Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,090 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
let near_ring_axioms =
  `(!x. 0 + x = x) /\
   (!x. neg x + x = 0) /\
   (!x y z. (x + y) + z = x + y + z) /\
   (!x y z. (x * y) * z = x * y * z) /\
   (!x y z. (x + y) * z = (x * z) + (y * z))`;;

(**** Works eventually but takes a very long time
MESON[]
 `(!x. 0 + x = x) /\
  (!x. neg x + x = 0) /\
  (!x y z. (x + y) + z = x + y + z) /\
  (!x y z. (x * y) * z = x * y * z) /\
  (!x y z. (x + y) * z = (x * z) + (y * z))
  ==> !a. 0 * a = 0`;;
 ****)

let is_realvar w x = is_var x && not(mem x w);;

let rec real_strip w tm =
  if mem tm w then tm,[] else
  let l,r = dest_comb tm in
  let f,args = real_strip w l in f,args@[r];;

let weight lis (f,n) (g,m) =
  let i = index f lis and j = index g lis in
  i > j || i = j && n > m;;

let rec lexord ord l1 l2 =
  match (l1,l2) with
    (h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2
                       else h1 = h2 && lexord ord t1 t2
  | _ -> false;;

let rec lpo_gt w s t =
  if is_realvar w t then not(s = t) && mem t (frees s)
  else if is_realvar w s || is_abs s || is_abs t then false else
  let f,fargs = real_strip w s and g,gargs = real_strip w t in
  exists (fun si -> lpo_ge w si t) fargs ||
        forall (lpo_gt w s) gargs &&
        (f = g && lexord (lpo_gt w) fargs gargs ||
         weight w (f,length fargs) (g,length gargs))
and lpo_ge w s t = (s = t) || lpo_gt w s t;;

let rec istriv w env x t =
  if is_realvar w t then t = x || defined env t && istriv w env x (apply env t)
  else if is_const t then false else
  let f,args = strip_comb t in
  exists (istriv w env x) args && failwith "cyclic";;

let rec unify w env tp =
  match tp with
   ((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) ->
        if defined env x then unify w env (apply env x,t)
        else if istriv w env x t then env else (x|->t) env
  | (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g)
  | (s,t) -> if s = t then env else failwith "unify: not unifiable";;

let fullunify w (s,t) =
  let env = unify w undefined (s,t) in
  let th = map (fun (x,t) -> (t,x)) (graph env) in
  let rec subs t =
    let t' = vsubst th t in
    if t' = t then t else subs t' in
  map (fun (t,x) -> (subs t,x)) th;;

let rec listcases fn rfn lis acc =
  match lis with
    [] -> acc
  | h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @
            listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;;

let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);;

let rec overlaps w th tm rfn =
  let l,r = dest_eq(concl th) in
  if not (is_comb tm) then [] else
  let f,args = strip_comb tm in
  listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args
            (try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);;

let crit1 w eq1 eq2 =
  let l1,r1 = dest_eq(concl eq1)
  and l2,r2 = dest_eq(concl eq2) in
  overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));;

let fixvariables s th =
  let fvs = subtract (frees(concl th)) (freesl(hyp th)) in
  let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v))
                 fvs (1--length fvs) in
  INST (zip gvs fvs) th;;

let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;;

let critical_pairs w tha thb =
  let th1,th2 = renamepair (tha,thb) in crit1 w th1 th2 @ crit1 w th2 th1;;

let normalize_and_orient w eqs th =
  let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in
  let s',t' = dest_eq(concl th') in
  if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th'
  else failwith "Can't orient equation";;

let status(eqs,crs) eqs0 =
  if eqs = eqs0 && (length crs) mod 1000 <> 0 then () else
  (print_string(string_of_int(length eqs)^" equations and "^
                string_of_int(length crs)^" pending critical pairs");
   print_newline());;

let left_reducible eqs eq =
  can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs))
      (concl eq);;

let rec complete w (eqs,crits) =
  match crits with
    (eq::ocrits) ->
        let trip =
          try let eq' = normalize_and_orient w eqs eq in
              let s',t' = dest_eq(concl eq') in
              if s' = t' then (eqs,ocrits) else
              let crits',eqs' = partition(left_reducible [eq']) eqs in
              let eqs'' = eq'::eqs' in
              eqs'',
              ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' []
          with Failure _ ->
              if exists (can (normalize_and_orient w eqs)) ocrits
              then (eqs,ocrits@[eq])
              else failwith "complete: no orientable equations" in
        status trip eqs; complete w trip
  | [] -> eqs;;

let complete_equations wts eqs =
  let eqs' = map (normalize_and_orient wts []) eqs in
  complete wts ([],eqs');;

complete_equations [`1`; `( * ):num->num->num`; `i:num->num`]
  [SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];;

complete_equations [`c:A`; `f:A->A`]
 (map SPEC_ALL (CONJUNCTS (ASSUME
   `((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));;

let eqs = map SPEC_ALL (CONJUNCTS (ASSUME
  `(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\
   (!x y z. (x * y) * z = x * y * z)`)) in
map concl (complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] eqs);;

let COMPLETE_TAC w th =
  let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in
  let eqs' = complete_equations w eqs in
  MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';;

g `(!x. 1 * x = x) /\
   (!x. i(x) * x = 1) /\
   (!x y z. (x * y) * z = x * y * z)
   ==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;;

e (DISCH_THEN(COMPLETE_TAC [`1`; `( * ):num->num->num`; `i:num->num`]));;
e(ASM_REWRITE_TAC[]);;

g `(!x. 0 + x = x) /\
     (!x. neg x + x = 0) /\
     (!x y z. (x + y) + z = x + y + z) /\
     (!x y z. (x * y) * z = x * y * z) /\
     (!x y z. (x + y) * z = (x * z) + (y * z))
     ==> (neg 0  * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) =
          a + b)`;;

e (DISCH_THEN(COMPLETE_TAC
     [`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));;
e(ASM_REWRITE_TAC[]);;

(**** Could have done this instead
e (DISCH_THEN(COMPLETE_TAC
      [`0`; `(+):num->num->num`; `( * ):num->num->num`; `neg:num->num`]));;
****)