Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,048 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
(* ========================================================================= *)
(* The multiplicative group of integers modulo n. *)
(* ========================================================================= *)
needs "Library/grouptheory.ml";;
needs "Library/primitive.ml";;
(* ------------------------------------------------------------------------- *)
(* A trivial general lemma used to dispose of degnerate cases. *)
(* ------------------------------------------------------------------------- *)
let MULT_EQ_2 = prove
(`!m n. m * n = 2 <=> m = 1 /\ n = 2 \/ m = 2 /\ n = 1`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
MATCH_MP_TAC(ARITH_RULE `2 * 2 <= p ==> ~(p = 2)`) THEN
MATCH_MP_TAC LE_MULT2 THEN ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Multiplicative group of integers mod n, with degenerate {1} for n <= 1. *)
(* ------------------------------------------------------------------------- *)
let modmul_group = new_definition
`modmul_group n =
if n <= 1 then singleton_group 1
else group({m | m < n /\ coprime(m,n)},
1,inverse_mod n,(\a b. (a * b) MOD n))`;;
let MODMUL_GROUP = prove
(`(!n. group_carrier(modmul_group n) =
if n <= 1 then {1} else {m | m < n /\ coprime(m,n)}) /\
(!n. group_id(modmul_group n) = 1) /\
(!n. group_inv(modmul_group n) = inverse_mod n) /\
(!n. group_mul(modmul_group n) =
if n <= 1 then (\a b. 1) else (\a b. (a * b) MOD n))`,
REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `n:num` THEN
REWRITE_TAC[modmul_group] THEN
ASM_CASES_TAC `n <= 1` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[SINGLETON_GROUP] THEN ASM_REWRITE_TAC[FUN_EQ_THM; inverse_mod];
RULE_ASSUM_TAC(REWRITE_RULE[ARITH_RULE `~(n <= 1) <=> 2 <= n`])] THEN
REWRITE_TAC[group_carrier; group_id; group_inv; group_mul] THEN
REWRITE_TAC[GSYM PAIR_EQ; GSYM(CONJUNCT2 group_tybij)] THEN
ASM_REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `1 < n <=> 2 <= n`] THEN
REWRITE_TAC[NUMBER_RULE `coprime(1,n)`; PAIR_EQ] THEN
REPEAT CONJ_TAC THENL
[X_GEN_TAC `m:num` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[INVERSE_MOD_BOUND] THEN
MATCH_MP_TAC(NUMBER_RULE `!m. (a * m == 1) (mod n) ==> coprime(a,n)`) THEN
EXISTS_TAC `m:num` THEN REWRITE_TAC[INVERSE_MOD_LMUL_EQ] THEN
ASM_MESON_TAC[COPRIME_SYM];
REWRITE_TAC[COPRIME_LMOD; COPRIME_LMUL] THEN
ASM_SIMP_TAC[MOD_LT_EQ; ARITH_RULE `2 <= n ==> ~(n = 0)`];
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM MOD_MULT_MOD2] THEN
REWRITE_TAC[MOD_MOD_REFL] THEN REWRITE_TAC[MOD_MULT_MOD2] THEN
REWRITE_TAC[MULT_ASSOC];
SIMP_TAC[MULT_CLAUSES; MOD_LT];
REWRITE_TAC[MOD_UNIQUE; INVERSE_MOD_RMUL_EQ; INVERSE_MOD_LMUL_EQ] THEN
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> 1 < n`] THEN
MESON_TAC[COPRIME_SYM]]);;
let FINITE_MODMUL_GROUP = prove
(`!n. FINITE(group_carrier(modmul_group n))`,
GEN_TAC THEN REWRITE_TAC[MODMUL_GROUP] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[FINITE_SING] THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
REWRITE_TAC[FINITE_NUMSEG; SUBSET; IN_ELIM_THM; IN_NUMSEG] THEN
ARITH_TAC);;
let ORDER_MODMUL_GROUP = prove
(`!n. CARD(group_carrier(modmul_group n)) =
if n = 0 then 1 else phi n`,
GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[MODMUL_GROUP; LE_0; CARD_SING] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[LE_REFL; PHI_1; CARD_SING] THEN
ASM_REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[PHI_ALT]);;
let HAS_SIZE_MODMUL_GROUP = prove
(`!n. ~(n = 0) ==> group_carrier(modmul_group n) HAS_SIZE phi n`,
SIMP_TAC[HAS_SIZE; FINITE_MODMUL_GROUP] THEN
SIMP_TAC[ORDER_MODMUL_GROUP]);;
let ABELIAN_MODMUL_GROUP = prove
(`!n. abelian_group(modmul_group n)`,
GEN_TAC THEN REWRITE_TAC[abelian_group; MODMUL_GROUP] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[MULT_SYM]);;
let TRIVIAL_MODMUL_GROUP = prove
(`!n. trivial_group(modmul_group n) <=> n <= 2`,
GEN_TAC THEN REWRITE_TAC[TRIVIAL_GROUP_HAS_SIZE_1; HAS_SIZE] THEN
REWRITE_TAC[FINITE_MODMUL_GROUP] THEN
REWRITE_TAC[ORDER_MODMUL_GROUP] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PHI_1; ARITH] THEN
ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[PHI_2; ARITH] THEN
MATCH_MP_TAC(ARITH_RULE `~(n <= 2) /\ 2 <= p ==> (p = 1 <=> n <= 2)`) THEN
CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC PHI_LOWERBOUND_2] THEN
ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Chinese remainder theorem in group-theoretic language. *)
(* ------------------------------------------------------------------------- *)
let GROUP_HOMOMORPHISM_PROD_MODMUL_GROUP = prove
(`!m n. 2 <= m /\ 2 <= n
==> group_homomorphism (modmul_group(m * n),
prod_group (modmul_group m)
(modmul_group n))
(\a. (a MOD m),(a MOD n))`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[GROUP_HOMOMORPHISM; PROD_GROUP; SUBSET] THEN
REWRITE_TAC[FORALL_IN_IMAGE; FORALL_PAIR_THM; IN_CROSS] THEN
REWRITE_TAC[MODMUL_GROUP] THEN
REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`] THEN
ASM_SIMP_TAC[MULT_EQ_0; MULT_EQ_1; IN_ELIM_THM; MOD_LT_EQ; COPRIME_LMOD;
PAIR_EQ; ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
SIMP_TAC[COPRIME_RMUL; MOD_MOD; ONCE_REWRITE_RULE[MULT_SYM] MOD_MOD] THEN
REWRITE_TAC[MOD_MULT_MOD2]);;
let GROUP_ISOMORPHISM_PROD_MODMUL_GROUP = prove
(`!m n. 2 <= m /\ 2 <= n /\ coprime(m,n)
==> group_isomorphism (modmul_group(m * n),
prod_group (modmul_group m)
(modmul_group n))
(\a. (a MOD m),(a MOD n))`,
REPEAT STRIP_TAC THEN
W(MP_TAC o PART_MATCH (lhand o rand)
GROUP_ISOMORPHISM_EQ_MONOMORPHISM_FINITE o snd) THEN
ASM_SIMP_TAC[ORDER_MODMUL_GROUP; FINITE_PROD_GROUP;
FINITE_MODMUL_GROUP; MULT_EQ_0;
CONJUNCT1 PROD_GROUP; CARD_CROSS; PHI_MULTIPLICATIVE;
ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[group_monomorphism] THEN
ASM_SIMP_TAC[GROUP_HOMOMORPHISM_PROD_MODMUL_GROUP] THEN
ASM_SIMP_TAC[MODMUL_GROUP; MULT_EQ_0; MULT_EQ_1;
ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`;
ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
REWRITE_TAC[PAIR_EQ; IN_ELIM_THM; GSYM CONG] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN
EXISTS_TAC `m * n:num` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[NUMBER_RULE
`coprime(m:num,n) /\ (x == y) (mod m) /\ (x == y) (mod n)
==> (x == y) (mod(m * n))`]);;
let ISOMORPHIC_GROUP_MODMUL_GROUP = prove
(`!m n. coprime(m,n)
==> prod_group (modmul_group m)
(modmul_group n)
isomorphic_group (modmul_group (m * n))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[ISOMORPHIC_TRIVIAL_GROUPS]
`(trivial_group G <=> trivial_group H) /\
(~trivial_group G /\ ~trivial_group H ==> G isomorphic_group H)
==> G isomorphic_group H`) THEN
REWRITE_TAC[TRIVIAL_PROD_GROUP; TRIVIAL_MODMUL_GROUP] THEN
POP_ASSUM MP_TAC THEN
ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[COPRIME_0; ARITH] THEN
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[COPRIME_0; ARITH] THEN
DISCH_TAC THEN
ASM_CASES_TAC `m = 1` THEN
ASM_SIMP_TAC[MULT_CLAUSES; ISOMORPHIC_PROD_TRIVIAL_GROUP;
TRIVIAL_MODMUL_GROUP; ARITH] THEN
ASM_CASES_TAC `n = 1` THEN
ASM_SIMP_TAC[MULT_CLAUSES; ISOMORPHIC_PROD_TRIVIAL_GROUP;
TRIVIAL_MODMUL_GROUP; ARITH] THEN
ASM_REWRITE_TAC[ARITH_RULE `n <= 2 <=> n = 0 \/ n = 1 \/ n = 2`] THEN
ASM_REWRITE_TAC[MULT_EQ_0; MULT_EQ_1; MULT_EQ_2] THEN
CONJ_TAC THENL [ASM_MESON_TAC[COPRIME_REFL]; DISCH_THEN(K ALL_TAC)] THEN
ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN
REWRITE_TAC[isomorphic_group] THEN
EXISTS_TAC `\a. (a MOD m),(a MOD n)` THEN
MATCH_MP_TAC GROUP_ISOMORPHISM_PROD_MODMUL_GROUP THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;
let GROUP_POW_MODMUL_GROUP = prove
(`!n a k. group_pow (modmul_group n) a k =
if n <= 1 then 1 else (a EXP k) MOD n`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[group_pow; MODMUL_GROUP] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[EXP] THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN ASM_ARITH_TAC;
MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL; MOD_EXP_MOD]]);;
let GROUP_ELEMENT_ORDER_MODMUL_GROUP = prove
(`!n a. a IN group_carrier(modmul_group n)
==> group_element_order (modmul_group n) a = order n a`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE] THEN
REWRITE_TAC[GSYM ORDER_DIVIDES] THEN
X_GEN_TAC `k:num` THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[GROUP_POW_MODMUL_GROUP] THEN
REWRITE_TAC[MODMUL_GROUP] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[IN_SING; EXP_ONE; CONG] THEN
DISCH_THEN(K ALL_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE]) THEN
ASM_SIMP_TAC[MOD_LT]);;
(* ------------------------------------------------------------------------- *)
(* Existence of primitive roots in group-theoretic language. *)
(* ------------------------------------------------------------------------- *)
let CYCLIC_MODMUL_GROUP = prove
(`!n. cyclic_group(modmul_group n) <=>
n = 0 \/ n = 1 \/ n = 2 \/ n = 4 \/
?p k. prime p /\ 3 <= p /\ (n = p EXP k \/ n = 2 * p EXP k)`,
GEN_TAC THEN ASM_CASES_TAC `n <= 2` THENL
[ASM_SIMP_TAC[TRIVIAL_MODMUL_GROUP;
TRIVIAL_IMP_CYCLIC_GROUP] THEN
ASM_ARITH_TAC;
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE])] THEN
SIMP_TAC[CYCLIC_GROUP_ELEMENT_ORDER; FINITE_MODMUL_GROUP] THEN
ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN
SIMP_TAC[GROUP_ELEMENT_ORDER_MODMUL_GROUP] THEN
MP_TAC(SPEC `n:num` PRIMITIVE_ROOT_EXISTS) THEN
ASM_SIMP_TAC[ORDER_MODMUL_GROUP; FINITE_MODMUL_GROUP;
MODMUL_GROUP;
ARITH_RULE `2 < n ==> ~(n = 0) /\ ~(n = 1) /\ ~(n <= 1)`] THEN
REWRITE_TAC[IN_ELIM_THM; NOT_IMP] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `k MOD n` THEN
ASM_SIMP_TAC[MOD_LT_EQ; ARITH_RULE `2 < n ==> ~(n = 0)`] THEN
MATCH_MP_TAC(TAUT `(~p ==> ~q) /\ q ==> p /\ q`) THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[GSYM ORDER_EQ_0] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
ASM_SIMP_TAC[PHI_EQ_0; ARITH_RULE `2 < n ==> ~(n = 0)`] THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC ORDER_CONG THEN
REWRITE_TAC[CONG_LMOD; CONG_REFL]);;
|