Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 48,122 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
(* ========================================================================= *)
(* Jacobi symbols for N and Z, taking in Legendre symbols as a special case. *)
(* ========================================================================= *)

needs "Library/primitive.ml";;

(* ------------------------------------------------------------------------- *)
(* Some fairly generic lemmas, but it's not quite clear where to put them.   *)
(* ------------------------------------------------------------------------- *)

let COPRIME_IPRODUCT = prove
 (`!s (a:A->int) n.
        (!i. i IN s ==> coprime(n,a i)) ==> coprime(n,iproduct s a)`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`\i:int. coprime(n,i)`; `a:A->int`; `s:A->bool`]
        IPRODUCT_CLOSED) THEN
  REWRITE_TAC[INT_COPRIME_1; IMP_CONJ] THEN DISCH_THEN MATCH_MP_TAC THEN
  CONV_TAC INTEGER_RULE);;

let CONG_IPRODUCT = prove
 (`!s (a:A->int) (b:A->int) n.
        FINITE s /\
        (!i. i IN s ==> (a i == b i) (mod n))
        ==> (iproduct s a == iproduct s b) (mod n)`,
  REPEAT STRIP_TAC THEN MP_TAC(ISPECL
   [`\i j:int. (i == j) (mod n)`; `a:A->int`; `b:A->int`; `s:A->bool`]
   IPRODUCT_RELATED) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
  CONV_TAC INTEGER_RULE);;

(* ------------------------------------------------------------------------- *)
(* The definition over N (with the range still being Z).                     *)
(* ------------------------------------------------------------------------- *)

let jacobi = new_definition
 `(jacobi:num#num->int)(a,n) =
        if n = 0 then if a = 1 then &1 else &0
        else iproduct {p | prime p /\ p divides n}
                      (\p. (if p divides a then &0
                            else if ?x. (x EXP 2 == a) (mod p) then &1
                            else --(&1)) pow index p n)`;;

let JACOBI_BOUND = prove
 (`!a n. abs(jacobi(a,n)) <= &1`,
  REPEAT GEN_TAC THEN REWRITE_TAC[jacobi] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
         CONV_TAC INT_REDUCE_CONV) THEN
  ASM_SIMP_TAC[GSYM IPRODUCT_ABS; FINITE_SPECIAL_DIVISORS] THEN
  MATCH_MP_TAC IPRODUCT_LE_1 THEN
  ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; FORALL_IN_GSPEC; INT_ABS_POS] THEN
  X_GEN_TAC `p:num` THEN STRIP_TAC THEN REWRITE_TAC[INT_ABS_POW] THEN
  MATCH_MP_TAC INT_POW_1_LE THEN INT_ARITH_TAC);;

let JACOBI_CASES = prove
 (`!a n. jacobi(a,n) = -- &1 \/ jacobi(a,n) = &0 \/ jacobi(a,n) = &1`,
  MP_TAC JACOBI_BOUND THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  INT_ARITH_TAC);;

let JACOBI_PRIME = prove
 (`!a p. prime p
         ==> jacobi(a,p) =
             if p divides a then &0
             else if ?x. (x EXP 2 == a) (mod p) then &1
             else --(&1)`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[jacobi; PRIME_IMP_NZ] THEN
  ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ Q x} = {x | ~(P x ==> ~Q x)}`] THEN
  ASM_SIMP_TAC[DIVIDES_PRIME_PRIME] THEN
  REWRITE_TAC[MESON[] `~(prime q ==> ~(q = p)) <=> prime p /\ q = p`] THEN
  ASM_REWRITE_TAC[SING_GSPEC; IPRODUCT_SING; INDEX_REFL] THEN
  ASM_CASES_TAC `p <= 1` THEN ASM_REWRITE_TAC[INT_POW_1] THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC);;

let JACOBI = prove
 (`!a n. jacobi(a,n) =
         if n = 0 then if a = 1 then &1 else &0
         else iproduct {p | prime p /\ p divides n}
                       (\p. jacobi(a,p) pow index p n)`,
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [jacobi] THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC IPRODUCT_EQ THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN
  SIMP_TAC[JACOBI_PRIME]);;

let JACOBI_ALT = prove
 (`!s a n.
        FINITE s /\
        {p | prime p /\ p divides n} SUBSET s /\
        s SUBSET {p | prime p}
        ==> jacobi(a,n) = iproduct s (\p. jacobi(a,p) pow index p n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [REWRITE_TAC[CONJ_ASSOC] THEN
    DISCH_THEN(MP_TAC o CONJUNCT1) THEN
    DISCH_THEN(MP_TAC o MATCH_MP FINITE_SUBSET) THEN
    MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN
    ASM_REWRITE_TAC[GSYM INFINITE; PRIMES_INFINITE; DIVIDES_0];
    STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [JACOBI] THEN
    ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC IPRODUCT_SUPERSET THEN ASM_REWRITE_TAC[] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_ELIM_THM]) THEN
    ASM_SIMP_TAC[IN_ELIM_THM; IMP_CONJ; INDEX_ZERO; INT_POW]]);;

let JACOBI_EQ_0 = prove
 (`!a n. jacobi(a,n) = &0 <=> ~coprime(a,n)`,
  REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [JACOBI] THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[COPRIME_0] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC INT_REDUCE_CONV;
    ASM_SIMP_TAC[IPRODUCT_EQ_0; FINITE_SPECIAL_DIVISORS] THEN
    REWRITE_TAC[EXISTS_IN_GSPEC; INT_POW_EQ_0] THEN
    REWRITE_TAC[COPRIME_PRIME_EQ; NOT_FORALL_THM] THEN
    AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
    X_GEN_TAC `p:num` THEN ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `(p:num) divides n` THEN ASM_REWRITE_TAC[INDEX_EQ_0] THEN
    ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN
    ASM_SIMP_TAC[JACOBI_PRIME] THEN
    REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
    CONV_TAC INT_REDUCE_CONV]);;

let JACOBI_ZERO = prove
 (`!a b. ~coprime(a,n) ==> jacobi(a,n) = &0`,
  REWRITE_TAC[JACOBI_EQ_0]);;

let JACOBI_1 = prove
 (`(!n. jacobi(1,n) = &1) /\
   (!a. jacobi(a,1) = &1)`,
  REPEAT STRIP_TAC THEN
  GEN_REWRITE_TAC LAND_CONV [JACOBI] THEN
  CONV_TAC NUM_REDUCE_CONV THEN
  SIMP_TAC[INDEX_1; INT_POW; IPRODUCT_ONE] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC IPRODUCT_EQ_1 THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN
  X_GEN_TAC `p:num` THEN STRIP_TAC THEN
  ASM_SIMP_TAC[JACOBI_PRIME; DIVIDES_ONE] THEN
  ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN
  SUBGOAL_THEN `?x. (x EXP 2 == 1) (mod p)`
   (fun th -> REWRITE_TAC[th; INT_POW_ONE]) THEN
  EXISTS_TAC `1` THEN CONV_TAC NUM_REDUCE_CONV THEN
  REWRITE_TAC[CONG_REFL]);;

let JACOBI_0 = prove
 (`(!n. jacobi(0,n) = if n = 1 then &1 else &0) /\
   (!a. jacobi(a,0) = if a = 1 then &1 else &0)`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[JACOBI_1] THEN
  ASM_REWRITE_TAC[JACOBI_EQ_0; COPRIME_0]);;

let JACOBI_2_CASES = prove
 (`!a. jacobi(a,2) = if ODD a then &1 else &0`,
  GEN_TAC THEN SIMP_TAC[JACOBI_PRIME; PRIME_2; DIVIDES_2; GSYM NOT_EVEN] THEN
  ASM_CASES_TAC `EVEN a` THEN ASM_REWRITE_TAC[CONG_MOD_2] THEN
  REWRITE_TAC[EVEN_EXP; ARITH_EQ] THEN REWRITE_TAC[NOT_EVEN] THEN
  MESON_TAC[ODD]);;

let JACOBI_2 = prove
 (`!a. jacobi(a,2) = &(a MOD 2)`,
  GEN_TAC THEN REWRITE_TAC[JACOBI_2_CASES; MOD_2_CASES] THEN
  REWRITE_TAC[GSYM NOT_ODD; COND_SWAP] THEN MESON_TAC[]);;

let JACOBI_EULER = prove
 (`!a p. prime p /\ ~(p = 2)
         ==> (jacobi(a,p) == &a pow ((p - 1) DIV 2)) (mod &p)`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[EULER_CRITERION; JACOBI_PRIME] THEN
  COND_CASES_TAC THENL
   [REWRITE_TAC[INTEGER_RULE `(&0:int == a) (mod p) <=> p divides a`] THEN
    ASM_SIMP_TAC[INT_OF_NUM_POW; GSYM num_divides; PRIME_DIVEXP_EQ] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `((a EXP ((p - 1) DIV 2)) EXP 2 == 1) (mod p)` MP_TAC THENL
   [MP_TAC(SPECL [`a:num`; `p:num`] FERMAT_LITTLE_PRIME) THEN
    ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] PRIME_COPRIME_EQ] THEN
    REWRITE_TAC[EXP_EXP] THEN
    SUBGOAL_THEN `(p - 1) DIV 2 * 2 = p - 1` (fun th -> REWRITE_TAC[th]) THEN
    REWRITE_TAC[GSYM DIVIDES_DIV_MULT; DIVIDES_2; EVEN_SUB; ARITH] THEN
    ASM_MESON_TAC[PRIME_ODD; NOT_EVEN];
    ALL_TAC] THEN
  MP_TAC(SPECL [`p:num`; `1`; `a EXP ((p - 1) DIV 2)`]
    CONG_SQUARE_1_PRIME_POWER) THEN
  ASM_REWRITE_TAC[EXP_1] THEN DISCH_THEN SUBST1_TAC THEN
  ASM_CASES_TAC `(a EXP ((p - 1) DIV 2) == 1) (mod p)` THEN
  ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[GSYM num_congruent; INT_OF_NUM_POW] THEN
    ASM_MESON_TAC[CONG_SYM];
    REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW] THEN
    ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1; PRIME_IMP_NZ] THEN
    CONV_TAC INTEGER_RULE]);;

let JACOBI_EULER_ALT = prove
 (`!a p. prime p
         ==> (jacobi(a,p) == &a pow (if p = 2 then 1 else (p - 1) DIV 2))
             (mod &p)`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[JACOBI_EULER] THEN
  DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[INT_POW_1; JACOBI_2_CASES] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM num_congruent; CONG_MOD_2_ALT] THEN
  CONV_TAC NUM_REDUCE_CONV);;

let JACOBI_RMUL = prove
 (`!a m n. jacobi(a,m * n) = jacobi(a,m) * jacobi(a,n)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `a = 1` THEN ASM_REWRITE_TAC[JACOBI_1; INT_MUL_LID] THEN
  ASM_CASES_TAC `m = 0` THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; JACOBI_0; INT_MUL_LZERO] THEN
  ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; JACOBI_0; INT_MUL_RZERO] THEN
  MP_TAC(SPECL [`{p | prime p /\ p divides m * n}`; `a:num`] JACOBI_ALT) THEN
  DISCH_THEN(fun th ->
    MP_TAC(SPEC `m:num` th) THEN MP_TAC(SPEC `n:num` th)) THEN
  ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; MULT_EQ_0] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; DIVIDES_LMUL; DIVIDES_RMUL] THEN
  REPEAT(DISCH_THEN SUBST1_TAC) THEN
  GEN_REWRITE_TAC LAND_CONV [JACOBI] THEN
  ASM_REWRITE_TAC[MULT_EQ_0] THEN
  ASM_SIMP_TAC[GSYM IPRODUCT_MUL; FINITE_SPECIAL_DIVISORS; MULT_EQ_0] THEN
  MATCH_MP_TAC IPRODUCT_EQ THEN
  REWRITE_TAC[FORALL_IN_GSPEC; GSYM INT_POW_ADD] THEN
  ASM_SIMP_TAC[INDEX_MUL]);;

let JACOBI_LMUL = prove
 (`!a b n. jacobi(a * b,n) = jacobi(a,n) * jacobi(b,n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[JACOBI_0; MULT_EQ_1] THEN
    MAP_EVERY ASM_CASES_TAC [`a = 1`; `b = 1`] THEN
    ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV;
    ONCE_REWRITE_TAC[JACOBI] THEN ASM_REWRITE_TAC[]] THEN
  ASM_SIMP_TAC[GSYM IPRODUCT_MUL; FINITE_SPECIAL_DIVISORS] THEN
  MATCH_MP_TAC IPRODUCT_EQ THEN
  REWRITE_TAC[FORALL_IN_GSPEC; GSYM INT_POW_MUL] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  X_GEN_TAC `p:num` THEN DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN
  ASM_CASES_TAC `p = 2` THENL
   [ASM_REWRITE_TAC[JACOBI_2_CASES; ODD_MULT] THEN
    MAP_EVERY ASM_CASES_TAC [`ODD a`; `ODD b`] THEN
    ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV;
    MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `&p:int` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC(INT_ARITH
       `abs(x:int) <= &1 /\ abs(y) <= &1 /\ &3 <= p ==> abs(x - y) < p`) THEN
      REWRITE_TAC[INT_OF_NUM_LE; JACOBI_BOUND] THEN
      CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ODD_PRIME; PRIME_ODD]] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM INT_MUL_LID] THEN
      REWRITE_TAC[INT_ABS_MUL] THEN MATCH_MP_TAC INT_LE_MUL2 THEN
      REWRITE_TAC[JACOBI_BOUND; INT_ABS_POS];
      MP_TAC(SPECL [`a * b:num`; `p:num`] JACOBI_EULER) THEN
      MP_TAC(SPECL [`b:num`; `p:num`] JACOBI_EULER) THEN
      MP_TAC(SPECL [`a:num`; `p:num`] JACOBI_EULER) THEN
      ASM_REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC(INTEGER_RULE
       `(a' * b':int == c') (mod p)
        ==> (a == a') (mod p) /\ (b == b') (mod p) /\ (c == c') (mod p)
            ==> (c == a * b) (mod p)`) THEN
      REWRITE_TAC[GSYM INT_POW_MUL; GSYM INT_OF_NUM_MUL] THEN
      CONV_TAC INTEGER_RULE]]);;

let JACOBI_REXP = prove
 (`!a n k. jacobi(a,n EXP k) = jacobi(a,n) pow k`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[EXP; JACOBI_RMUL; JACOBI_1; INT_POW]);;

let JACOBI_LEXP = prove
 (`!a n k. jacobi(a EXP k,n) = jacobi(a,n) pow k`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[EXP; JACOBI_LMUL; JACOBI_1; INT_POW] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_MUL_RZERO]);;

let JACOBI_EXP_2 = prove
 (`!a k. jacobi(a,2 EXP k) = if k = 0 then &1 else &(a MOD 2)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[JACOBI_REXP; JACOBI_2] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_POW] THEN
  REWRITE_TAC[INT_OF_NUM_POW; INT_OF_NUM_EQ] THEN
  REWRITE_TAC[MOD_2_CASES] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[EXP_ZERO; EXP_ONE]);;

let JACOBI_EXP_2_ALT = prove
 (`!a k. jacobi(a,2 EXP k) = if k = 0 \/ ODD a then &1 else &0`,
  REPEAT GEN_TAC THEN REWRITE_TAC[JACOBI_REXP; JACOBI_2_CASES] THEN
  ASM_CASES_TAC `ODD a` THEN ASM_REWRITE_TAC[INT_POW_ONE; INT_POW_ZERO]);;

let JACOBI_NPRODUCT_RIGHT = prove
 (`!a (n:A->num) k.
        FINITE k
        ==> jacobi(a,nproduct k n) = iproduct k (\i. jacobi(a,n i))`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[NPRODUCT_CLAUSES; JACOBI_RMUL; JACOBI_1; IPRODUCT_CLAUSES]);;

let JACOBI_NPRODUCT_LEFT = prove
 (`!(a:A->num) n k.
        FINITE k
        ==> jacobi(nproduct k a,n) = iproduct k (\i. jacobi(a i,n))`,
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[NPRODUCT_CLAUSES; JACOBI_LMUL; JACOBI_1; IPRODUCT_CLAUSES]);;

let JACOBI_CONG = prove
 (`!a b n. (a == b) (mod n) ==> jacobi(a,n) = jacobi(b,n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[CONG_MOD_0] THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[jacobi] THEN MATCH_MP_TAC IPRODUCT_EQ THEN
  REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN
  REWRITE_TAC[NUMBER_RULE `p divides a <=> (0 == a) (mod p)`] THEN
  MP_TAC(NUMBER_RULE
   `p divides n /\ (a:num == b) (mod n) ==> (a == b) (mod p)`) THEN
  ASM_MESON_TAC[CONG_TRANS; CONG_SYM]);;

let JACOBI_MOD_GEN = prove
 (`!a m n. n divides m ==> jacobi(a MOD m,n) = jacobi(a,n)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC JACOBI_CONG THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NUMBER_RULE
    `(n:num) divides m ==> (x == y) (mod m) ==> (x == y) (mod n)`)) THEN
  REWRITE_TAC[CONG_LMOD; CONG_REFL]);;

let JACOBI_MOD = prove
 (`!a n. jacobi(a MOD n,n) = jacobi(a,n)`,
  SIMP_TAC[JACOBI_MOD_GEN; DIVIDES_REFL]);;

let JACOBI_SQUARED = prove
 (`(!a n. jacobi(a EXP 2,n) = if coprime(a,n) then &1 else &0) /\
   (!a n. jacobi(a,n EXP 2) = if coprime(a,n) then &1 else &0)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[EXP_2; JACOBI_LMUL; JACOBI_RMUL] THEN
  ONCE_REWRITE_TAC[GSYM COND_SWAP] THEN REWRITE_TAC[GSYM JACOBI_EQ_0] THEN
  MP_TAC(SPECL [`a:num`; `n:num`] JACOBI_CASES) THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV);;

let JACOBI_MINUS1 = prove
 (`!n. ODD n ==> jacobi(n - 1,n) = --(&1) pow ((n - 1) DIV 2)`,
  MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN
  CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[JACOBI_0] THEN
  CONV_TAC INT_REDUCE_CONV THEN CONV_TAC NUM_REDUCE_CONV THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
  ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[ODD_MULT] THEN
  ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[ARITH] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[JACOBI_RMUL] THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN
  SUBGOAL_THEN `jacobi(p * n - 1,n) = jacobi (n - 1,n)` SUBST1_TAC THENL
   [MATCH_MP_TAC JACOBI_CONG THEN MATCH_MP_TAC CONG_SUB THEN
    REPLICATE_TAC 2 (CONJ_TAC THENL [CONV_TAC NUMBER_RULE; ALL_TAC]) THEN
    ASM_REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; MULT_EQ_0];
    ASM_REWRITE_TAC[]] THEN
  SUBGOAL_THEN `jacobi (p * n - 1,p) = --(&1) pow ((p - 1) DIV 2)`
  SUBST1_TAC THENL
   [MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `&p:int` THEN CONJ_TAC THENL
     [MATCH_MP_TAC(INT_ARITH
       `abs(x:int) <= &1 /\ abs(y) <= &1 /\ &3 <= p ==> abs(x - y) < p`) THEN
      REWRITE_TAC[INT_OF_NUM_LE; JACOBI_BOUND] THEN
      CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ODD_PRIME; PRIME_ODD]] THEN
      REWRITE_TAC[INT_ABS_POW; INT_ABS_NEG; INT_POW_ONE; INT_ABS_NUM] THEN
      REWRITE_TAC[INT_LE_REFL];
      MP_TAC(SPECL [`p * n - 1`; `p:num`] JACOBI_EULER_ALT) THEN
      ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] INT_CONG_TRANS) THEN
      MATCH_MP_TAC INT_CONG_POW THEN
      ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1; MULT_EQ_0] THEN
      REWRITE_TAC[GSYM INT_OF_NUM_MUL] THEN CONV_TAC INTEGER_RULE];
    REWRITE_TAC[GSYM INT_POW_ADD] THEN
    REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN
    AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REPEAT(FIRST_X_ASSUM
     (CHOOSE_THEN SUBST_ALL_TAC o REWRITE_RULE[ODD_EXISTS])) THEN
    REWRITE_TAC[SUC_SUB1; ADD_CLAUSES; MULT_CLAUSES] THEN
    REWRITE_TAC[GSYM LEFT_ADD_DISTRIB; GSYM MULT_ASSOC] THEN
    REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n`] THEN
    REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH]]);;

let JACOBI_MINUS1_CASES = prove
 (`!n. ODD n
       ==> jacobi(n - 1,n) =
           if (n == 1) (mod 4) then &1 else -- &1`,
  SIMP_TAC[JACOBI_MINUS1] THEN
  SIMP_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[ARITH_RULE `((2 * n + 1) - 1) DIV 2 = n`] THEN
  SIMP_TAC[ARITH_EQ; ARITH_RULE `4 = 2 * 2`; NUMBER_RULE
   `~(t = 0) ==> ((t * n + 1 == 1) (mod (t * t)) <=> t divides n)`] THEN
  REWRITE_TAC[INT_POW_NEG; INT_POW_ONE; DIVIDES_2]);;

let JACOBI_GAUSS_LEMMA = prove
 (`!a p. prime p /\ ~(p = 2)
         ==> jacobi(a,p) =
             if coprime(a,p)
             then --(&1) pow CARD {x | x IN 1 .. (p - 1) DIV 2 /\
                                       (p - 1) DIV 2 < (a * x) MOD p}
             else &0`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[JACOBI_EQ_0] THEN
  SUBGOAL_THEN `ODD(p)` MP_TAC THENL
   [ASM_MESON_TAC[PRIME_ODD; ODD_PRIME];
    REWRITE_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM]] THEN
  X_GEN_TAC `r:num` THEN REWRITE_TAC[ADD1] THEN
  DISCH_THEN(ASSUME_TAC o SYM) THEN
  MATCH_MP_TAC INT_CONG_IMP_EQ THEN EXISTS_TAC `&p:int` THEN CONJ_TAC THENL
   [MATCH_MP_TAC(INT_ARITH
       `abs(x:int) <= &1 /\ abs(y) <= &1 /\ &3 <= p ==> abs(x - y) < p`) THEN
    REWRITE_TAC[INT_OF_NUM_LE; JACOBI_BOUND] THEN
    CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ODD_PRIME; PRIME_ODD]] THEN
    SIMP_TAC[INT_ABS_POW; INT_ABS_NEG; INT_POW_ONE; INT_ABS_NUM; INT_LE_REFL];
    ALL_TAC] THEN
  MP_TAC(SPECL [`a:num`; `p:num`] JACOBI_EULER) THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] INT_CONG_TRANS) THEN
  SUBGOAL_THEN `(p - 1) DIV 2 = r` SUBST1_TAC THENL
   [EXPAND_TAC "p" THEN ARITH_TAC; ALL_TAC] THEN
  MATCH_MP_TAC(INTEGER_RULE
   `!c:int. x pow 2 = &1 /\ coprime(p,c) /\ (a * x * c == c) (mod p)
            ==> (a == x) (mod p)`) THEN
  EXISTS_TAC `iproduct (1..r) (\i. &i)` THEN REPEAT CONJ_TAC THENL
   [REWRITE_TAC[ONCE_REWRITE_RULE[MULT_SYM] INT_POW_POW] THEN
    REWRITE_TAC[GSYM INT_POW_POW] THEN CONV_TAC INT_REDUCE_CONV THEN
    REWRITE_TAC[INT_POW_ONE];
    MATCH_MP_TAC COPRIME_IPRODUCT THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; GSYM num_coprime] THEN
    X_GEN_TAC `i:num` THEN STRIP_TAC THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
    MATCH_MP_TAC PRIME_COPRIME_LT THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
    GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o LAND_CONV o RAND_CONV)
      [GSYM CARD_NUMSEG_1] THEN
    SIMP_TAC[GSYM IPRODUCT_CONST; FINITE_RESTRICT; FINITE_NUMSEG] THEN
    REWRITE_TAC[IPRODUCT_RESTRICT_SET]] THEN
  MP_TAC(ISPECL
   [`(\i. &i):num->int`;
    `(\x. if x <= r then x else p - x) o (\x. (a * x) MOD p)`;
    `1..r`] IPRODUCT_INJECTION) THEN
  REWRITE_TAC[o_THM; FINITE_NUMSEG] THEN ANTS_TAC THENL
   [CONJ_TAC THENL
     [GEN_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THENL
       [ALL_TAC; EXPAND_TAC "p" THEN ARITH_TAC] THEN
      REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN COND_CASES_TAC THENL
       [ALL_TAC; ASM_MESON_TAC[DIVISION; NOT_LE; SUB_EQ_0; PRIME_0]] THEN
      ASM_SIMP_TAC[GSYM DIVIDES_MOD; PRIME_IMP_NZ] THEN
      ASM_SIMP_TAC[PRIME_DIVPROD_EQ] THEN STRIP_TAC THENL
       [ASM_MESON_TAC[coprime; DIVIDES_REFL; PRIME_1];
        ASM_MESON_TAC[DIVIDES_LE; ARITH_RULE `~(1 <= 0)`;
                      ARITH_RULE `~(2 * r + 1 <= i /\ i <= r)`]];
      MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN REWRITE_TAC[IN_NUMSEG] THEN
      REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN
      EXISTS_TAC `p:num` THEN REPEAT(CONJ_TAC THENL
       [ASM_MESON_TAC[ARITH_RULE `i <= r ==> i < 2 * r + 1`] ; ALL_TAC]) THEN
      MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `a:num` THEN
      FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
       `(if a then x else p - x) = (if b then y else p - y) ==> x < p /\ y < p
        ==> x:num = y \/ x + y = p`)) THEN
      ASM_SIMP_TAC[MOD_LT_EQ; PRIME_IMP_NZ] THEN
      DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
       [ASM_MESON_TAC[CONG]; ALL_TAC] THEN
      DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(MOD)`) THEN
      ASM_SIMP_TAC[MOD_ADD_MOD] THEN ASM_SIMP_TAC[GSYM CONG] THEN
      DISCH_THEN(MP_TAC o MATCH_MP CONG_DIVIDES) THEN
      ASM_SIMP_TAC[GSYM LEFT_ADD_DISTRIB; PRIME_DIVPROD_EQ; DIVIDES_REFL] THEN
      STRIP_TAC THENL
       [ASM_MESON_TAC[coprime; DIVIDES_REFL; PRIME_1]; ALL_TAC] THEN
      FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
      ASM_SIMP_TAC[ARITH_RULE `1 <= i ==> ~(i + j = 0)`] THEN
      MAP_EVERY UNDISCH_TAC [`i:num <= r`; `j:num <= r`; `2 * r + 1 = p`] THEN
      ARITH_TAC];
    DISCH_THEN(fun th -> GEN_REWRITE_TAC (LAND_CONV) [GSYM th])] THEN
  SIMP_TAC[GSYM IPRODUCT_MUL; FINITE_NUMSEG; o_DEF] THEN
  MATCH_MP_TAC CONG_IPRODUCT THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN
  X_GEN_TAC `i:num` THEN STRIP_TAC THEN
  REWRITE_TAC[COND_SWAP; GSYM NOT_LE] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; MOD_LT_EQ; PRIME_IMP_NZ; INT_OF_NUM_EQ;
               LT_IMP_LE; INT_MUL_LID; INT_MUL_LNEG; INT_MUL_RNEG] THEN
  REWRITE_TAC[INTEGER_RULE `(--x:int == p - a) (mod p) <=> (x == a) (mod p)`;
              GSYM INT_OF_NUM_REM; GSYM INT_OF_NUM_MUL] THEN
  REWRITE_TAC[INT_CONG_RREM; INT_CONG_REFL]);;

let JACOBI_OF_2 = prove
 (`!n. jacobi(2,n) = if EVEN n then &0 else --(&1) pow ((n EXP 2 - 1) DIV 8)`,
  let lemma0 = prove
   (`!n. ODD n ==> 8 divides (n EXP 2 - 1)`,
    GEN_TAC THEN REWRITE_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `m:num` THEN DISCH_THEN SUBST1_TAC THEN
    REWRITE_TAC[ARITH_RULE `(2 * n + 1) EXP 2 - 1 = 4 * (n EXP 2 + n)`] THEN
    REWRITE_TAC[ARITH_RULE `8 = 4 * 2`] THEN MATCH_MP_TAC DIVIDES_MUL_L THEN
    REWRITE_TAC[DIVIDES_2; EVEN_ADD; EVEN_EXP; ARITH_EQ]) in
  let lemma1 = prove
   (`!m n. ODD m /\ ODD n
           ==> (EVEN(((m * n) EXP 2 - 1) DIV 8) <=>
                EVEN((m EXP 2 - 1) DIV 8 + (n EXP 2 - 1) DIV 8))`,
    REPEAT STRIP_TAC THEN
    ASM_SIMP_TAC[GSYM DIV_ADD; lemma0; GSYM DIVIDES_2] THEN
    ASM_SIMP_TAC[DIVIDES_DIVIDES_DIV; lemma0; ODD_MULT; DIVIDES_ADD] THEN
    SUBGOAL_THEN
     `(m * n) EXP 2 - 1 =
      (m EXP 2 - 1) * (n EXP 2 - 1) + (m EXP 2 - 1) + (n EXP 2 - 1)`
    SUBST1_TAC THENL
     [ASM_SIMP_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_ADD;
                   GSYM INT_OF_NUM_MUL; GSYM INT_OF_NUM_SUB; LE_1;
                   MULT_EQ_0; EXP_2; MESON[ODD] `ODD n ==> ~(n = 0)`] THEN
      INT_ARITH_TAC;
      MATCH_MP_TAC(NUMBER_RULE
       `(d:num) divides a ==> (d divides (a + b) <=> d divides b)`) THEN
      MATCH_MP_TAC(NUMBER_RULE
       `e divides d /\ d divides a /\ d divides b
        ==> d * e divides a * b`) THEN
      ASM_SIMP_TAC[lemma0] THEN REWRITE_TAC[DIVIDES_2; ARITH]]) in
  GEN_TAC THEN COND_CASES_TAC THENL
   [ASM_REWRITE_TAC[JACOBI_EQ_0; COPRIME_2; GSYM NOT_EVEN];
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN])] THEN
  SPEC_TAC(`n:num`,`n:num`) THEN  MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN
  CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[JACOBI_1] THEN
  CONV_TAC INT_REDUCE_CONV THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
  ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[ODD_MULT] THEN
  ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[ARITH] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[JACOBI_RMUL] THEN
  ASM_SIMP_TAC[JACOBI_GAUSS_LEMMA; COPRIME_2; IN_NUMSEG] THEN
  ONCE_REWRITE_TAC[TAUT `(p /\ q) /\ r <=> ~(p /\ q ==> ~r)`] THEN
  ASM_SIMP_TAC[PRIME_IMP_NZ; MOD_LT; ARITH_RULE
   `1 <= x /\ x <= (p - 1) DIV 2 ==> 2 * x < p`] THEN
  REWRITE_TAC[NOT_IMP; ARITH_RULE
   `(1 <= x /\ x <= b) /\ c < 2 * x <=> c DIV 2 + 1 <= x /\ x <= b`] THEN
  REWRITE_TAC[GSYM numseg; CARD_NUMSEG] THEN
  REWRITE_TAC[GSYM INT_POW_ADD] THEN REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN
  AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  ASM_SIMP_TAC[EVEN_ADD; lemma1] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[ARITH_RULE `(n + 1) - (n DIV 2 + 1) = n DIV 2 + n MOD 2`] THEN
  UNDISCH_TAC `ODD p` THEN
  REWRITE_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `t:num` THEN DISCH_THEN SUBST1_TAC THEN
  SIMP_TAC[ADD_SUB; DIV_MULT; ARITH_EQ] THEN
  REWRITE_TAC[ARITH_RULE
   `((2 * n + 1) EXP 2 - 1) DIV 8 = (n EXP 2 + n) DIV 2`] THEN
  MP_TAC(SPEC `t:num` (REWRITE_RULE[EVEN_EXISTS; ODD_EXISTS] EVEN_OR_ODD)) THEN
  REWRITE_TAC[ADD1; OR_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `q:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SIMP_TAC[MOD_MULT_ADD; DIV_MULT_ADD; ARITH_EQ; DIV_MULT; MOD_MULT] THEN
  REWRITE_TAC[ARITH_RULE `((2 * q) EXP 2) DIV 2 = 2 * q * q`] THEN
  CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH] THEN
  REWRITE_TAC[ARITH_RULE
   `((2 * q + 1) EXP 2 + 2 * q + 1) DIV 2 =
    2 * q EXP 2 + 3 * q + 1`] THEN
  REWRITE_TAC[EVEN_ADD; EVEN_MULT; EVEN_EXP; ARITH]);;

let JACOBI_OF_2_CASES = prove
 (`!n. jacobi(2,n) =
       if EVEN n then &0
       else if (n == 1) (mod 8) \/ (n == 7) (mod 8) then &1 else --(&1)`,
  GEN_TAC THEN REWRITE_TAC[JACOBI_OF_2] THEN
  COND_CASES_TAC THEN REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EVEN]) THEN
  SIMP_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[ARITH_RULE
   `((2 * m + 1) EXP 2 - 1) DIV 8 = (m * (m + 1)) DIV 2`] THEN
  X_GEN_TAC `m:num` THEN DISCH_THEN SUBST1_TAC THEN
  REWRITE_TAC[NUMBER_RULE `(n + 1 == 1) (mod p) <=> (n == 0) (mod p)`] THEN
  REWRITE_TAC[NUMBER_RULE `(n + 1 == 7) (mod p) <=> (n == 6) (mod p)`] THEN
  REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN
  AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  MP_TAC(SPEC `m:num`
   (REWRITE_RULE[EVEN_EXISTS; ODD_EXISTS; ADD1] EVEN_OR_ODD)) THEN
  DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `p:num` SUBST1_TAC)) THENL
   [REWRITE_TAC[ARITH_RULE `((2 * p) * (2 * p + 1)) DIV 2 = p * (2 * p + 1)`];
    REWRITE_TAC[ARITH_RULE `((2 * p + 1) * ((2 * p + 1) + 1)) DIV 2 =
                            (p + 1) * (2 * p + 1)`]] THEN
  MP_TAC(GEN `n:num` (SPECL [`2`; `n:num`; `4`] DIVIDES_LMUL2_EQ)) THEN
  REWRITE_TAC[GSYM DIVIDES_2] THEN CONV_TAC NUM_REDUCE_CONV THEN
  DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN
  REWRITE_TAC[DIVIDES_MOD; CONG] THEN CONV_TAC NUM_REDUCE_CONV THEN
  (W(fun(asl,w) -> SUBGOAL_THEN (subst [`p MOD 8`,`p:num`] w) MP_TAC) THENL
   [ALL_TAC;
    MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [ALL_TAC; BINOP_TAC] THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM CONG] THEN
    REPEAT(MATCH_MP_TAC CONG_ADD ORELSE MATCH_MP_TAC CONG_MULT THEN
           REPEAT CONJ_TAC THEN REWRITE_TAC[CONG_REFL; CONG_LMOD])]) THEN
  MP_TAC(ARITH_RULE `p MOD 8 < 8`) THEN SPEC_TAC(`p MOD 8`,`k:num`) THEN
  CONV_TAC EXPAND_CASES_CONV THEN CONV_TAC NUM_REDUCE_CONV);;

let JACOBI_RECIPROCITY_ALT = prove
 (`!m n. ODD m /\ ODD n
         ==> jacobi(m,n) * jacobi(n,m) =
             if coprime(m,n) then --(&1) pow ((m - 1) DIV 2 * (n - 1) DIV 2)
             else &0`,
  let lemma0 = prove
   (`!n. ODD n ==> 2 divides (n - 1)`,
    SIMP_TAC[DIVIDES_2; EVEN_SUB; GSYM NOT_EVEN; ARITH]) in
  let lemma1 = prove
   (`!m n. ODD m /\ ODD n
           ==> (EVEN((m * n - 1) DIV 2) <=>
                EVEN((m - 1) DIV 2 + (n - 1) DIV 2))`,
    REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM DIV_ADD; DIVIDES_2; lemma0] THEN
    ASM_SIMP_TAC[DIVIDES_DIVIDES_DIV; GSYM DIVIDES_2;
                 ODD_MULT; DIVIDES_ADD; lemma0] THEN
    MATCH_MP_TAC(NUMBER_RULE
     `d divides a * b /\ a * b + a + b = c
      ==> (d divides c <=> d divides (a + b))`) THEN
    ASM_SIMP_TAC[DIVIDES_MUL2; lemma0] THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ODD_EXISTS])) THEN
    REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC[SUC_SUB1; MULT_CLAUSES; ADD_CLAUSES] THEN ARITH_TAC) in
  let flemma = prove
   (`!r s p. FINITE {x,y | x IN 1..r /\ y IN 1..s /\ p x y}`,
    REPEAT GEN_TAC THEN
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `(1..r) CROSS (1..s)` THEN
    REWRITE_TAC[FINITE_CROSS_EQ; FINITE_NUMSEG] THEN
    SIMP_TAC[SUBSET; FORALL_IN_GSPEC; IN_CROSS]) in
  let glemma = prove
   (`!p q r s. prime p /\ prime q /\ coprime(p,q) /\
               2 * r + 1 = p /\ 2 * s + 1 = q
               ==> jacobi(q,p) =
                   -- &1 pow CARD {x,y | x IN 1..r /\ y IN 1..s /\
                                         q * x < p * y /\ p * y <= q * x + r}`,
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN REPEAT STRIP_TAC THEN
    MP_TAC(SPECL [`q:num`; `p:num`] JACOBI_GAUSS_LEMMA) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
     [EXPAND_TAC "p" THEN DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN
      REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH];
      DISCH_THEN SUBST1_TAC THEN AP_TERM_TAC] THEN
    SUBGOAL_THEN `(p - 1) DIV 2 = r` SUBST1_TAC THENL
     [EXPAND_TAC "p" THEN ARITH_TAC; ALL_TAC] THEN
    MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
     `CARD {x,y | x IN 1..r /\ y IN 1..s /\
                  y = (q * x) DIV p + 1 /\ r < (q * x) MOD p}` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC CARD_IMAGE_INJ_EQ THEN EXISTS_TAC `\(x:num,y:num). x` THEN
      REWRITE_TAC[FORALL_IN_GSPEC; EXISTS_UNIQUE_THM; IN_NUMSEG; flemma;
                  IMP_CONJ; RIGHT_FORALL_IMP_THM; EXISTS_IN_GSPEC] THEN
      CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
      X_GEN_TAC `x:num` THEN DISCH_TAC THEN DISCH_TAC THEN DISCH_TAC THEN
      SIMP_TAC[PAIR_EQ] THEN EXISTS_TAC `x:num` THEN
      EXISTS_TAC `(q * x) DIV p + 1` THEN
      ASM_REWRITE_TAC[ARITH_RULE `1 <= n + 1`] THEN
      SUBGOAL_THEN `p * (q * x) DIV p + r < q * r` MP_TAC THENL
       [MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `q * x:num` THEN
        ASM_REWRITE_TAC[LE_MULT_LCANCEL] THEN
        GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
        ASM_MESON_TAC[PRIME_IMP_NZ; LT_ADD_LCANCEL; DIVISION];
        MAP_EVERY EXPAND_TAC ["p"; "q"] THEN DISCH_THEN(MP_TAC o MATCH_MP
         (ARITH_RULE `(2 * r + 1) * d + r < (2 * s + 1) * r
                      ==> (2 * r) * d < (2 * r) * s`)) THEN
        SIMP_TAC[LT_MULT_LCANCEL; ARITH_RULE `x < y ==> x + 1 <= y`]];
      AP_TERM_TAC THEN
      REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; FORALL_PAIR_THM] THEN
      MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN
      AP_TERM_TAC THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_TAC THENL
       [MP_TAC(MATCH_MP PRIME_IMP_NZ (ASSUME `prime p`)) THEN
        DISCH_THEN(MP_TAC o SPEC `q * x:num` o MATCH_MP DIVISION) THEN
        FIRST_ASSUM(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC) THEN
        UNDISCH_TAC `2 * r + 1 = p` THEN ARITH_TAC;
        MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
         [ALL_TAC;
          DISCH_THEN SUBST_ALL_TAC THEN
          MATCH_MP_TAC(ARITH_RULE
           `!p d. 2 * r + 1 = p /\ p * (d + 1) <= (d * p + m) + r
                  ==> r < m`) THEN
          MAP_EVERY EXISTS_TAC [`p:num`; `(q * x) DIV p`] THEN
          ASM_MESON_TAC[DIVISION; PRIME_IMP_NZ]] THEN
        MATCH_MP_TAC(ARITH_RULE
         `~(x <= y) /\ ~(y + 2 <= x) ==> x = y + 1`) THEN
        REPEAT STRIP_TAC THENL
         [SUBGOAL_THEN `y * p <= ((q * x) DIV p) * p` MP_TAC THENL
           [ASM_SIMP_TAC[LE_MULT_RCANCEL; PRIME_IMP_NZ]; ALL_TAC];
          SUBGOAL_THEN `((q * x) DIV p + 2) * p <= y * p` MP_TAC THENL
           [ASM_SIMP_TAC[LE_MULT_RCANCEL; PRIME_IMP_NZ]; ALL_TAC]] THEN
        MP_TAC(MATCH_MP PRIME_IMP_NZ (ASSUME `prime p`)) THEN
        DISCH_THEN(MP_TAC o SPEC `q * x:num` o MATCH_MP DIVISION) THEN
        ASM_ARITH_TAC]]) in
  let hlemma = prove
   (`!p q r s. prime p /\ prime q /\ coprime(p,q) /\
               2 * r + 1 = p /\ 2 * s + 1 = q
               ==> jacobi(p,q) =
                   -- &1 pow CARD {x,y | x IN 1..r /\ y IN 1..s /\
                                         p * y < q * x /\ q * x <= p * y + s}`,
    REPEAT STRIP_TAC THEN
    MP_TAC(SPECL [`q:num`; `p:num`; `s:num`; `r:num`] glemma) THEN
    ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN SUBST1_TAC THEN AP_TERM_TAC THEN
    MATCH_MP_TAC CARD_IMAGE_INJ_EQ THEN
    EXISTS_TAC `\(x:num,y:num). (y,x)` THEN REWRITE_TAC[flemma] THEN
    REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN
    SIMP_TAC[IN_ELIM_PAIR_THM; PAIR_EQ] THEN MESON_TAC[]) in
  let rlemma = prove
   (`!a b c d r s.
          a UNION b UNION c UNION d = (1..r) CROSS (1..s) /\
          PAIRWISE DISJOINT [a;b;c;d] /\ CARD b = CARD c
          ==> ((EVEN(CARD a) <=> EVEN(CARD d)) <=> ~(ODD r /\ ODD s))`,
    REPEAT STRIP_TAC THEN
    SUBGOAL_THEN `CARD(a:num#num->bool) + CARD(b:num#num->bool) +
                  CARD(c:num#num->bool) + CARD(d:num#num->bool) = r * s`
     (fun th -> MP_TAC(AP_TERM `EVEN` th) THEN
                ASM_REWRITE_TAC[EVEN_ADD; GSYM NOT_EVEN; EVEN_MULT] THEN
                CONV_TAC TAUT) THEN
    SUBGOAL_THEN
     `FINITE(a:num#num->bool) /\ FINITE(b:num#num->bool) /\
      FINITE(c:num#num->bool) /\ FINITE(d:num#num->bool)`
    STRIP_ASSUME_TAC THENL
     [ASM_REWRITE_TAC[GSYM FINITE_UNION] THEN
      REWRITE_TAC[FINITE_CROSS_EQ; FINITE_NUMSEG];
      ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o AP_TERM `CARD:(num#num->bool)->num`) THEN
    SIMP_TAC[CARD_CROSS; CARD_NUMSEG_1; FINITE_NUMSEG] THEN
    DISCH_THEN(SUBST1_TAC o SYM) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [PAIRWISE]) THEN
    REWRITE_TAC[PAIRWISE; DISJOINT; ALL] THEN
    ASM_SIMP_TAC[CARD_UNION; FINITE_UNION; SET_RULE
      `a INTER (b UNION c) = {} <=> a INTER b = {} /\ a INTER c = {}`]) in
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[INT_ENTIRE; JACOBI_EQ_0] THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM IMP_CONJ_ALT; GSYM CONJ_ASSOC] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`n:num`; `m:num`] THEN
  MATCH_MP_TAC COMPLETE_FACTOR_INDUCT THEN
  CONV_TAC NUM_REDUCE_CONV THEN REPEAT CONJ_TAC THENL
   [ASM_SIMP_TAC[COPRIME_1; JACOBI_1; MULT_CLAUSES; ODD] THEN
    CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC INT_REDUCE_CONV;
    X_GEN_TAC `p:num` THEN DISCH_TAC;
    MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
    REWRITE_TAC[COPRIME_LMUL; COPRIME_RMUL; ODD_MULT;
                JACOBI_LMUL; JACOBI_RMUL] THEN
    ONCE_REWRITE_TAC[INT_ARITH
     `(a * b) * (c * d):int = (a * c) * (b * d)`] THEN
    SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN
    X_GEN_TAC `q:num` THEN STRIP_TAC THEN REWRITE_TAC[GSYM INT_POW_POW] THEN
    REWRITE_TAC[GSYM INT_POW_MUL] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[GSYM INT_POW_ADD] THEN
    REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN
    AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    ASM_SIMP_TAC[lemma1]] THEN
  MATCH_MP_TAC COMPLETE_FACTOR_INDUCT THEN
  CONV_TAC NUM_REDUCE_CONV THEN REPEAT CONJ_TAC THENL
   [ASM_SIMP_TAC[COPRIME_1; JACOBI_1; MULT_CLAUSES; ODD] THEN
    CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC INT_REDUCE_CONV;
    X_GEN_TAC `q:num` THEN DISCH_TAC THEN STRIP_TAC;
    MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
    REWRITE_TAC[COPRIME_LMUL; COPRIME_RMUL; ODD_MULT;
                JACOBI_LMUL; JACOBI_RMUL] THEN
    ONCE_REWRITE_TAC[INT_ARITH
     `(a * b) * (c * d):int = (a * c) * (b * d)`] THEN
    SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN
    ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM INT_POW_POW] THEN
    REWRITE_TAC[GSYM INT_POW_MUL] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    REWRITE_TAC[GSYM INT_POW_ADD] THEN
    REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN
    AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    ASM_SIMP_TAC[lemma1]] THEN
  MAP_EVERY UNDISCH_TAC [`ODD q`; `ODD p`] THEN
  REWRITE_TAC[ODD_EXISTS; ADD1; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `r:num` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
  X_GEN_TAC `s:num` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
  MP_TAC(SPECL [`p:num`; `q:num`; `r:num`; `s:num`] glemma) THEN
  MP_TAC(SPECL [`p:num`; `q:num`; `r:num`; `s:num`] hlemma) THEN
  ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN SUBST1_TAC) THEN
  SUBGOAL_THEN `(p - 1) DIV 2 = r /\ (q - 1) DIV 2 = s`
  (CONJUNCTS_THEN SUBST1_TAC) THENL
   [MAP_EVERY EXPAND_TAC ["p"; "q"] THEN ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[GSYM INT_POW_ADD] THEN
  REWRITE_TAC[INT_POW_NEG; INT_POW_ONE] THEN
  AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM NOT_ODD] THEN
  REWRITE_TAC[EVEN_ADD; ODD_MULT] THEN
  MATCH_MP_TAC rlemma THEN
  EXISTS_TAC `{x,y | x IN 1..r /\ y IN 1..s /\ q * x + r < p * y}` THEN
  EXISTS_TAC `{x,y | x IN 1..r /\ y IN 1..s /\ p * y + s < q * x}` THEN
  REPEAT CONJ_TAC THEN
  REWRITE_TAC[PAIRWISE; DISJOINT; EXTENSION; NOT_IN_EMPTY; FORALL_PAIR_THM;
              ALL; IN_UNION; IN_CROSS; IN_ELIM_PAIR_THM; IN_INTER]
  THENL
   [MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN
    MAP_EVERY ASM_CASES_TAC [`x IN 1..r`; `y IN 1..s`] THEN ASM_SIMP_TAC[] THEN
    SUBGOAL_THEN `~(q * x:num = p * y)`
     (fun th -> MP_TAC th THEN ARITH_TAC) THEN
    DISCH_THEN(MP_TAC o AP_TERM `(divides) (p:num)`) THEN
    ASM_SIMP_TAC[PRIME_DIVPROD_EQ; DIVIDES_REFL] THEN STRIP_TAC THENL
     [ASM_MESON_TAC[DIVIDES_REFL; PRIME_1; coprime]; ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
    UNDISCH_TAC `x IN 1..r` THEN REWRITE_TAC[IN_NUMSEG] THEN
    EXPAND_TAC "p" THEN ARITH_TAC;
    ARITH_TAC;
    MATCH_MP_TAC BIJECTIONS_CARD_EQ THEN
    REPEAT(EXISTS_TAC `\(x,y). (r + 1) - x,(s + 1) - y`) THEN
    REWRITE_TAC[flemma] THEN
    REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_NUMSEG; PAIR_EQ] THEN
    CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN
    SIMP_TAC[ARITH_RULE `x <= y ==> (y + 1) - ((y + 1) - x) = x`] THEN
    SIMP_TAC[ARITH_RULE
     `1 <= x /\ x <= y ==> 1 <= (y + 1) - x /\ (y + 1) - x <= y`] THEN
    REWRITE_TAC[LEFT_SUB_DISTRIB] THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC(ARITH_RULE
     `x:num <= y /\ v + y + z < x + u ==> (y - x) + z < u - v`) THEN
    ASM_SIMP_TAC[LE_MULT_LCANCEL; ARITH_RULE `x <= r ==> x <= r + 1`] THEN
    REWRITE_TAC[ARITH_RULE `a + x:num < y + a <=> x < y`] THEN
    REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM)) THEN
    ASM_ARITH_TAC]);;

let JACOBI_RECIPROCITY = prove
 (`!m n. ODD m /\ ODD n
         ==> jacobi(n,m) =
             if coprime(m,n)
             then --(&1) pow ((m - 1) DIV 2 * (n - 1) DIV 2) * jacobi(m,n)
             else &0`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
   [ALL_TAC; ASM_MESON_TAC[JACOBI_EQ_0; COPRIME_SYM]] THEN
  MATCH_MP_TAC(INT_RING
   `!x y:int.
        x pow 2 = &1 /\ y pow 2 = &1 /\ x * y = z
        ==> y = z * x`) THEN
  ASM_SIMP_TAC[JACOBI_RECIPROCITY_ALT] THEN CONJ_TAC THEN
  MATCH_MP_TAC(INT_RING
   `(x:int = -- &1 \/ x = &0 \/ x = &1) /\ ~(x = &0) ==> x pow 2 = &1`) THEN
  REWRITE_TAC[JACOBI_CASES] THEN ASM_REWRITE_TAC[JACOBI_EQ_0] THEN
  ASM_MESON_TAC[ODD; COPRIME_SYM]);;

let JACOBI_EQ_1 = prove
 (`!n a. coprime(a,n) /\ (?x. (x EXP 2 == a) (mod n))
         ==> jacobi(a,n) = &1`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_SIMP_TAC[COPRIME_0; JACOBI_1] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  ASM_REWRITE_TAC[jacobi] THEN MATCH_MP_TAC IPRODUCT_EQ_1 THEN
  REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN
  MATCH_MP_TAC(MESON[INT_POW_ONE] `x:int = &1 ==> x pow n = &1`) THEN
  COND_CASES_TAC THENL [ASM_MESON_TAC[COPRIME_PRIME_EQ]; ALL_TAC] THEN
  COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[NUMBER_RULE
   `(a == b) (mod m) /\ n divides m ==> (a == b) (mod n)`]);;

let JACOBI_NE_MINUS1 = prove
 (`!n a. (?x. (x EXP 2 == a) (mod n)) ==> ~(jacobi(a,n) = -- &1)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `coprime(a:num,n)` THEN
  ASM_SIMP_TAC[JACOBI_ZERO; JACOBI_EQ_1] THEN CONV_TAC INT_REDUCE_CONV);;

(* ------------------------------------------------------------------------- *)
(* Integer version. The totalization at zero is a bit blunter; it's hard to  *)
(* keep all the nice properties in the light of -1 * -1 = 1; we prioritize   *)
(* simple complete multiplicativity over the relation with coprimality.      *)
(* ------------------------------------------------------------------------- *)

let int_jacobi = new_definition
 `int_jacobi(a,n) =
        if n = &0 then &0
        else jacobi(num_of_int(a rem n),num_of_int(abs n))`;;

let INT_JACOBI_RNEG = prove
 (`!a n. int_jacobi(a,--n) = int_jacobi(a,n)`,
  REWRITE_TAC[int_jacobi; INT_ABS_NEG; INT_NEG_EQ_0; INT_REM_RNEG]);;

let INT_JACOBI_RABS = prove
 (`!a n. int_jacobi(a,abs n) = int_jacobi(a,n)`,
  REWRITE_TAC[int_jacobi; INT_ABS_ABS; INT_REM_RABS; INT_ABS_ZERO]);;

let INT_JACOBI_NUMS = prove
 (`!a n. int_jacobi(&a,&n) = if n = 0 /\ a = 1 then &0 else jacobi(a,n)`,
  REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`n = 0`; `a = 1`] THEN
  ASM_REWRITE_TAC[int_jacobi; JACOBI_0; JACOBI_1; INT_OF_NUM_EQ] THEN
  REWRITE_TAC[int_jacobi; INT_ABS_NUM; INT_OF_NUM_REM; NUM_OF_INT_OF_NUM] THEN
  ASM_REWRITE_TAC[INT_OF_NUM_EQ; JACOBI_0; MOD_ZERO; JACOBI_MOD; JACOBI_1]);;

let INT_JACOBI_BOUND = prove
 (`!a n. abs(int_jacobi(a,n)) <= &1`,
  REPEAT GEN_TAC THEN REWRITE_TAC[int_jacobi] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[JACOBI_BOUND]) THEN
  CONV_TAC INT_REDUCE_CONV);;

let INT_JACOBI_CASES = prove
 (`!a n. int_jacobi(a,n) = -- &1 \/
         int_jacobi(a,n) = &0 \/
         int_jacobi(a,n) = &1`,
  REPEAT GEN_TAC THEN REWRITE_TAC[int_jacobi] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[JACOBI_CASES]) THEN
  CONV_TAC INT_REDUCE_CONV);;

let INT_JACOBI_CONG = prove
 (`!a b n. (a == b) (mod n) ==> int_jacobi(a,n) = int_jacobi(b,n)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[int_jacobi] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[INT_CONG_MOD_0] THEN
  SIMP_TAC[GSYM INT_REM_EQ]);;

let INT_JACOBI_REM_GEN = prove
 (`!a m n. n divides m ==> int_jacobi(a rem m,n) = int_jacobi(a,n)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC INT_JACOBI_CONG THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NUMBER_RULE
    `(n:int) divides m ==> (x == y) (mod m) ==> (x == y) (mod n)`)) THEN
  REWRITE_TAC[INT_CONG_LREM; INT_CONG_REFL]);;

let INT_JACOBI_REM = prove
 (`!a n. int_jacobi(a rem n,n) = int_jacobi(a,n)`,
  SIMP_TAC[INT_JACOBI_REM_GEN; INT_DIVIDES_REFL]);;

let INT_JACOBI_1 = prove
 (`(!n. int_jacobi(&1,n) = if n = &0 then &0 else &1) /\
   (!a. int_jacobi(a,&1) = &1)`,
  REWRITE_TAC[int_jacobi] THEN CONV_TAC INT_REDUCE_CONV THEN
  REWRITE_TAC[NUM_OF_INT_OF_NUM; JACOBI_1] THEN
  X_GEN_TAC `n:int` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `abs(n:int) = &1` THEN
  ASM_REWRITE_TAC[NUM_OF_INT_OF_NUM; JACOBI_1] THEN
  SUBGOAL_THEN `&1 rem n = &1` SUBST1_TAC THENL
   [REWRITE_TAC[INT_REM_EQ_SELF] THEN ASM_INT_ARITH_TAC;
    REWRITE_TAC[NUM_OF_INT_OF_NUM; JACOBI_1] THEN
    SIMP_TAC[GSYM INT_OF_NUM_EQ; INT_OF_NUM_OF_INT; INT_ABS_POS] THEN
    ASM_REWRITE_TAC[INT_ABS_ZERO]]);;

let INT_JACOBI_0 = prove
 (`(!n. int_jacobi(&0,n) = if abs n = &1 then &1 else &0) /\
   (!a. int_jacobi(a,&0) = &0)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[int_jacobi] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_REM_ZERO] THEN
  REWRITE_TAC[NUM_OF_INT_OF_NUM; JACOBI_0] THEN
  CONV_TAC INT_REDUCE_CONV THEN
  SIMP_TAC[GSYM INT_OF_NUM_EQ; INT_OF_NUM_OF_INT; INT_ABS_POS]);;

let INT_JACOBI_RMUL = prove
 (`!a m n. int_jacobi(a,m * n) = int_jacobi(a,m) * int_jacobi(a,n)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `m:int = &0` THEN
  ASM_REWRITE_TAC[INT_JACOBI_0; INT_MUL_LZERO] THEN
  ASM_CASES_TAC `n:int = &0` THEN
  ASM_REWRITE_TAC[INT_JACOBI_0; INT_MUL_RZERO] THEN
  ASM_REWRITE_TAC[int_jacobi; INT_ENTIRE; INT_ABS_MUL] THEN
  SIMP_TAC[NUM_OF_INT_MUL; INT_ABS_POS; JACOBI_RMUL] THEN
  BINOP_TAC THEN MATCH_MP_TAC JACOBI_CONG THEN REWRITE_TAC[num_congruent] THEN
  ASM_SIMP_TAC[INT_OF_NUM_OF_INT; INT_ABS_POS; INT_DIVISION; INT_ENTIRE] THEN
  REWRITE_TAC[INT_CONG_MOD_ABS] THEN REWRITE_TAC[GSYM INT_REM_EQ] THEN
  REWRITE_TAC[INT_REM_REM_MUL; INT_REM_REM]);;

let INT_JACOBI_LMUL = prove
 (`!a b n. int_jacobi(a * b,n) = int_jacobi(a,n) * int_jacobi(b,n)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n:int = &0` THEN
  ASM_REWRITE_TAC[INT_JACOBI_0; INT_MUL_LZERO] THEN
  ASM_REWRITE_TAC[int_jacobi; GSYM JACOBI_LMUL] THEN
  MATCH_MP_TAC JACOBI_CONG THEN REWRITE_TAC[num_congruent] THEN
  ASM_SIMP_TAC[INT_OF_NUM_OF_INT; INT_LE_MUL; INT_DIVISION; INT_ABS_POS;
               GSYM INT_OF_NUM_MUL; INT_CONG_MOD_ABS] THEN
  REWRITE_TAC[GSYM INT_REM_EQ; INT_REM_REM; INT_MUL_REM]);;

let INT_JACOBI_RPOW = prove
 (`!a n k. int_jacobi(a,n pow k) = int_jacobi(a,n) pow k`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[INT_JACOBI_RMUL; INT_JACOBI_1; INT_POW]);;

let INT_JACOBI_LPOW = prove
 (`!a n k. int_jacobi(a pow k,n) =
           if n = &0 then &0 else int_jacobi(a,n) pow k`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[INT_JACOBI_LMUL; INT_JACOBI_1; INT_POW] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_MUL_RZERO]);;

let INT_JACOBI_2 = prove
 (`!a. int_jacobi(a,&2) = a rem &2`,
  GEN_TAC THEN ONCE_REWRITE_TAC[GSYM INT_JACOBI_REM] THEN
  MP_TAC(SPEC `a:int` INT_REM_2_CASES) THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[INT_JACOBI_NUMS; JACOBI_2_CASES] THEN
  CONV_TAC NUM_REDUCE_CONV);;

let INT_JACOBI_POW_2 = prove
 (`!a k. int_jacobi(a,&2 pow k) = if k = 0 then &1 else a rem &2`,
  REPEAT GEN_TAC THEN REWRITE_TAC[INT_JACOBI_RPOW; INT_JACOBI_2] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[INT_POW] THEN
  MP_TAC(SPEC `a:int` INT_REM_2_CASES) THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[INT_POW_ZERO; INT_POW_ONE]);;

let INT_JACOBI_EQ_0 = prove
 (`!a n. int_jacobi(a,n) = &0 <=> coprime(a,n) ==> n = &0`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `n:int = &0` THEN ASM_REWRITE_TAC[INT_JACOBI_0] THEN
  ONCE_REWRITE_TAC[GSYM INT_JACOBI_RABS; GSYM INT_COPRIME_RABS] THEN
  ONCE_REWRITE_TAC[GSYM INT_COPRIME_LREM; GSYM INT_JACOBI_REM] THEN
  SUBGOAL_THEN `&0 <= a rem abs n` MP_TAC THENL
   [ASM_SIMP_TAC[INT_DIVISION; INT_ABS_ZERO];
    SPEC_TAC(`a rem abs n`,`x:int`)] THEN
  SUBGOAL_THEN `&0 <= abs(n:int) /\ ~(abs n = &0)` MP_TAC THENL
   [ASM_INT_ARITH_TAC; REWRITE_TAC[IMP_CONJ]] THEN
  SPEC_TAC(`abs n:int`,`y:int`) THEN
  REWRITE_TAC[GSYM INT_FORALL_POS] THEN
  SIMP_TAC[INT_OF_NUM_EQ; INT_JACOBI_NUMS; GSYM num_coprime] THEN
  SIMP_TAC[JACOBI_EQ_0]);;

let INT_JACOBI_MINUS1 = prove
 (`!n. ~(&2 divides n)
       ==> int_jacobi(--(&1),n) =
           if (abs n == &1) (mod &4) then &1 else -- &1`,
  ONCE_REWRITE_TAC[GSYM INT_JACOBI_RABS; GSYM INT_DIVIDES_RABS] THEN
  REWRITE_TAC[GSYM INT_FORALL_ABS; GSYM num_divides; GSYM num_congruent] THEN
  SIMP_TAC[DIVIDES_2; NOT_EVEN; GSYM JACOBI_MINUS1_CASES] THEN
  X_GEN_TAC `n:num` THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ODD] THEN DISCH_TAC THEN
  TRANS_TAC EQ_TRANS `int_jacobi(&n - &1,&n)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC INT_JACOBI_CONG THEN CONV_TAC INTEGER_RULE;
    ASM_SIMP_TAC[INT_OF_NUM_EQ; INT_OF_NUM_SUB; LE_1; INT_JACOBI_NUMS]]);;

let INT_JACOBI_OF_2 = prove
 (`!n. int_jacobi(&2,n) =
       if &2 divides n then &0
       else if (abs n == &1) (mod &8) \/ (abs n == &7) (mod &8) then &1
       else --(&1)`,
  ONCE_REWRITE_TAC[GSYM INT_JACOBI_RABS; GSYM INT_DIVIDES_RABS] THEN
  REWRITE_TAC[GSYM INT_FORALL_ABS; GSYM num_divides; GSYM num_congruent] THEN
  REWRITE_TAC[DIVIDES_2; GSYM JACOBI_OF_2_CASES] THEN
  SIMP_TAC[INT_JACOBI_NUMS] THEN CONV_TAC NUM_REDUCE_CONV);;

let INT_JACOBI_LNEG = prove
 (`!n. ~(&2 divides n)
       ==> int_jacobi(--a,n) =
           if (abs n == &1) (mod &4) then int_jacobi(a,n)
           else --(int_jacobi(a,n))`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[INT_NEG_MINUS1] THEN
  ASM_SIMP_TAC[INT_JACOBI_LMUL; INT_JACOBI_MINUS1] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN INT_ARITH_TAC);;

let INT_JACOBI_SQUARED = prove
 (`(!a n. int_jacobi(a pow 2,n) =
          if coprime(a,n) /\ ~(n = &0) then &1 else &0) /\
   (!a n. int_jacobi(a,n pow 2) =
          if coprime(a,n) /\ ~(n = &0) then &1 else &0)`,
  REWRITE_TAC[INT_JACOBI_LPOW; INT_JACOBI_RPOW] THEN
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `n:int = &0` THEN
  ASM_REWRITE_TAC[INT_JACOBI_EQ_0; INT_POW_EQ_0] THEN
  CONV_TAC NUM_REDUCE_CONV THEN
  ASM_CASES_TAC `coprime(a:int,n)` THEN
  ASM_REWRITE_TAC[INT_JACOBI_EQ_0; INT_POW_EQ_0] THEN
  CONV_TAC NUM_REDUCE_CONV THEN
  MATCH_MP_TAC(INT_RING
   `(x:int = -- &1 \/ x = &0 \/ x = &1) /\ ~(x = &0) ==> x pow 2 = &1`) THEN
  REWRITE_TAC[INT_JACOBI_CASES] THEN ASM_REWRITE_TAC[INT_JACOBI_EQ_0]);;