Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 25,431 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
(* ========================================================================= *)
(* All you wanted to know about reflexive symmetric and transitive closures. *)
(* ========================================================================= *)
prioritize_num();;
let RULE_INDUCT_TAC =
MATCH_MP_TAC o DISCH_ALL o SPEC_ALL o UNDISCH o SPEC_ALL;;
(* ------------------------------------------------------------------------- *)
(* Little lemmas about equivalent forms of symmetry and transitivity. *)
(* ------------------------------------------------------------------------- *)
let SYM_ALT = prove
(`!R:A->A->bool. (!x y. R x y ==> R y x) <=> (!x y. R x y <=> R y x)`,
GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
[EQ_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC;
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [th])] THEN
FIRST_ASSUM MATCH_ACCEPT_TAC);;
let TRANS_ALT = prove
(`!(R:A->A->bool) (S:A->A->bool) U.
(!x z. (?y. R x y /\ S y z) ==> U x z) <=>
(!x y z. R x y /\ S y z ==> U x z)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Reflexive closure *)
(* ------------------------------------------------------------------------- *)
let RC_RULES,RC_INDUCT,RC_CASES = new_inductive_definition
`(!x y. R x y ==> RC R x y) /\
(!x:A. RC R x x)`;;
let RC_INC = prove
(`!(R:A->A->bool) x y. R x y ==> RC R x y`,
REWRITE_TAC[RC_RULES]);;
let RC_REFL = prove
(`!(R:A->A->bool) x. RC R x x`,
REWRITE_TAC[RC_RULES]);;
let RC_EXPLICIT = prove
(`!(R:A->A->bool) x y. RC R x y <=> R x y \/ (x = y)`,
REWRITE_TAC[RC_CASES; EQ_SYM_EQ]);;
let RC_MONO = prove
(`!(R:A->A->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. RC R x y ==> RC S x y)`,
MESON_TAC[RC_CASES]);;
let RC_CLOSED = prove
(`!R:A->A->bool. (RC R = R) <=> !x. R x x`,
REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT] THEN MESON_TAC[]);;
let RC_IDEMP = prove
(`!R:A->A->bool. RC(RC R) = RC R`,
REWRITE_TAC[RC_CLOSED; RC_REFL]);;
let RC_SYM = prove
(`!R:A->A->bool.
(!x y. R x y ==> R y x) ==> (!x y. RC R x y ==> RC R y x)`,
MESON_TAC[RC_CASES]);;
let RC_TRANS = prove
(`!R:A->A->bool.
(!x y z. R x y /\ R y z ==> R x z) ==>
(!x y z. RC R x y /\ RC R y z ==> RC R x z)`,
REWRITE_TAC[RC_CASES] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Symmetric closure *)
(* ------------------------------------------------------------------------- *)
let SC_RULES,SC_INDUCT,SC_CASES = new_inductive_definition
`(!x y. R x y ==> SC R x y) /\
(!x:A y. SC R x y ==> SC R y x)`;;
let SC_INC = prove
(`!(R:A->A->bool) x y. R x y ==> SC R x y`,
REWRITE_TAC[SC_RULES]);;
let SC_SYM = prove
(`!(R:A->A->bool) x y. SC R x y ==> SC R y x`,
REWRITE_TAC[SC_RULES]);;
let SC_EXPLICIT = prove
(`!R:A->A->bool. SC(R) x y <=> R x y \/ R y x`,
GEN_TAC THEN EQ_TAC THENL
[RULE_INDUCT_TAC SC_INDUCT THEN MESON_TAC[]; MESON_TAC[SC_CASES]]);;
let SC_MONO = prove
(`!(R:A->A->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. SC R x y ==> SC S x y)`,
MESON_TAC[SC_EXPLICIT]);;
let SC_CLOSED = prove
(`!R:A->A->bool. (SC R = R) <=> !x y. R x y ==> R y x`,
REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT] THEN MESON_TAC[]);;
let SC_IDEMP = prove
(`!R:A->A->bool. SC(SC R) = SC R`,
REWRITE_TAC[SC_CLOSED; SC_SYM]);;
let SC_REFL = prove
(`!R:A->A->bool. (!x. R x x) ==> (!x. SC R x x)`,
MESON_TAC[SC_EXPLICIT]);;
(* ------------------------------------------------------------------------- *)
(* Transitive closure *)
(* ------------------------------------------------------------------------- *)
let TC_RULES,TC_INDUCT,TC_CASES = new_inductive_definition
`(!x y. R x y ==> TC R x y) /\
(!(x:A) y z. TC R x y /\ TC R y z ==> TC R x z)`;;
let TC_INC = prove
(`!(R:A->A->bool) x y. R x y ==> TC R x y`,
REWRITE_TAC[TC_RULES]);;
let TC_TRANS = prove
(`!(R:A->A->bool) x y z. TC R x y /\ TC R y z ==> TC R x z`,
REWRITE_TAC[TC_RULES]);;
let TC_MONO = prove
(`!(R:A->A->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. TC R x y ==> TC S x y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[TC_RULES]);;
let TC_CLOSED = prove
(`!R:A->A->bool. (TC R = R) <=> !x y z. R x y /\ R y z ==> R x z`,
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN EQ_TAC THENL
[MESON_TAC[TC_RULES]; REPEAT STRIP_TAC] THEN
EQ_TAC THENL
[RULE_INDUCT_TAC TC_INDUCT THEN ASM_MESON_TAC[];
MESON_TAC[TC_RULES]]);;
let TC_IDEMP = prove
(`!R:A->A->bool. TC(TC R) = TC R`,
REWRITE_TAC[TC_CLOSED; TC_TRANS]);;
let TC_REFL = prove
(`!R:A->A->bool. (!x. R x x) ==> (!x. TC R x x)`,
MESON_TAC[TC_INC]);;
let TC_SYM = prove
(`!R:A->A->bool. (!x y. R x y ==> R y x) ==> (!x y. TC R x y ==> TC R y x)`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC TC_INDUCT THEN
ASM_MESON_TAC[TC_RULES]);;
(* ------------------------------------------------------------------------- *)
(* Commutativity properties of the three basic closure operations *)
(* ------------------------------------------------------------------------- *)
let RC_SC = prove
(`!R:A->A->bool. RC(SC R) = SC(RC R)`,
REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);;
let SC_RC = prove
(`!R:A->A->bool. SC(RC R) = RC(SC R)`,
REWRITE_TAC[RC_SC]);;
let RC_TC = prove
(`!R:A->A->bool. RC(TC R) = TC(RC R)`,
REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN EQ_TAC THENL
[RULE_INDUCT_TAC RC_INDUCT THEN MESON_TAC[TC_RULES; RC_RULES; TC_MONO];
RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[RC_TRANS; TC_RULES; RC_MONO]]);;
let TC_RC = prove
(`!R:A->A->bool. TC(RC R) = RC(TC R)`,
REWRITE_TAC[RC_TC]);;
let TC_SC = prove
(`!(R:A->A->bool) x y. SC(TC R) x y ==> TC(SC R) x y`,
GEN_TAC THEN MATCH_MP_TAC SC_INDUCT THEN
MESON_TAC[TC_MONO; TC_SYM; SC_RULES]);;
let SC_TC = prove
(`!(R:A->A->bool) x y. SC(TC R) x y ==> TC(SC R) x y`,
REWRITE_TAC[TC_SC]);;
(* ------------------------------------------------------------------------- *)
(* Left and right variants of TC. *)
(* ------------------------------------------------------------------------- *)
let TC_TRANS_L = prove
(`!(R:A->A->bool) x y z. TC R x y /\ R y z ==> TC R x z`,
MESON_TAC[TC_RULES]);;
let TC_TRANS_R = prove
(`!(R:A->A->bool) x y z. R x y /\ TC R y z ==> TC R x z`,
MESON_TAC[TC_RULES]);;
let TC_CASES_L = prove
(`!(R:A->A->bool) x z. TC R x z <=> R x z \/ (?y. TC R x y /\ R y z)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[TC_RULES]; MESON_TAC[TC_RULES]]);;
let TC_CASES_R = prove
(`!(R:A->A->bool) x z. TC R x z <=> R x z \/ (?y. R x y /\ TC R y z)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[TC_RULES]; MESON_TAC[TC_RULES]]);;
let TC_INDUCT_L = prove
(`!(R:A->A->bool) P.
(!x y. R x y ==> P x y) /\
(!x y z. P x y /\ R y z ==> P x z) ==>
(!x y. TC R x y ==> P x y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!y:A z. TC(R) y z ==> !x:A. P x y ==> P x z` MP_TAC THENL
[MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[]; ASM_MESON_TAC[TC_CASES_R]]);;
let TC_INDUCT_R = prove
(`!(R:A->A->bool) P.
(!x y. R x y ==> P x y) /\
(!x z. (?y. R x y /\ P y z) ==> P x z) ==>
(!x y. TC R x y ==> P x y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!x:A y. TC(R) x y ==> !z:A. P y z ==> P x z` MP_TAC THENL
[MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[]; ASM_MESON_TAC[TC_CASES_L]]);;
let WF_TC = prove
(`!R:A->A->bool. WF(TC R) <=> WF(R)`,
GEN_TAC THEN EQ_TAC THENL
[MESON_TAC[WF_SUBSET; TC_INC];
REWRITE_TAC[WF] THEN DISCH_TAC THEN X_GEN_TAC `P:A->bool` THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\y:A. ?z. P z /\ TC(R) z y`) THEN
REWRITE_TAC[] THEN MESON_TAC[TC_CASES_L]]);;
(* ------------------------------------------------------------------------- *)
(* Reflexive symmetric closure *)
(* ------------------------------------------------------------------------- *)
let RSC = new_definition
`RSC(R:A->A->bool) = RC(SC R)`;;
let RSC_INC = prove
(`!(R:A->A->bool) x y. R x y ==> RSC R x y`,
REWRITE_TAC[RSC] THEN MESON_TAC[RC_INC; SC_INC]);;
let RSC_REFL = prove
(`!(R:A->A->bool) x. RSC R x x`,
REWRITE_TAC[RSC; RC_REFL]);;
let RSC_SYM = prove
(`!(R:A->A->bool) x y. RSC R x y ==> RSC R y x`,
REWRITE_TAC[RSC; RC_SC; SC_SYM]);;
let RSC_CASES = prove
(`!(R:A->A->bool) x y. RSC R x y <=> (x = y) \/ R x y \/ R y x`,
REWRITE_TAC[RSC; RC_EXPLICIT; SC_EXPLICIT; DISJ_ACI]);;
let RSC_INDUCT = prove
(`!(R:A->A->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) /\
(!x y. P x y ==> P y x)
==> !x y. RSC R x y ==> P x y`,
REWRITE_TAC[RSC; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);;
let RSC_MONO = prove
(`!(R:A->A->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. RSC R x y ==> RSC S x y)`,
REWRITE_TAC[RSC] THEN MESON_TAC[SC_MONO; RC_MONO]);;
let RSC_CLOSED = prove
(`!R:A->A->bool. (RSC R = R) <=> (!x. R x x) /\ (!x y. R x y ==> R y x)`,
REWRITE_TAC[FUN_EQ_THM; RSC; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);;
let RSC_IDEMP = prove
(`!R:A->A->bool. RSC(RSC R) = RSC R`,
REWRITE_TAC[RSC_CLOSED; RSC_REFL; RSC_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Reflexive transitive closure *)
(* ------------------------------------------------------------------------- *)
let RTC = new_definition
`RTC(R:A->A->bool) = RC(TC R)`;;
let RTC_INC = prove
(`!(R:A->A->bool) x y. R x y ==> RTC R x y`,
REWRITE_TAC[RTC] THEN MESON_TAC[RC_INC; TC_INC]);;
let RTC_REFL = prove
(`!(R:A->A->bool) x. RTC R x x`,
REWRITE_TAC[RTC; RC_REFL]);;
let RTC_TRANS = prove
(`!(R:A->A->bool) x y z. RTC R x y /\ RTC R y z ==> RTC R x z`,
REWRITE_TAC[RTC; RC_TC; TC_TRANS]);;
let RTC_RULES = prove
(`!(R:A->A->bool).
(!x y. R x y ==> RTC R x y) /\
(!x. RTC R x x) /\
(!x y z. RTC R x y /\ RTC R y z ==> RTC R x z)`,
REWRITE_TAC[RTC_INC; RTC_REFL; RTC_TRANS]);;
let RTC_TRANS_L = prove
(`!(R:A->A->bool) x y z. RTC R x y /\ R y z ==> RTC R x z`,
REWRITE_TAC[RTC; RC_TC] THEN MESON_TAC[TC_TRANS_L; RC_INC]);;
let RTC_TRANS_R = prove
(`!(R:A->A->bool) x y z. R x y /\ RTC R y z ==> RTC R x z`,
REWRITE_TAC[RTC; RC_TC] THEN MESON_TAC[TC_TRANS_R; RC_INC]);;
let RTC_CASES = prove
(`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. RTC R x y /\ RTC R y z`,
REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_TRANS]);;
let RTC_CASES_L = prove
(`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. RTC R x y /\ R y z`,
REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_CASES_L; TC_TRANS_L]);;
let RTC_CASES_R = prove
(`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. R x y /\ RTC R y z`,
REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_CASES_R; TC_TRANS_R]);;
let RTC_INDUCT = prove
(`!(R:A->A->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) /\
(!x y z. P x y /\ P y z ==> P x z)
==> !x y. RTC R x y ==> P x y`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN
MATCH_MP_TAC TC_INDUCT THEN REWRITE_TAC[RC_EXPLICIT] THEN ASM_MESON_TAC[]);;
let RTC_INDUCT_L = prove
(`!(R:A->A->bool) P.
(!x. P x x) /\
(!x y z. P x y /\ R y z ==> P x z)
==> !x y. RTC R x y ==> P x y`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN
MATCH_MP_TAC TC_INDUCT_L THEN REWRITE_TAC[RC_EXPLICIT] THEN
ASM_MESON_TAC[]);;
let RTC_INDUCT_R = prove
(`!(R:A->A->bool) P.
(!x. P x x) /\
(!x y z. R x y /\ P y z ==> P x z)
==> !x y. RTC R x y ==> P x y`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN
MATCH_MP_TAC TC_INDUCT_R THEN REWRITE_TAC[RC_EXPLICIT] THEN
ASM_MESON_TAC[]);;
let RTC_MONO = prove
(`!(R:A->A->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. RTC R x y ==> RTC S x y)`,
REWRITE_TAC[RTC] THEN MESON_TAC[RC_MONO; TC_MONO]);;
let RTC_CLOSED = prove
(`!R:A->A->bool. (RTC R = R) <=> (!x. R x x) /\
(!x y z. R x y /\ R y z ==> R x z)`,
REWRITE_TAC[FUN_EQ_THM; RTC; RC_EXPLICIT] THEN
MESON_TAC[TC_CLOSED; TC_RULES]);;
let RTC_IDEMP = prove
(`!R:A->A->bool. RTC(RTC R) = RTC R`,
REWRITE_TAC[RTC_CLOSED; RTC_REFL; RTC_TRANS]);;
let RTC_SYM = prove
(`!R:A->A->bool. (!x y. R x y ==> R y x) ==> (!x y. RTC R x y ==> RTC R y x)`,
REWRITE_TAC[RTC] THEN MESON_TAC[RC_SYM; TC_SYM]);;
let RTC_STUTTER = prove
(`RTC R = RTC (\x y. R x y /\ ~(x = y))`,
REWRITE_TAC[RC_TC; RTC] THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN
REWRITE_TAC[RC_CASES] THEN MESON_TAC[]);;
let TC_RTC_CASES_L = prove
(`TC R x z <=> ?y. RTC R x y /\ R y z`,
REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_CASES_L; TC_INC]);;
let TC_RTC_CASES_R = prove
(`!R x z. TC R x z <=> ?y. R x y /\ RTC R y z`,
REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_CASES_R; TC_INC]);;
let TC_TC_RTC_CASES = prove
(`!R x z. TC R x z <=> ?y. TC R x y /\ RTC R y z`,
REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_TRANS]);;
let TC_RTC_TC_CASES = prove
(`!R x z. TC R x z <=> ?y. RTC R x y /\ TC R y z`,
REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_TRANS]);;
let RTC_NE_IMP_TC = prove
(`!R x y. RTC R x y /\ ~(x = y) ==> TC R x y`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM IMP_IMP] THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[] THEN
MESON_TAC[TC_INC; TC_CASES]);;
(* ------------------------------------------------------------------------- *)
(* Symmetric transitive closure *)
(* ------------------------------------------------------------------------- *)
let STC = new_definition
`STC(R:A->A->bool) = TC(SC R)`;;
let STC_INC = prove
(`!(R:A->A->bool) x y. R x y ==> STC R x y`,
REWRITE_TAC[STC] THEN MESON_TAC[SC_INC; TC_INC]);;
let STC_SYM = prove
(`!(R:A->A->bool) x y. STC R x y ==> STC R y x`,
REWRITE_TAC[STC] THEN MESON_TAC[TC_SYM; SC_SYM]);;
let STC_TRANS = prove
(`!(R:A->A->bool) x y z. STC R x y /\ STC R y z ==> STC R x z`,
REWRITE_TAC[STC; TC_TRANS]);;
let STC_TRANS_L = prove
(`!(R:A->A->bool) x y z. STC R x y /\ R y z ==> STC R x z`,
REWRITE_TAC[STC] THEN MESON_TAC[TC_TRANS_L; SC_INC]);;
let STC_TRANS_R = prove
(`!(R:A->A->bool) x y z. R x y /\ STC R y z ==> STC R x z`,
REWRITE_TAC[STC] THEN MESON_TAC[TC_TRANS_R; SC_INC]);;
let STC_CASES = prove
(`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/
?y. STC R x y /\ STC R y z`,
REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);;
let STC_CASES_L = prove
(`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/
?y. STC R x y /\ R y z`,
REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);;
let STC_CASES_R = prove
(`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/
?y. R x y /\ STC R y z`,
REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);;
let STC_INDUCT = prove
(`!(R:A->A->bool) P.
(!x y. R x y ==> P x y) /\
(!x y. P x y ==> P y x) /\
(!x y z. P x y /\ P y z ==> P x z) ==>
!x y. STC R x y ==> P x y`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[STC] THEN
MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[SC_EXPLICIT]);;
let STC_MONO = prove
(`!(R:A->A->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. STC R x y ==> STC S x y)`,
REWRITE_TAC[STC] THEN MESON_TAC[SC_MONO; TC_MONO]);;
let STC_CLOSED = prove
(`!R:A->A->bool. (STC R = R) <=> (!x y. R x y ==> R y x) /\
(!x y z. R x y /\ R y z ==> R x z)`,
GEN_TAC THEN REWRITE_TAC[STC; SC_EXPLICIT] THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN MESON_TAC[TC_TRANS; TC_SYM; SC_SYM];
REWRITE_TAC[GSYM SC_CLOSED; GSYM TC_CLOSED] THEN MESON_TAC[]]);;
let STC_IDEMP = prove
(`!R:A->A->bool. STC(STC R) = STC R`,
REWRITE_TAC[STC_CLOSED; STC_SYM; STC_TRANS]);;
let STC_REFL = prove
(`!R:A->A->bool. (!x. R x x) ==> !x. STC R x x`,
MESON_TAC[STC_INC]);;
(* ------------------------------------------------------------------------- *)
(* Reflexive symmetric transitive closure (smallest equivalence relation) *)
(* ------------------------------------------------------------------------- *)
let RSTC = new_definition
`RSTC(R:A->A->bool) = RC(TC(SC R))`;;
let RSTC_INC = prove
(`!(R:A->A->bool) x y. R x y ==> RSTC R x y`,
REWRITE_TAC[RSTC] THEN MESON_TAC[RC_INC; TC_INC; SC_INC]);;
let RSTC_REFL = prove
(`!(R:A->A->bool) x. RSTC R x x`,
REWRITE_TAC[RSTC; RC_REFL]);;
let RSTC_SYM = prove
(`!(R:A->A->bool) x y. RSTC R x y ==> RSTC R y x`,
REWRITE_TAC[RSTC] THEN MESON_TAC[SC_SYM; TC_SYM; RC_SYM]);;
let RSTC_TRANS = prove
(`!(R:A->A->bool) x y z. RSTC R x y /\ RSTC R y z ==> RSTC R x z`,
REWRITE_TAC[RSTC; RC_TC; TC_TRANS]);;
let RSTC_RULES = prove
(`!(R:A->A->bool).
(!x y. R x y ==> RSTC R x y) /\
(!x. RSTC R x x) /\
(!x y. RSTC R x y ==> RSTC R y x) /\
(!x y z. RSTC R x y /\ RSTC R y z ==> RSTC R x z)`,
REWRITE_TAC[RSTC_INC; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);;
let RSTC_TRANS_L = prove
(`!(R:A->A->bool) x y z. RSTC R x y /\ R y z ==> RSTC R x z`,
REWRITE_TAC[RSTC; RC_TC] THEN MESON_TAC[TC_TRANS_L; RC_INC; SC_INC]);;
let RSTC_TRANS_R = prove
(`!(R:A->A->bool) x y z. R x y /\ RSTC R y z ==> RSTC R x z`,
REWRITE_TAC[RSTC; RC_TC] THEN MESON_TAC[TC_TRANS_R; RC_INC; SC_INC]);;
let RSTC_CASES = prove
(`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/
?y. RSTC R x y /\ RSTC R y z`,
REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN
MESON_TAC[STC_CASES; RC_CASES]);;
let RSTC_CASES_L = prove
(`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/
?y. RSTC R x y /\ R y z`,
REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN
MESON_TAC[STC_CASES_L; RC_CASES]);;
let RSTC_CASES_R = prove
(`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/
?y. R x y /\ RSTC R y z`,
REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN
MESON_TAC[STC_CASES_R; RC_CASES]);;
let RSTC_INDUCT = prove
(`!(R:A->A->bool) P.
(!x y. R x y ==> P x y) /\
(!x. P x x) /\
(!x y. P x y ==> P y x) /\
(!x y z. P x y /\ P y z ==> P x z)
==> !x y. RSTC R x y ==> P x y`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN
MATCH_MP_TAC STC_INDUCT THEN REWRITE_TAC[RC_EXPLICIT] THEN ASM_MESON_TAC[]);;
let RSTC_MONO = prove
(`!(R:A->A->bool) S.
(!x y. R x y ==> S x y) ==>
(!x y. RSTC R x y ==> RSTC S x y)`,
REWRITE_TAC[RSTC] THEN MESON_TAC[RC_MONO; SC_MONO; TC_MONO]);;
let RSTC_CLOSED = prove
(`!R:A->A->bool. (RSTC R = R) <=> (!x. R x x) /\
(!x y. R x y ==> R y x) /\
(!x y z. R x y /\ R y z ==> R x z)`,
REWRITE_TAC[RSTC] THEN REWRITE_TAC[GSYM STC; GSYM STC_CLOSED] THEN
REWRITE_TAC[RC_EXPLICIT; FUN_EQ_THM] THEN MESON_TAC[STC_INC]);;
let RSTC_IDEMP = prove
(`!R:A->A->bool. RSTC(RSTC R) = RSTC R`,
REWRITE_TAC[RSTC_CLOSED; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* Finally, we prove the inclusion properties for composite closures *)
(* ------------------------------------------------------------------------- *)
let RSC_INC_RC = prove
(`!R:A->A->bool. !x y. RC R x y ==> RSC R x y`,
REWRITE_TAC[RSC; RC_SC; SC_INC]);;
let RSC_INC_SC = prove
(`!R:A->A->bool. !x y. SC R x y ==> RSC R x y`,
REWRITE_TAC[RSC; RC_INC]);;
let RTC_INC_RC = prove
(`!R:A->A->bool. !x y. RC R x y ==> RTC R x y`,
REWRITE_TAC[RTC; RC_TC; TC_INC]);;
let RTC_INC_TC = prove
(`!R:A->A->bool. !x y. TC R x y ==> RTC R x y`,
REWRITE_TAC[RTC; RC_INC]);;
let STC_INC_SC = prove
(`!R:A->A->bool. !x y. SC R x y ==> STC R x y`,
REWRITE_TAC[STC; TC_INC]);;
let STC_INC_TC = prove
(`!R:A->A->bool. !x y. TC R x y ==> STC R x y`,
REWRITE_TAC[STC] THEN MESON_TAC[TC_MONO; SC_INC]);;
let RSTC_INC_RC = prove
(`!R:A->A->bool. !x y. RC R x y ==> RSTC R x y`,
REWRITE_TAC[RSTC; RC_TC; RC_SC; GSYM STC; STC_INC]);;
let RSTC_INC_SC = prove
(`!R:A->A->bool. !x y. SC R x y ==> RSTC R x y`,
REWRITE_TAC[RSTC; GSYM RTC; RTC_INC]);;
let RSTC_INC_TC = prove
(`!R:A->A->bool. !x y. TC R x y ==> RSTC R x y`,
REWRITE_TAC[RSTC; RC_TC; GSYM RSC] THEN MESON_TAC[TC_MONO; RSC_INC]);;
let RSTC_INC_RSC = prove
(`!R:A->A->bool. !x y. RSC R x y ==> RSTC R x y`,
REWRITE_TAC[RSC; RSTC; RC_TC; TC_INC]);;
let RSTC_INC_RTC = prove
(`!R:A->A->bool. !x y. RTC R x y ==> RSTC R x y`,
REWRITE_TAC[GSYM RTC; RSTC] THEN MESON_TAC[RTC_MONO; SC_INC]);;
let RSTC_INC_STC = prove
(`!R:A->A->bool. !x y. STC R x y ==> RSTC R x y`,
REWRITE_TAC[GSYM STC; RSTC; RC_INC]);;
(* ------------------------------------------------------------------------- *)
(* Handy things about reverse relations. *)
(* ------------------------------------------------------------------------- *)
let INV = new_definition
`INV R (x:A) (y:B) <=> R y x`;;
let RC_INV = prove
(`RC(INV R) = INV(RC R)`,
REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT; INV; EQ_SYM_EQ]);;
let SC_INV = prove
(`SC(INV R) = INV(SC R)`,
REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT; INV; DISJ_SYM]);;
let SC_INV_STRONG = prove
(`SC(INV R) = SC R`,
REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT; INV; DISJ_SYM]);;
let TC_INV = prove
(`TC(INV R) = INV(TC R)`,
REWRITE_TAC[FUN_EQ_THM; INV] THEN REPEAT GEN_TAC THEN EQ_TAC THEN
RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[INV; TC_RULES]);;
let RSC_INV = prove
(`RSC(INV R) = INV(RSC R)`,
REWRITE_TAC[RSC; RC_INV; SC_INV]);;
let RTC_INV = prove
(`RTC(INV R) = INV(RTC R)`,
REWRITE_TAC[RTC; RC_INV; TC_INV]);;
let STC_INV = prove
(`STC(INV R) = INV(STC R)`,
REWRITE_TAC[STC; SC_INV; TC_INV]);;
let RSTC_INV = prove
(`RSTC(INV R) = INV(RSTC R)`,
REWRITE_TAC[RSTC; RC_INV; SC_INV; TC_INV]);;
(* ------------------------------------------------------------------------- *)
(* An iterative version of (R)TC. *)
(* ------------------------------------------------------------------------- *)
let RELPOW = new_recursive_definition num_RECURSION
`(RELPOW 0 (R:A->A->bool) x y <=> (x = y)) /\
(RELPOW (SUC n) R x y <=> ?z. RELPOW n R x z /\ R z y)`;;
let RELPOW_R = prove
(`(RELPOW 0 (R:A->A->bool) x y <=> (x = y)) /\
(RELPOW (SUC n) R x y <=> ?z. R x z /\ RELPOW n R z y)`,
CONJ_TAC THENL [REWRITE_TAC[RELPOW]; ALL_TAC] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`x:A`; `y:A`; `n:num`] THEN
INDUCT_TAC THEN ASM_MESON_TAC[RELPOW]);;
let RELPOW_M = prove
(`!m n x:A y. RELPOW (m + n) R x y <=> ?z. RELPOW m R x z /\ RELPOW n R z y`,
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; RELPOW_R; UNWIND_THM1] THEN
MESON_TAC[]);;
let RTC_RELPOW = prove
(`!R (x:A) y. RTC R x y <=> ?n. RELPOW n R x y`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[RULE_INDUCT_TAC RTC_INDUCT_L THEN MESON_TAC[RELPOW];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN SPEC_TAC(`y:A`,`y:A`) THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN INDUCT_TAC THEN
REWRITE_TAC[RELPOW] THEN ASM_MESON_TAC[RTC_REFL; RTC_TRANS_L]]);;
let TC_RELPOW = prove
(`!R (x:A) y. TC R x y <=> ?n. RELPOW (SUC n) R x y`,
REWRITE_TAC[RELPOW] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
REWRITE_TAC[LEFT_EXISTS_AND_THM; GSYM RTC_RELPOW] THEN
ONCE_REWRITE_TAC[TC_CASES_L] THEN REWRITE_TAC[RTC; RC_EXPLICIT] THEN
MESON_TAC[]);;
let RELPOW_SEQUENCE = prove
(`!R n x y. RELPOW n R x y <=> ?f. (f(0) = x:A) /\ (f(n) = y) /\
!i. i < n ==> R (f i) (f(SUC i))`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT; RELPOW] THENL
[REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `\n:num. y:A` THEN REWRITE_TAC[];
MESON_TAC[]];
REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL
[DISJ_CASES_TAC(ARITH_RULE `(n = 0) \/ 0 < n`) THENL
[EXISTS_TAC `\i. if i = 0 then x else y:A` THEN
ASM_REWRITE_TAC[ARITH; LT] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_SUC] THEN
ASM_MESON_TAC[];
EXISTS_TAC `\i. if i <= n then f(i) else (y:A)` THEN
ASM_REWRITE_TAC[LE_0; ARITH_RULE `~(SUC n <= n)`] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[LE_REFL; ARITH_RULE `~(SUC n <= n)`] THEN
ASM_REWRITE_TAC[LE_SUC_LT] THEN
ASM_REWRITE_TAC[LE_LT] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]];
EXISTS_TAC `(f:num->A) n` THEN CONJ_TAC THENL
[EXISTS_TAC `f:num->A` THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[];
ASM_MESON_TAC[]]]]);;
|