_TAC[REAL_OF_NUM_LE; INTEGER_CLOSED; REAL_OF_NUM_EQ] THEN
REWRITE_TAC[UNWIND_THM1; IN_NUMSEG];
ASM_MESON_TAC[INTEGER_POS; REAL_ARITH `&n <= x ==> &0 <= x`]];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN REWRITE_TAC[HAS_SIZE_NUMSEG] THEN
SIMP_TAC[REAL_OF_NUM_EQ]]);;
let FINITE_INTSEG = prove
(`!a b. FINITE {x | integer(x) /\ a <= x /\ x <= b}`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `max (abs a) (abs b)` REAL_ARCH_SIMPLE) THEN
REWRITE_TAC[REAL_MAX_LE; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `n:num` THEN STRIP_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{x | integer(x) /\ abs(x) <= &n}` THEN CONJ_TAC THENL
[ALL_TAC; SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC] THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `IMAGE (\x. &x) (0..n) UNION IMAGE (\x. --(&x)) (0..n)` THEN
ASM_SIMP_TAC[FINITE_UNION; FINITE_IMAGE; FINITE_NUMSEG] THEN
REWRITE_TAC[INTEGER_CASES; SUBSET; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
REWRITE_TAC[IN_UNION; IN_IMAGE; REAL_OF_NUM_EQ; REAL_EQ_NEG2] THEN
REWRITE_TAC[UNWIND_THM1; IN_NUMSEG] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN
ASM_REAL_ARITH_TAC);;
let HAS_SIZE_INTSEG_INT = prove
(`!a b. integer a /\ integer b
==> {x | integer(x) /\ a <= x /\ x <= b} HAS_SIZE
if b < a then 0 else num_of_int(int_of_real(b - a + &1))`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`{x | integer(x) /\ a <= x /\ x <= b} =
IMAGE (\n. a + &n) {n | &n <= b - a}`
SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN
ASM_SIMP_TAC[IN_ELIM_THM; INTEGER_CLOSED] THEN
CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN
X_GEN_TAC `c:real` THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `a + x:real = y <=> y - a = x`] THEN
ASM_SIMP_TAC[GSYM INTEGER_POS; REAL_SUB_LE; INTEGER_CLOSED];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
SIMP_TAC[REAL_EQ_ADD_LCANCEL; REAL_OF_NUM_EQ] THEN
COND_CASES_TAC THENL
[ASM_SIMP_TAC[REAL_ARITH `b < a ==> ~(&n <= b - a)`] THEN
REWRITE_TAC[HAS_SIZE_0; EMPTY_GSPEC];
SUBGOAL_THEN `?m. b - a = &m` (CHOOSE_THEN SUBST1_TAC) THENL
[ASM_MESON_TAC[INTEGER_POS; INTEGER_CLOSED; REAL_NOT_LT; REAL_SUB_LE];
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; GSYM int_of_num;
NUM_OF_INT_OF_NUM; HAS_SIZE_NUMSEG_LE]]]]);;
let CARD_INTSEG_INT = prove
(`!a b. integer a /\ integer b
==> CARD {x | integer(x) /\ a <= x /\ x <= b} =
if b < a then 0 else num_of_int(int_of_real(b - a + &1))`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_SIZE_INTSEG_INT) THEN
SIMP_TAC[HAS_SIZE]);;
let REAL_CARD_INTSEG_INT = prove
(`!a b. integer a /\ integer b
==> &(CARD {x | integer(x) /\ a <= x /\ x <= b}) =
if b < a then &0 else b - a + &1`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CARD_INTSEG_INT] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_OF_INT_OF_REAL] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM int_of_num_th] THEN
W(MP_TAC o PART_MATCH (lhs o rand) INT_OF_NUM_OF_INT o
rand o lhand o snd) THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[int_le; int_of_num_th; REAL_OF_INT_OF_REAL;
INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC;
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC REAL_OF_INT_OF_REAL THEN
ASM_SIMP_TAC[INTEGER_CLOSED]]);;
(* ------------------------------------------------------------------------- *)
(* Yet set of all integers or rationals is infinite. *)
(* ------------------------------------------------------------------------- *)
let INFINITE_INTEGER = prove
(`INFINITE integer`,
SUBGOAL_THEN `INFINITE(IMAGE real_of_num (:num))` MP_TAC THENL
[SIMP_TAC[INFINITE_IMAGE_INJ; REAL_OF_NUM_EQ; num_INFINITE]; ALL_TAC] THEN
REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV] THEN
REWRITE_TAC[IN; INTEGER_CLOSED]);;
let INFINITE_RATIONAL = prove
(`INFINITE rational`,
MP_TAC INFINITE_INTEGER THEN
REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
REWRITE_TAC[SUBSET; IN; RATIONAL_INTEGER]);;
(* ------------------------------------------------------------------------- *)
(* Arbitrarily good rational approximations. *)
(* ------------------------------------------------------------------------- *)
let PADIC_RATIONAL_APPROXIMATION_STRADDLE = prove
(`!p x e. &0 < e /\ &1 < p
==> ?n q r. integer q /\ integer r /\
q / p pow n < x /\ x < r / p pow n /\
abs(q / p pow n - r / p pow n) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`p:real`; `&2 / e:real`] REAL_ARCH_POW) THEN
ASM_SIMP_TAC[REAL_LT_LDIV_EQ] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `n:num` THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_POW_LT;
REAL_ARITH `&1 < p ==> &0 < p`] THEN
DISCH_TAC THEN MAP_EVERY EXISTS_TAC
[`floor(p pow n * x) - &1`; `floor(p pow n * x) + &1`] THEN
REWRITE_TAC[REAL_ARITH
`abs((x - &1) / p - (x + &1) / p) = abs(&2 / p)`] THEN
ASM_SIMP_TAC[FLOOR; INTEGER_CLOSED; REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ;
REAL_POW_LT; REAL_ARITH `&1 < p ==> &0 < p`] THEN
REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NUM] THEN
ASM_SIMP_TAC[REAL_ARITH `&1 < p ==> abs p = p`] THEN
MP_TAC(ISPEC `p pow n * x:real` FLOOR) THEN REAL_ARITH_TAC);;
let PADIC_RATIONAL_APPROXIMATION_STRADDLE_POS,
PADIC_RATIONAL_APPROXIMATION_STRADDLE_POS_LE = (CONJ_PAIR o prove)
(`(!p x e. &0 < e /\ &1 < p /\ &0 < x
==> ?n q r. &q / p pow n < x /\ x < &r / p pow n /\
abs(&q / p pow n - &r / p pow n) < e) /\
(!p x e. &0 < e /\ &1 < p /\ &0 <= x
==> ?n q r. &q / p pow n <= x /\ x < &r / p pow n /\
abs(&q / p pow n - &r / p pow n) < e)`,
REPEAT STRIP_TAC THEN
(SUBGOAL_THEN `&0 < p /\ &0 <= p` STRIP_ASSUME_TAC THENL
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN
MP_TAC(ISPECL [`p:real`; `x:real`; `e:real`]
PADIC_RATIONAL_APPROXIMATION_STRADDLE) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN
ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_POW_LT;
REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`q:real`; `r:real`] THEN STRIP_TAC THEN
MP_TAC(ISPEC `r:real` integer) THEN
MP_TAC(ISPEC `max q (&0)` integer) THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN
REWRITE_TAC[IMP_IMP; LEFT_AND_EXISTS_THM] THEN
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:num` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num` THEN
REWRITE_TAC[REAL_ARITH `abs(max q (&0)) = max q (&0)`] THEN
SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`a < r ==> &0 <= a ==> &0 < r`)) THEN
MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
MATCH_MP_TAC REAL_POW_LE THEN ASM_REAL_ARITH_TAC;
ASM_SIMP_TAC[REAL_ARITH `&0 < r ==> abs r = r`]] THEN
DISCH_THEN(CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
REWRITE_TAC[REAL_ARITH `max q (&0) = if &0 <= q then q else &0`] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_MUL; REAL_POW_LE; REAL_POW_LT] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`abs(q - r) < e ==> &0 < --q /\ z = &0 /\ &0 < r
==> abs(z - r) < e`)) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_POW_LT] THEN
REWRITE_TAC[real_div; REAL_MUL_LZERO; GSYM REAL_MUL_LNEG] THEN
MATCH_MP_TAC REAL_LT_MUL THEN
ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_POW_LT] THEN ASM_REAL_ARITH_TAC));;
let RATIONAL_APPROXIMATION = prove
(`!x e. &0 < e ==> ?r. rational r /\ abs(r - x) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`&2:real`; `x:real`; `e:real`]
PADIC_RATIONAL_APPROXIMATION_STRADDLE) THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN
MAP_EVERY X_GEN_TAC [`n:num`; `q:real`; `r:real`] THEN
STRIP_TAC THEN EXISTS_TAC `q / &2 pow n` THEN
ASM_SIMP_TAC[RATIONAL_CLOSED] THEN ASM_REAL_ARITH_TAC);;
let RATIONAL_BETWEEN = prove
(`!a b. a < b ==> ?q. rational q /\ a < q /\ q < b`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`(a + b) / &2`; `(b - a) / &4`] RATIONAL_APPROXIMATION) THEN
ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]] THEN
ASM_REAL_ARITH_TAC);;
let RATIONAL_BETWEEN_EQ = prove
(`!a b. (?q. rational q /\ a < q /\ q < b) <=> a < b`,
MESON_TAC[RATIONAL_BETWEEN; REAL_LT_TRANS]);;
let RATIONAL_APPROXIMATION_STRADDLE = prove
(`!x e. &0 < e
==> ?a b. rational a /\ rational b /\
a < x /\ x < b /\ abs(b - a) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`x - e / &4`; `e / &4`] RATIONAL_APPROXIMATION) THEN
ANTS_TAC THENL
[ASM_REAL_ARITH_TAC;
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC] THEN
MP_TAC(ISPECL [`x + e / &4`; `e / &4`] RATIONAL_APPROXIMATION) THEN
ANTS_TAC THENL
[ASM_REAL_ARITH_TAC;
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC] THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let RATIONAL_APPROXIMATION_ABOVE = prove
(`!x e. &0 < e ==> ?q. rational q /\ x < q /\ q < x + e`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`x:real`; `e:real`] RATIONAL_APPROXIMATION_STRADDLE) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let RATIONAL_APPROXIMATION_BELOW = prove
(`!x e. &0 < e ==> ?q. rational q /\ x - e < q /\ q < x`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`x:real`; `e:real`] RATIONAL_APPROXIMATION_STRADDLE) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let INFINITE_RATIONAL_IN_RANGE = prove
(`!a b. a < b ==> INFINITE {q | rational q /\ a < q /\ q < b}`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?q. (!n. rational(q n) /\ a < q n /\ q n < b) /\ (!n. q(SUC n) < q n)`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC DEPENDENT_CHOICE THEN
REWRITE_TAC[GSYM CONJ_ASSOC; GSYM REAL_LT_MIN] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC RATIONAL_BETWEEN THEN
ASM_REWRITE_TAC[REAL_LT_MIN];
MATCH_MP_TAC INFINITE_SUPERSET THEN
EXISTS_TAC `IMAGE (q:num->real) (:num)` THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
MATCH_MP_TAC INFINITE_IMAGE THEN REWRITE_TAC[num_INFINITE; IN_UNIV] THEN
SUBGOAL_THEN `!m n. m < n ==> (q:num->real) n < q m`
(fun th -> MESON_TAC[LT_CASES; th; REAL_LT_REFL]) THEN
MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN
ASM_MESON_TAC[REAL_LT_TRANS]]);;
(* ------------------------------------------------------------------------- *)
(* Converting a congruence over N or Z into a real equivalent. *)
(* ------------------------------------------------------------------------- *)
let REAL_CONGRUENCE = prove
(`!a b n. (a == b) (mod n) <=>
if n = 0 then &a:real = &b
else integer((&a - &b) / &n)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_EQ] THENL
[CONV_TAC NUMBER_RULE; ALL_TAC] THEN
REWRITE_TAC[GSYM IMAGE_REAL_OF_INT_UNIV] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM IN] THEN
REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN
ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD
`~(n:real = &0) ==> (x / n = y <=> n * y = x)`] THEN
REWRITE_TAC[GSYM int_of_num_th] THEN
REWRITE_TAC[GSYM int_sub_th; GSYM int_mul_th; GSYM int_eq] THEN
REWRITE_TAC[num_congruent; int_congruent] THEN MESON_TAC[]);;
let REAL_INT_CONGRUENCE = prove
(`!a b n. (a == b) (mod n) <=>
if n = &0 then real_of_int a = real_of_int b
else integer((real_of_int a - real_of_int b) / real_of_int n)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM int_eq] THENL
[CONV_TAC INTEGER_RULE; ALL_TAC] THEN
REWRITE_TAC[GSYM IMAGE_REAL_OF_INT_UNIV] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM IN] THEN
REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN
ASM_SIMP_TAC[GSYM int_of_num_th; GSYM int_eq; REAL_FIELD
`~(n:real = &0) ==> (x / n = y <=> n * y = x)`] THEN
REWRITE_TAC[GSYM int_mul_th; GSYM int_sub_th; GSYM int_eq] THEN
CONV_TAC INTEGER_RULE);;
(* ------------------------------------------------------------------------- *)
(* A simple tactic to try and prove that a real expression is integral. *)
(* ------------------------------------------------------------------------- *)
let (REAL_INTEGER_TAC:tactic) =
let base = MATCH_ACCEPT_TAC(CONJUNCT1 INTEGER_CLOSED) ORELSE
MATCH_ACCEPT_TAC INTEGER_REAL_OF_INT
and step =
MAP_FIRST MATCH_MP_TAC (CONJUNCTS(CONJUNCT2 INTEGER_CLOSED)) THEN
TRY CONJ_TAC in
let tac = REPEAT step THEN base in
fun (asl,w) ->
(match w with
Comb(Const("integer",_),t) ->
(tac ORELSE
(CONV_TAC(RAND_CONV REAL_POLY_CONV) THEN tac)) (asl,w)
| _ -> failwith "REAL_INTEGER_TAC: Goal not of expected form");;
|