Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 25,431 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
(* ========================================================================= *)
(* All you wanted to know about reflexive symmetric and transitive closures. *)
(* ========================================================================= *)

prioritize_num();;

let RULE_INDUCT_TAC =
  MATCH_MP_TAC o DISCH_ALL o SPEC_ALL o UNDISCH o SPEC_ALL;;

(* ------------------------------------------------------------------------- *)
(* Little lemmas about equivalent forms of symmetry and transitivity.        *)
(* ------------------------------------------------------------------------- *)

let SYM_ALT = prove
 (`!R:A->A->bool. (!x y. R x y ==> R y x) <=> (!x y. R x y <=> R y x)`,
  GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
   [EQ_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC;
    FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [th])] THEN
  FIRST_ASSUM MATCH_ACCEPT_TAC);;

let TRANS_ALT = prove
 (`!(R:A->A->bool) (S:A->A->bool) U.
        (!x z. (?y. R x y /\ S y z) ==> U x z) <=>
        (!x y z. R x y /\ S y z ==> U x z)`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Reflexive closure                                                         *)
(* ------------------------------------------------------------------------- *)

let RC_RULES,RC_INDUCT,RC_CASES = new_inductive_definition
  `(!x y. R x y ==> RC R x y) /\
   (!x:A. RC R x x)`;;

let RC_INC = prove
 (`!(R:A->A->bool) x y. R x y ==> RC R x y`,
  REWRITE_TAC[RC_RULES]);;

let RC_REFL = prove
 (`!(R:A->A->bool) x. RC R x x`,
  REWRITE_TAC[RC_RULES]);;

let RC_EXPLICIT = prove
 (`!(R:A->A->bool) x y. RC R x y <=> R x y \/ (x = y)`,
  REWRITE_TAC[RC_CASES; EQ_SYM_EQ]);;

let RC_MONO = prove
 (`!(R:A->A->bool) S.
        (!x y. R x y ==> S x y) ==>
            (!x y. RC R x y ==> RC S x y)`,
  MESON_TAC[RC_CASES]);;

let RC_CLOSED = prove
 (`!R:A->A->bool. (RC R = R) <=> !x. R x x`,
  REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT] THEN MESON_TAC[]);;

let RC_IDEMP = prove
 (`!R:A->A->bool. RC(RC R) = RC R`,
  REWRITE_TAC[RC_CLOSED; RC_REFL]);;

let RC_SYM = prove
 (`!R:A->A->bool.
        (!x y. R x y ==> R y x) ==> (!x y. RC R x y ==> RC R y x)`,
  MESON_TAC[RC_CASES]);;

let RC_TRANS = prove
 (`!R:A->A->bool.
        (!x y z. R x y /\ R y z ==> R x z) ==>
        (!x y z. RC R x y /\ RC R y z ==> RC R x z)`,
  REWRITE_TAC[RC_CASES] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Symmetric closure                                                         *)
(* ------------------------------------------------------------------------- *)

let SC_RULES,SC_INDUCT,SC_CASES = new_inductive_definition
  `(!x y. R x y ==> SC R x y) /\
   (!x:A y. SC R x y ==> SC R y x)`;;

let SC_INC = prove
 (`!(R:A->A->bool) x y. R x y ==> SC R x y`,
  REWRITE_TAC[SC_RULES]);;

let SC_SYM = prove
 (`!(R:A->A->bool) x y. SC R x y ==> SC R y x`,
  REWRITE_TAC[SC_RULES]);;

let SC_EXPLICIT = prove
 (`!R:A->A->bool. SC(R) x y <=> R x y \/ R y x`,
  GEN_TAC THEN EQ_TAC THENL
   [RULE_INDUCT_TAC SC_INDUCT THEN MESON_TAC[]; MESON_TAC[SC_CASES]]);;

let SC_MONO = prove
 (`!(R:A->A->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. SC R x y ==> SC S x y)`,
  MESON_TAC[SC_EXPLICIT]);;

let SC_CLOSED = prove
 (`!R:A->A->bool. (SC R = R) <=> !x y. R x y ==> R y x`,
  REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT] THEN MESON_TAC[]);;

let SC_IDEMP = prove
 (`!R:A->A->bool. SC(SC R) = SC R`,
  REWRITE_TAC[SC_CLOSED; SC_SYM]);;

let SC_REFL = prove
 (`!R:A->A->bool. (!x. R x x) ==> (!x. SC R x x)`,
  MESON_TAC[SC_EXPLICIT]);;

(* ------------------------------------------------------------------------- *)
(* Transitive closure                                                        *)
(* ------------------------------------------------------------------------- *)

let TC_RULES,TC_INDUCT,TC_CASES = new_inductive_definition
   `(!x y. R x y ==> TC R x y) /\
    (!(x:A) y z. TC R x y /\ TC R y z ==> TC R x z)`;;

let TC_INC = prove
 (`!(R:A->A->bool) x y. R x y ==> TC R x y`,
  REWRITE_TAC[TC_RULES]);;

let TC_TRANS = prove
 (`!(R:A->A->bool) x y z. TC R x y /\ TC R y z ==> TC R x z`,
  REWRITE_TAC[TC_RULES]);;

let TC_MONO = prove
 (`!(R:A->A->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. TC R x y ==> TC S x y)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[TC_RULES]);;

let TC_CLOSED = prove
 (`!R:A->A->bool. (TC R = R) <=> !x y z. R x y /\ R y z ==> R x z`,
  GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN EQ_TAC THENL
   [MESON_TAC[TC_RULES]; REPEAT STRIP_TAC] THEN
  EQ_TAC THENL
   [RULE_INDUCT_TAC TC_INDUCT THEN ASM_MESON_TAC[];
    MESON_TAC[TC_RULES]]);;

let TC_IDEMP = prove
 (`!R:A->A->bool. TC(TC R) = TC R`,
  REWRITE_TAC[TC_CLOSED; TC_TRANS]);;

let TC_REFL = prove
 (`!R:A->A->bool. (!x. R x x) ==> (!x. TC R x x)`,
  MESON_TAC[TC_INC]);;

let TC_SYM = prove
 (`!R:A->A->bool. (!x y. R x y ==> R y x) ==> (!x y. TC R x y ==> TC R y x)`,
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC TC_INDUCT THEN
  ASM_MESON_TAC[TC_RULES]);;

(* ------------------------------------------------------------------------- *)
(* Commutativity properties of the three basic closure operations            *)
(* ------------------------------------------------------------------------- *)

let RC_SC = prove
 (`!R:A->A->bool. RC(SC R) = SC(RC R)`,
  REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);;

let SC_RC = prove
 (`!R:A->A->bool. SC(RC R) = RC(SC R)`,
  REWRITE_TAC[RC_SC]);;

let RC_TC = prove
 (`!R:A->A->bool. RC(TC R) = TC(RC R)`,
  REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN EQ_TAC THENL
   [RULE_INDUCT_TAC RC_INDUCT THEN MESON_TAC[TC_RULES; RC_RULES; TC_MONO];
    RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[RC_TRANS; TC_RULES; RC_MONO]]);;

let TC_RC = prove
 (`!R:A->A->bool. TC(RC R) = RC(TC R)`,
  REWRITE_TAC[RC_TC]);;

let TC_SC = prove
 (`!(R:A->A->bool) x y. SC(TC R) x y ==> TC(SC R) x y`,
  GEN_TAC THEN MATCH_MP_TAC SC_INDUCT THEN
  MESON_TAC[TC_MONO; TC_SYM; SC_RULES]);;

let SC_TC = prove
 (`!(R:A->A->bool) x y. SC(TC R) x y ==> TC(SC R) x y`,
  REWRITE_TAC[TC_SC]);;

(* ------------------------------------------------------------------------- *)
(* Left and right variants of TC.                                            *)
(* ------------------------------------------------------------------------- *)

let TC_TRANS_L = prove
 (`!(R:A->A->bool) x y z. TC R x y /\ R y z ==> TC R x z`,
  MESON_TAC[TC_RULES]);;

let TC_TRANS_R = prove
 (`!(R:A->A->bool) x y z. R x y /\ TC R y z ==> TC R x z`,
  MESON_TAC[TC_RULES]);;

let TC_CASES_L = prove
 (`!(R:A->A->bool) x z. TC R x z <=> R x z \/ (?y. TC R x y /\ R y z)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[TC_RULES]; MESON_TAC[TC_RULES]]);;

let TC_CASES_R = prove
 (`!(R:A->A->bool) x z. TC R x z <=> R x z \/ (?y. R x y /\ TC R y z)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[TC_RULES]; MESON_TAC[TC_RULES]]);;

let TC_INDUCT_L = prove
 (`!(R:A->A->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x y z. P x y /\ R y z ==> P x z) ==>
            (!x y. TC R x y ==> P x y)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `!y:A z. TC(R) y z ==> !x:A. P x y ==> P x z` MP_TAC THENL
   [MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[]; ASM_MESON_TAC[TC_CASES_R]]);;

let TC_INDUCT_R = prove
 (`!(R:A->A->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x z. (?y. R x y /\ P y z) ==> P x z) ==>
            (!x y. TC R x y ==> P x y)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `!x:A y. TC(R) x y ==> !z:A. P y z ==> P x z` MP_TAC THENL
   [MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[]; ASM_MESON_TAC[TC_CASES_L]]);;

let WF_TC = prove
 (`!R:A->A->bool. WF(TC R) <=> WF(R)`,
  GEN_TAC THEN EQ_TAC THENL
   [MESON_TAC[WF_SUBSET; TC_INC];
    REWRITE_TAC[WF] THEN DISCH_TAC THEN X_GEN_TAC `P:A->bool` THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `\y:A. ?z. P z /\ TC(R) z y`) THEN
    REWRITE_TAC[] THEN MESON_TAC[TC_CASES_L]]);;

(* ------------------------------------------------------------------------- *)
(* Reflexive symmetric closure                                               *)
(* ------------------------------------------------------------------------- *)

let RSC = new_definition
  `RSC(R:A->A->bool) = RC(SC R)`;;

let RSC_INC = prove
 (`!(R:A->A->bool) x y. R x y ==> RSC R x y`,
  REWRITE_TAC[RSC] THEN MESON_TAC[RC_INC; SC_INC]);;

let RSC_REFL = prove
 (`!(R:A->A->bool) x. RSC R x x`,
  REWRITE_TAC[RSC; RC_REFL]);;

let RSC_SYM = prove
 (`!(R:A->A->bool) x y. RSC R x y ==> RSC R y x`,
  REWRITE_TAC[RSC; RC_SC; SC_SYM]);;

let RSC_CASES = prove
 (`!(R:A->A->bool) x y. RSC R x y <=> (x = y) \/ R x y \/ R y x`,
  REWRITE_TAC[RSC; RC_EXPLICIT; SC_EXPLICIT; DISJ_ACI]);;

let RSC_INDUCT = prove
 (`!(R:A->A->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) /\
        (!x y. P x y ==> P y x)
        ==>  !x y. RSC R x y ==> P x y`,
  REWRITE_TAC[RSC; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);;

let RSC_MONO = prove
 (`!(R:A->A->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. RSC R x y ==> RSC S x y)`,
  REWRITE_TAC[RSC] THEN MESON_TAC[SC_MONO; RC_MONO]);;

let RSC_CLOSED = prove
 (`!R:A->A->bool. (RSC R = R) <=> (!x. R x x) /\ (!x y. R x y ==> R y x)`,
  REWRITE_TAC[FUN_EQ_THM; RSC; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);;

let RSC_IDEMP = prove
 (`!R:A->A->bool. RSC(RSC R) = RSC R`,
  REWRITE_TAC[RSC_CLOSED; RSC_REFL; RSC_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Reflexive transitive closure                                              *)
(* ------------------------------------------------------------------------- *)

let RTC = new_definition
  `RTC(R:A->A->bool) = RC(TC R)`;;

let RTC_INC = prove
 (`!(R:A->A->bool) x y. R x y ==> RTC R x y`,
  REWRITE_TAC[RTC] THEN MESON_TAC[RC_INC; TC_INC]);;

let RTC_REFL = prove
 (`!(R:A->A->bool) x. RTC R x x`,
  REWRITE_TAC[RTC; RC_REFL]);;

let RTC_TRANS = prove
 (`!(R:A->A->bool) x y z. RTC R x y /\ RTC R y z ==> RTC R x z`,
  REWRITE_TAC[RTC; RC_TC; TC_TRANS]);;

let RTC_RULES = prove
 (`!(R:A->A->bool).
        (!x y. R x y ==> RTC R x y) /\
        (!x. RTC R x x) /\
        (!x y z. RTC R x y /\ RTC R y z ==> RTC R x z)`,
  REWRITE_TAC[RTC_INC; RTC_REFL; RTC_TRANS]);;

let RTC_TRANS_L = prove
 (`!(R:A->A->bool) x y z. RTC R x y /\ R y z ==> RTC R x z`,
  REWRITE_TAC[RTC; RC_TC] THEN MESON_TAC[TC_TRANS_L; RC_INC]);;

let RTC_TRANS_R = prove
 (`!(R:A->A->bool) x y z. R x y /\ RTC R y z ==> RTC R x z`,
  REWRITE_TAC[RTC; RC_TC] THEN MESON_TAC[TC_TRANS_R; RC_INC]);;

let RTC_CASES = prove
 (`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. RTC R x y /\ RTC R y z`,
  REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_TRANS]);;

let RTC_CASES_L = prove
 (`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. RTC R x y /\ R y z`,
  REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_CASES_L; TC_TRANS_L]);;

let RTC_CASES_R = prove
 (`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. R x y /\ RTC R y z`,
  REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_CASES_R; TC_TRANS_R]);;

let RTC_INDUCT = prove
 (`!(R:A->A->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) /\
        (!x y z. P x y /\ P y z ==> P x z)
        ==> !x y. RTC R x y ==> P x y`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN
  MATCH_MP_TAC TC_INDUCT THEN REWRITE_TAC[RC_EXPLICIT] THEN ASM_MESON_TAC[]);;

let RTC_INDUCT_L = prove
 (`!(R:A->A->bool) P.
        (!x. P x x) /\
        (!x y z. P x y /\ R y z ==> P x z)
        ==> !x y. RTC R x y ==> P x y`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN
  MATCH_MP_TAC TC_INDUCT_L THEN REWRITE_TAC[RC_EXPLICIT] THEN
  ASM_MESON_TAC[]);;

let RTC_INDUCT_R = prove
 (`!(R:A->A->bool) P.
        (!x. P x x) /\
        (!x y z. R x y /\ P y z ==> P x z)
        ==> !x y. RTC R x y ==> P x y`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN
  MATCH_MP_TAC TC_INDUCT_R THEN REWRITE_TAC[RC_EXPLICIT] THEN
  ASM_MESON_TAC[]);;

let RTC_MONO = prove
 (`!(R:A->A->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. RTC R x y ==> RTC S x y)`,
  REWRITE_TAC[RTC] THEN MESON_TAC[RC_MONO; TC_MONO]);;

let RTC_CLOSED = prove
 (`!R:A->A->bool. (RTC R = R) <=> (!x. R x x) /\
                                  (!x y z. R x y /\ R y z ==> R x z)`,
  REWRITE_TAC[FUN_EQ_THM; RTC; RC_EXPLICIT] THEN
  MESON_TAC[TC_CLOSED; TC_RULES]);;

let RTC_IDEMP = prove
 (`!R:A->A->bool. RTC(RTC R) = RTC R`,
  REWRITE_TAC[RTC_CLOSED; RTC_REFL; RTC_TRANS]);;

let RTC_SYM = prove
 (`!R:A->A->bool. (!x y. R x y ==> R y x) ==> (!x y. RTC R x y ==> RTC R y x)`,
  REWRITE_TAC[RTC] THEN MESON_TAC[RC_SYM; TC_SYM]);;

let RTC_STUTTER = prove
 (`RTC R = RTC (\x y. R x y /\ ~(x = y))`,
  REWRITE_TAC[RC_TC; RTC] THEN
  AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN
  REWRITE_TAC[RC_CASES] THEN MESON_TAC[]);;

let TC_RTC_CASES_L = prove
 (`TC R x z <=> ?y. RTC R x y /\ R y z`,
  REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_CASES_L; TC_INC]);;

let TC_RTC_CASES_R = prove
 (`!R x z. TC R x z <=> ?y. R x y /\ RTC R y z`,
  REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_CASES_R; TC_INC]);;

let TC_TC_RTC_CASES = prove
 (`!R x z. TC R x z <=> ?y. TC R x y /\ RTC R y z`,
  REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_TRANS]);;

let TC_RTC_TC_CASES = prove
 (`!R x z. TC R x z <=> ?y. RTC R x y /\ TC R y z`,
  REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_TRANS]);;

let RTC_NE_IMP_TC = prove
 (`!R x y. RTC R x y /\ ~(x = y) ==> TC R x y`,
  GEN_TAC THEN ONCE_REWRITE_TAC[GSYM IMP_IMP] THEN
  MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[] THEN
  MESON_TAC[TC_INC; TC_CASES]);;

(* ------------------------------------------------------------------------- *)
(* Symmetric transitive closure                                              *)
(* ------------------------------------------------------------------------- *)

let STC = new_definition
  `STC(R:A->A->bool) = TC(SC R)`;;

let STC_INC = prove
 (`!(R:A->A->bool) x y. R x y ==> STC R x y`,
  REWRITE_TAC[STC] THEN MESON_TAC[SC_INC; TC_INC]);;

let STC_SYM = prove
 (`!(R:A->A->bool) x y. STC R x y ==> STC R y x`,
  REWRITE_TAC[STC] THEN MESON_TAC[TC_SYM; SC_SYM]);;

let STC_TRANS = prove
 (`!(R:A->A->bool) x y z. STC R x y /\ STC R y z ==> STC R x z`,
  REWRITE_TAC[STC; TC_TRANS]);;

let STC_TRANS_L = prove
 (`!(R:A->A->bool) x y z. STC R x y /\ R y z ==> STC R x z`,
  REWRITE_TAC[STC] THEN MESON_TAC[TC_TRANS_L; SC_INC]);;

let STC_TRANS_R = prove
 (`!(R:A->A->bool) x y z. R x y /\ STC R y z ==> STC R x z`,
  REWRITE_TAC[STC] THEN MESON_TAC[TC_TRANS_R; SC_INC]);;

let STC_CASES = prove
 (`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/
                                      ?y. STC R x y /\ STC R y z`,
  REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);;

let STC_CASES_L = prove
 (`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/
                                      ?y. STC R x y /\ R y z`,
  REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);;

let STC_CASES_R = prove
 (`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/
                                      ?y. R x y /\ STC R y z`,
  REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);;

let STC_INDUCT = prove
 (`!(R:A->A->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x y. P x y ==> P y x) /\
        (!x y z. P x y /\ P y z ==> P x z) ==>
                !x y. STC R x y ==> P x y`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[STC] THEN
  MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[SC_EXPLICIT]);;

let STC_MONO = prove
 (`!(R:A->A->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. STC R x y ==> STC S x y)`,
  REWRITE_TAC[STC] THEN MESON_TAC[SC_MONO; TC_MONO]);;

let STC_CLOSED = prove
 (`!R:A->A->bool. (STC R = R) <=> (!x y. R x y ==> R y x) /\
                                  (!x y z. R x y /\ R y z ==> R x z)`,
  GEN_TAC THEN REWRITE_TAC[STC; SC_EXPLICIT] THEN EQ_TAC THENL
   [DISCH_THEN(SUBST1_TAC o SYM) THEN MESON_TAC[TC_TRANS; TC_SYM; SC_SYM];
    REWRITE_TAC[GSYM SC_CLOSED; GSYM TC_CLOSED] THEN MESON_TAC[]]);;

let STC_IDEMP = prove
 (`!R:A->A->bool. STC(STC R) = STC R`,
  REWRITE_TAC[STC_CLOSED; STC_SYM; STC_TRANS]);;

let STC_REFL = prove
 (`!R:A->A->bool. (!x. R x x) ==> !x. STC R x x`,
  MESON_TAC[STC_INC]);;

(* ------------------------------------------------------------------------- *)
(* Reflexive symmetric transitive closure (smallest equivalence relation)    *)
(* ------------------------------------------------------------------------- *)

let RSTC = new_definition
  `RSTC(R:A->A->bool) = RC(TC(SC R))`;;

let RSTC_INC = prove
 (`!(R:A->A->bool) x y. R x y ==> RSTC R x y`,
  REWRITE_TAC[RSTC] THEN MESON_TAC[RC_INC; TC_INC; SC_INC]);;

let RSTC_REFL = prove
 (`!(R:A->A->bool) x. RSTC R x x`,
  REWRITE_TAC[RSTC; RC_REFL]);;

let RSTC_SYM = prove
 (`!(R:A->A->bool) x y. RSTC R x y ==> RSTC R y x`,
  REWRITE_TAC[RSTC] THEN MESON_TAC[SC_SYM; TC_SYM; RC_SYM]);;

let RSTC_TRANS = prove
 (`!(R:A->A->bool) x y z. RSTC R x y /\ RSTC R y z ==> RSTC R x z`,
  REWRITE_TAC[RSTC; RC_TC; TC_TRANS]);;

let RSTC_RULES = prove
 (`!(R:A->A->bool).
        (!x y. R x y ==> RSTC R x y) /\
        (!x. RSTC R x x) /\
        (!x y. RSTC R x y ==> RSTC R y x) /\
        (!x y z. RSTC R x y /\ RSTC R y z ==> RSTC R x z)`,
  REWRITE_TAC[RSTC_INC; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);;

let RSTC_TRANS_L = prove
 (`!(R:A->A->bool) x y z. RSTC R x y /\ R y z ==> RSTC R x z`,
  REWRITE_TAC[RSTC; RC_TC] THEN MESON_TAC[TC_TRANS_L; RC_INC; SC_INC]);;

let RSTC_TRANS_R = prove
 (`!(R:A->A->bool) x y z. R x y /\ RSTC R y z ==> RSTC R x z`,
  REWRITE_TAC[RSTC; RC_TC] THEN MESON_TAC[TC_TRANS_R; RC_INC; SC_INC]);;

let RSTC_CASES = prove
 (`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/
                                       ?y. RSTC R x y /\ RSTC R y z`,
  REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN
  MESON_TAC[STC_CASES; RC_CASES]);;

let RSTC_CASES_L = prove
 (`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/
                                     ?y. RSTC R x y /\ R y z`,
  REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN
  MESON_TAC[STC_CASES_L; RC_CASES]);;

let RSTC_CASES_R = prove
 (`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/
                                       ?y. R x y /\ RSTC R y z`,
  REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN
  MESON_TAC[STC_CASES_R; RC_CASES]);;

let RSTC_INDUCT = prove
 (`!(R:A->A->bool) P.
        (!x y. R x y ==> P x y) /\
        (!x. P x x) /\
        (!x y. P x y ==> P y x) /\
        (!x y z. P x y /\ P y z ==> P x z)
        ==> !x y. RSTC R x y ==> P x y`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN
  MATCH_MP_TAC STC_INDUCT THEN REWRITE_TAC[RC_EXPLICIT] THEN ASM_MESON_TAC[]);;

let RSTC_MONO = prove
 (`!(R:A->A->bool) S.
        (!x y. R x y ==> S x y) ==>
        (!x y. RSTC R x y ==> RSTC S x y)`,
  REWRITE_TAC[RSTC] THEN MESON_TAC[RC_MONO; SC_MONO; TC_MONO]);;

let RSTC_CLOSED = prove
 (`!R:A->A->bool. (RSTC R = R) <=> (!x. R x x) /\
                                   (!x y. R x y ==> R y x) /\
                                   (!x y z. R x y /\ R y z ==> R x z)`,
  REWRITE_TAC[RSTC] THEN REWRITE_TAC[GSYM STC; GSYM STC_CLOSED] THEN
  REWRITE_TAC[RC_EXPLICIT; FUN_EQ_THM] THEN MESON_TAC[STC_INC]);;

let RSTC_IDEMP = prove
 (`!R:A->A->bool. RSTC(RSTC R) = RSTC R`,
  REWRITE_TAC[RSTC_CLOSED; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);;

(* ------------------------------------------------------------------------- *)
(* Finally, we prove the inclusion properties for composite closures         *)
(* ------------------------------------------------------------------------- *)

let RSC_INC_RC = prove
 (`!R:A->A->bool. !x y. RC R x y ==> RSC R x y`,
  REWRITE_TAC[RSC; RC_SC; SC_INC]);;

let RSC_INC_SC = prove
 (`!R:A->A->bool. !x y. SC R x y ==> RSC R x y`,
  REWRITE_TAC[RSC; RC_INC]);;

let RTC_INC_RC = prove
 (`!R:A->A->bool. !x y. RC R x y ==> RTC R x y`,
  REWRITE_TAC[RTC; RC_TC; TC_INC]);;

let RTC_INC_TC = prove
 (`!R:A->A->bool. !x y. TC R x y ==> RTC R x y`,
  REWRITE_TAC[RTC; RC_INC]);;

let STC_INC_SC = prove
 (`!R:A->A->bool. !x y. SC R x y ==> STC R x y`,
  REWRITE_TAC[STC; TC_INC]);;

let STC_INC_TC = prove
 (`!R:A->A->bool. !x y. TC R x y ==> STC R x y`,
  REWRITE_TAC[STC] THEN MESON_TAC[TC_MONO; SC_INC]);;

let RSTC_INC_RC = prove
 (`!R:A->A->bool. !x y. RC R x y ==> RSTC R x y`,
  REWRITE_TAC[RSTC; RC_TC; RC_SC; GSYM STC; STC_INC]);;

let RSTC_INC_SC = prove
 (`!R:A->A->bool. !x y. SC R x y ==> RSTC R x y`,
  REWRITE_TAC[RSTC; GSYM RTC; RTC_INC]);;

let RSTC_INC_TC = prove
 (`!R:A->A->bool. !x y. TC R x y ==> RSTC R x y`,
  REWRITE_TAC[RSTC; RC_TC; GSYM RSC] THEN MESON_TAC[TC_MONO; RSC_INC]);;

let RSTC_INC_RSC = prove
 (`!R:A->A->bool. !x y. RSC R x y ==> RSTC R x y`,
  REWRITE_TAC[RSC; RSTC; RC_TC; TC_INC]);;

let RSTC_INC_RTC = prove
 (`!R:A->A->bool. !x y. RTC R x y ==> RSTC R x y`,
  REWRITE_TAC[GSYM RTC; RSTC] THEN MESON_TAC[RTC_MONO; SC_INC]);;

let RSTC_INC_STC = prove
 (`!R:A->A->bool. !x y. STC R x y ==> RSTC R x y`,
  REWRITE_TAC[GSYM STC; RSTC; RC_INC]);;

(* ------------------------------------------------------------------------- *)
(* Handy things about reverse relations.                                     *)
(* ------------------------------------------------------------------------- *)

let INV = new_definition
  `INV R (x:A) (y:B) <=> R y x`;;

let RC_INV = prove
 (`RC(INV R) = INV(RC R)`,
  REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT; INV; EQ_SYM_EQ]);;

let SC_INV = prove
 (`SC(INV R) = INV(SC R)`,
  REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT; INV; DISJ_SYM]);;

let SC_INV_STRONG = prove
 (`SC(INV R) = SC R`,
  REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT; INV; DISJ_SYM]);;

let TC_INV = prove
 (`TC(INV R) = INV(TC R)`,
  REWRITE_TAC[FUN_EQ_THM; INV] THEN REPEAT GEN_TAC THEN EQ_TAC THEN
  RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[INV; TC_RULES]);;

let RSC_INV = prove
 (`RSC(INV R) = INV(RSC R)`,
  REWRITE_TAC[RSC; RC_INV; SC_INV]);;

let RTC_INV = prove
 (`RTC(INV R) = INV(RTC R)`,
  REWRITE_TAC[RTC; RC_INV; TC_INV]);;

let STC_INV = prove
 (`STC(INV R) = INV(STC R)`,
  REWRITE_TAC[STC; SC_INV; TC_INV]);;

let RSTC_INV = prove
 (`RSTC(INV R) = INV(RSTC R)`,
  REWRITE_TAC[RSTC; RC_INV; SC_INV; TC_INV]);;

(* ------------------------------------------------------------------------- *)
(* An iterative version of (R)TC.                                            *)
(* ------------------------------------------------------------------------- *)

let RELPOW = new_recursive_definition num_RECURSION
  `(RELPOW 0 (R:A->A->bool) x y <=> (x = y)) /\
   (RELPOW (SUC n) R x y <=> ?z. RELPOW n R x z /\ R z y)`;;

let RELPOW_R = prove
 (`(RELPOW 0 (R:A->A->bool) x y <=> (x = y)) /\
   (RELPOW (SUC n) R x y <=> ?z. R x z /\ RELPOW n R z y)`,
  CONJ_TAC THENL [REWRITE_TAC[RELPOW]; ALL_TAC] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`x:A`; `y:A`; `n:num`] THEN
  INDUCT_TAC THEN ASM_MESON_TAC[RELPOW]);;

let RELPOW_M = prove
 (`!m n x:A y. RELPOW (m + n) R x y <=> ?z. RELPOW m R x z /\ RELPOW n R z y`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; RELPOW_R; UNWIND_THM1] THEN
  MESON_TAC[]);;

let RTC_RELPOW = prove
 (`!R (x:A) y. RTC R x y <=> ?n. RELPOW n R x y`,
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [RULE_INDUCT_TAC RTC_INDUCT_L THEN MESON_TAC[RELPOW];
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN SPEC_TAC(`y:A`,`y:A`) THEN
    ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN INDUCT_TAC THEN
    REWRITE_TAC[RELPOW] THEN ASM_MESON_TAC[RTC_REFL; RTC_TRANS_L]]);;

let TC_RELPOW = prove
 (`!R (x:A) y. TC R x y <=> ?n. RELPOW (SUC n) R x y`,
  REWRITE_TAC[RELPOW] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
  REWRITE_TAC[LEFT_EXISTS_AND_THM; GSYM RTC_RELPOW] THEN
  ONCE_REWRITE_TAC[TC_CASES_L] THEN REWRITE_TAC[RTC; RC_EXPLICIT] THEN
  MESON_TAC[]);;

let RELPOW_SEQUENCE = prove
 (`!R n x y. RELPOW n R x y <=> ?f. (f(0) = x:A) /\ (f(n) = y) /\
                                    !i. i < n ==> R (f i) (f(SUC i))`,
  GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT; RELPOW] THENL
   [REPEAT GEN_TAC THEN EQ_TAC THENL
     [DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `\n:num. y:A` THEN REWRITE_TAC[];
      MESON_TAC[]];
    REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
     [DISJ_CASES_TAC(ARITH_RULE `(n = 0) \/ 0 < n`) THENL
       [EXISTS_TAC `\i. if i = 0 then x else y:A` THEN
        ASM_REWRITE_TAC[ARITH; LT] THEN
        REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_SUC] THEN
        ASM_MESON_TAC[];
        EXISTS_TAC `\i. if i <= n then f(i) else (y:A)` THEN
        ASM_REWRITE_TAC[LE_0; ARITH_RULE `~(SUC n <= n)`] THEN
        REPEAT STRIP_TAC THEN
        ASM_REWRITE_TAC[LE_REFL; ARITH_RULE `~(SUC n <= n)`] THEN
        ASM_REWRITE_TAC[LE_SUC_LT] THEN
        ASM_REWRITE_TAC[LE_LT] THEN
        FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]];
      EXISTS_TAC `(f:num->A) n` THEN CONJ_TAC THENL
       [EXISTS_TAC `f:num->A` THEN ASM_REWRITE_TAC[] THEN
        REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
        ASM_REWRITE_TAC[];
        ASM_MESON_TAC[]]]]);;