Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 17,039 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
:: Basic Algebraic Structures
::  by Library Committee

environ

 vocabularies XBOOLE_0, SUBSET_1, BINOP_1, ZFMISC_1, STRUCT_0, ARYTM_3,
      FUNCT_1, FUNCT_5, SUPINF_2, ARYTM_1, RELAT_1, MESFUNC1, ALGSTR_0, CARD_1;
 notations TARSKI, XBOOLE_0, SUBSET_1, ZFMISC_1, BINOP_1, FUNCT_5, ORDINAL1,
      CARD_1, STRUCT_0;
 constructors BINOP_1, STRUCT_0, ZFMISC_1, FUNCT_5;
 registrations ZFMISC_1, CARD_1, STRUCT_0;
 theorems STRUCT_0;

begin :: Additive structures

reserve D for non empty set,
  d,e for Element of D,
  o,o1 for BinOp of D;
reserve T for trivial set,
  s,t for Element of T,
  f,f1 for BinOp of T;
reserve N for non trivial set,
  n,m for Element of N,
  b,b1 for BinOp of N;

definition
  struct (1-sorted) addMagma (# carrier -> set, addF -> BinOp of the carrier
  #);
end;

registration
  let D,o;
  cluster addMagma(#D,o#) -> non empty;
  coherence;
end;

registration
  let T,f;
  cluster addMagma(#T,f#) -> trivial;
  coherence;
end;

registration
  let N,b;
  cluster addMagma(#N,b#) -> non trivial;
  coherence;
end;

definition
  let M be addMagma;
  let x,y be Element of M;
  func x+y -> Element of M equals
  (the addF of M).(x,y);
  coherence;
end;

definition
  func Trivial-addMagma -> addMagma equals
  addMagma(#{0}, op2 #);
  coherence;
end;

registration
  cluster Trivial-addMagma -> 1-element strict;
  coherence;
end;

registration
  cluster strict 1-element for addMagma;
  existence
  proof
    take Trivial-addMagma;
    thus thesis;
  end;
end;

definition
  let M be addMagma, x be Element of M;
  attr x is left_add-cancelable means
  for y,z being Element of M st x+y = x+z holds y = z;
  attr x is right_add-cancelable means

  for y,z being Element of M st y+ x = z+x holds y = z;
end;

definition
  let M be addMagma, x be Element of M;
  attr x is add-cancelable means

  x is right_add-cancelable left_add-cancelable;
end;

registration
  let M be addMagma;
  cluster right_add-cancelable left_add-cancelable -> add-cancelable for
Element
    of M;
  coherence;
  cluster add-cancelable -> right_add-cancelable left_add-cancelable for
Element
    of M;
  coherence;
end;

definition
  let M be addMagma;
  attr M is left_add-cancelable means
  :Def6:
  for x being Element of M holds x is left_add-cancelable;
  attr M is right_add-cancelable means
  :Def7:
  for x being Element of M holds x is right_add-cancelable;
end;

definition
  let M be addMagma;
  attr M is add-cancelable means

  M is right_add-cancelable left_add-cancelable;
end;

registration
  cluster right_add-cancelable left_add-cancelable -> add-cancelable for
addMagma;
  coherence;
  cluster add-cancelable -> right_add-cancelable left_add-cancelable for
addMagma;
  coherence;
end;

registration
  cluster Trivial-addMagma -> add-cancelable;
  coherence
  proof
    set M = Trivial-addMagma;
    thus M is right_add-cancelable
    proof
      let x,y,z be Element of M;
      assume y+x = z+x;
      thus thesis by STRUCT_0:def 10;
    end;
    let x,y,z being Element of M;
    assume x+y = x+z;
    thus thesis by STRUCT_0:def 10;
  end;
end;

registration
  cluster add-cancelable strict 1-element for addMagma;
  existence
  proof
    take Trivial-addMagma;
    thus thesis;
  end;
end;

registration
  let M be left_add-cancelable addMagma;
  cluster -> left_add-cancelable for Element of M;
  coherence by Def6;
end;

registration
  let M be right_add-cancelable addMagma;
  cluster -> right_add-cancelable for Element of M;
  coherence by Def7;
end;

definition
  struct (ZeroStr,addMagma) addLoopStr (# carrier -> set, addF -> BinOp of the
    carrier, ZeroF -> Element of the carrier #);
end;

registration
  let D,o,d;
  cluster addLoopStr(#D,o,d#) -> non empty;
  coherence;
end;

registration
  let T,f,t;
  cluster addLoopStr(#T,f,t#) -> trivial;
  coherence;
end;

registration
  let N,b,m;
  cluster addLoopStr(#N,b,m#) -> non trivial;
  coherence;
end;

definition
  func Trivial-addLoopStr -> addLoopStr equals
  addLoopStr(#{0}, op2, op0 #);
  coherence;
end;

registration
  cluster Trivial-addLoopStr -> 1-element strict;
  coherence;
end;

registration
  cluster strict 1-element for addLoopStr;
  existence
  proof
    take Trivial-addLoopStr;
    thus thesis;
  end;
end;

definition
  let M be addLoopStr, x be Element of M;
  attr x is left_complementable means

  ex y being Element of M st y+x = 0.M;
  attr x is right_complementable means
  ex y being Element of M st x+y = 0.M;
end;

definition
  let M be addLoopStr, x be Element of M;
  attr x is complementable means

  x is right_complementable left_complementable;
end;

registration
  let M be addLoopStr;
  cluster right_complementable left_complementable -> complementable for
Element
    of M;
  coherence;
  cluster complementable -> right_complementable left_complementable for
Element
    of M;
  coherence;
end;

definition
  let M be addLoopStr, x be Element of M;
  assume
A1: x is left_complementable right_add-cancelable;
  func -x -> Element of M means
  it + x = 0.M;
  existence by A1;
  uniqueness by A1;
end;

definition
  let V be addLoopStr;
  let v,w be Element of V;
  func v - w -> Element of V equals
  v + -w;
  correctness;
end;

registration
  cluster Trivial-addLoopStr -> add-cancelable;
  coherence
  proof
    set M = Trivial-addLoopStr;
    thus M is right_add-cancelable
    proof
      let x,y,z be Element of M;
      assume y+x = z+x;
      thus thesis by STRUCT_0:def 10;
    end;
    let x,y,z being Element of M;
    assume x+y = x+z;
    thus thesis by STRUCT_0:def 10;
  end;
end;

definition
  let M be addLoopStr;
  attr M is left_complementable means
  :Def15:
  for x being Element of M holds x is left_complementable;
  attr M is right_complementable means
  :Def16:
  for x being Element of M holds x is right_complementable;
end;

definition
  let M be addLoopStr;
  attr M is complementable means

  M is right_complementable left_complementable;
end;

registration
  cluster right_complementable left_complementable -> complementable
    for addLoopStr;
  coherence;
  cluster complementable -> right_complementable left_complementable
    for addLoopStr;
  coherence;
end;

registration
  cluster Trivial-addLoopStr -> complementable;
  coherence
  proof
    set M = Trivial-addLoopStr;
    thus M is right_complementable
    proof
      let x be Element of M;
      take x;
      thus thesis by STRUCT_0:def 10;
    end;
    let x being Element of M;
    take x;
    thus thesis by STRUCT_0:def 10;
  end;
end;

registration
  cluster complementable add-cancelable strict 1-element for addLoopStr;
  existence
  proof
    take Trivial-addLoopStr;
    thus thesis;
  end;
end;

registration
  let M be left_complementable addLoopStr;
  cluster -> left_complementable for Element of M;
  coherence by Def15;
end;

registration
  let M be right_complementable addLoopStr;
  cluster -> right_complementable for Element of M;
  coherence by Def16;
end;

begin :: Multiplicative structures

definition
  struct (1-sorted) multMagma (# carrier -> set, multF -> BinOp of the carrier
  #);
end;

registration
  let D,o;
  cluster multMagma(#D,o#) -> non empty;
  coherence;
end;

registration
  let T,f;
  cluster multMagma(#T,f#) -> trivial;
  coherence;
end;

registration
  let N,b;
  cluster multMagma(#N,b#) -> non trivial;
  coherence;
end;

definition
  let M be multMagma;
  let x,y be Element of M;
  func x*y -> Element of M equals
  (the multF of M).(x,y);
  coherence;
end;

definition
  func Trivial-multMagma -> multMagma equals
  multMagma(#{0}, op2 #);
  coherence;
end;

registration
  cluster Trivial-multMagma -> 1-element strict;
  coherence;
end;

registration
  cluster strict 1-element for multMagma;
  existence
  proof
    take Trivial-multMagma;
    thus thesis;
  end;
end;

definition
  let M be multMagma, x be Element of M;
  attr x is left_mult-cancelable means
  for y,z being Element of M st x*y = x*z holds y = z;
  attr x is right_mult-cancelable means

  for y,z being Element of M st y*x = z*x holds y = z;
end;

definition
  let M be multMagma, x be Element of M;
  attr x is mult-cancelable means

  x is right_mult-cancelable left_mult-cancelable;
end;

registration
  let M be multMagma;
  cluster right_mult-cancelable left_mult-cancelable -> mult-cancelable
    for Element of M;
  coherence;
  cluster mult-cancelable -> right_mult-cancelable left_mult-cancelable
    for Element of M;
  coherence;
end;

definition
  let M be multMagma;
  attr M is left_mult-cancelable means
  :Def23:
  for x being Element of M holds x is left_mult-cancelable;
  attr M is right_mult-cancelable means
  :Def24:
  for x being Element of M holds x is right_mult-cancelable;
end;

definition
  let M be multMagma;
  attr M is mult-cancelable means

  M is left_mult-cancelable right_mult-cancelable;
end;

registration
  cluster right_mult-cancelable left_mult-cancelable -> mult-cancelable
    for multMagma;
  coherence;
  cluster mult-cancelable -> right_mult-cancelable left_mult-cancelable
    for multMagma;
  coherence;
end;

registration
  cluster Trivial-multMagma -> mult-cancelable;
  coherence
  proof
    set M = Trivial-multMagma;
    thus M is left_mult-cancelable
    proof
      let x,y,z be Element of M;
      assume x*y = x*z;
      thus thesis by STRUCT_0:def 10;
    end;
    let x,y,z being Element of M;
    assume y*x = z*x;
    thus thesis by STRUCT_0:def 10;
  end;
end;

registration
  cluster mult-cancelable strict 1-element for multMagma;
  existence
  proof
    take Trivial-multMagma;
    thus thesis;
  end;
end;

registration
  let M be left_mult-cancelable multMagma;
  cluster -> left_mult-cancelable for Element of M;
  coherence by Def23;
end;

registration
  let M be right_mult-cancelable multMagma;
  cluster -> right_mult-cancelable for Element of M;
  coherence by Def24;
end;

definition
  struct (OneStr,multMagma) multLoopStr (# carrier -> set, multF -> BinOp of
    the carrier, OneF -> Element of the carrier #);
end;

registration
  let D,o,d;
  cluster multLoopStr(#D,o,d#) -> non empty;
  coherence;
end;

registration
  let T,f,t;
  cluster multLoopStr(#T,f,t#) -> trivial;
  coherence;
end;

registration
  let N,b,m;
  cluster multLoopStr(#N,b,m#) -> non trivial;
  coherence;
end;

definition
  func Trivial-multLoopStr -> multLoopStr equals
  multLoopStr(#{0}, op2, op0 #);
  coherence;
end;

registration
  cluster Trivial-multLoopStr -> 1-element strict;
  coherence;
end;

registration
  cluster strict 1-element for multLoopStr;
  existence
  proof
    take Trivial-multLoopStr;
    thus thesis;
  end;
end;

registration
  cluster Trivial-multLoopStr -> mult-cancelable;
  coherence
  proof
    set M = Trivial-multLoopStr;
    thus M is left_mult-cancelable
    proof
      let x,y,z be Element of M;
      assume x*y = x*z;
      thus thesis by STRUCT_0:def 10;
    end;
    let x,y,z being Element of M;
    assume y*x = z*x;
    thus thesis by STRUCT_0:def 10;
  end;
end;

definition
  let M be multLoopStr, x be Element of M;
  attr x is left_invertible means

  ex y being Element of M st y*x = 1.M;
  attr x is right_invertible means
  ex y being Element of M st x*y = 1.M;
end;

definition
  let M be multLoopStr, x be Element of M;
  attr x is invertible means
  x is right_invertible left_invertible;
end;

registration
  let M be multLoopStr;
  cluster right_invertible left_invertible -> invertible for Element of M;
  coherence;
  cluster invertible -> right_invertible left_invertible for Element of M;
  coherence;
end;

definition
  let M be multLoopStr, x be Element of M;
  assume that
A1: x is left_invertible and
A2: x is right_mult-cancelable;
  func /x -> Element of M means
  it * x = 1.M;
  existence by A1;
  uniqueness by A2;
end;

definition
  let M be multLoopStr;
  attr M is left_invertible means
  :Def31:
  for x being Element of M holds x is left_invertible;
  attr M is right_invertible means
  :Def32:
  for x being Element of M holds x is right_invertible;
end;

definition
  let M be multLoopStr;
  attr M is invertible means

  M is right_invertible left_invertible;
end;

registration
  cluster right_invertible left_invertible -> invertible for multLoopStr;
  coherence;
  cluster invertible -> right_invertible left_invertible for multLoopStr;
  coherence;
end;

registration
  cluster Trivial-multLoopStr -> invertible;
  coherence
  proof
    set M = Trivial-multLoopStr;
    thus M is right_invertible
    proof
      let x be Element of M;
      take x;
      thus thesis by STRUCT_0:def 10;
    end;
    let x being Element of M;
    take x;
    thus thesis by STRUCT_0:def 10;
  end;
end;

registration
  cluster invertible mult-cancelable strict 1-element for multLoopStr;
  existence
  proof
    take Trivial-multLoopStr;
    thus thesis;
  end;
end;

registration
  let M be left_invertible multLoopStr;
  cluster -> left_invertible for Element of M;
  coherence by Def31;
end;

registration
  let M be right_invertible multLoopStr;
  cluster -> right_invertible for Element of M;
  coherence by Def32;
end;

begin :: Almost

definition
  struct (multLoopStr,ZeroOneStr) multLoopStr_0 (# carrier -> set, multF ->
    BinOp of the carrier, ZeroF, OneF -> Element of the carrier #);
end;

registration
  let D,o,d,e;
  cluster multLoopStr_0(#D,o,d,e#) -> non empty;
  coherence;
end;

registration
  let T,f,s,t;
  cluster multLoopStr_0(#T,f,s,t#) -> trivial;
  coherence;
end;

registration
  let N,b,m,n;
  cluster multLoopStr_0(#N,b,m,n#) -> non trivial;
  coherence;
end;

definition
  func Trivial-multLoopStr_0 -> multLoopStr_0 equals
  multLoopStr_0(#{0}, op2,op0, op0 #);
  coherence;
end;

registration
  cluster Trivial-multLoopStr_0 -> 1-element strict;
  coherence;
end;

registration
  cluster strict 1-element for multLoopStr_0;
  existence
  proof
    take Trivial-multLoopStr_0;
    thus thesis;
  end;
end;

::$CD

definition
  let M be multLoopStr_0;
  attr M is almost_left_cancelable means
  for x being Element of M st x <> 0.M holds x is left_mult-cancelable;
  attr M is almost_right_cancelable means
  for x being Element of M st x <> 0.M holds x is right_mult-cancelable;
end;

definition
  let M be multLoopStr_0;
  attr M is almost_cancelable means
  M is almost_left_cancelable almost_right_cancelable;
end;

registration
  cluster almost_right_cancelable almost_left_cancelable -> almost_cancelable
    for multLoopStr_0;
  coherence;
  cluster almost_cancelable -> almost_right_cancelable almost_left_cancelable
    for multLoopStr_0;
  coherence;
end;

registration
  cluster Trivial-multLoopStr_0 -> almost_cancelable;
  coherence
  proof
    set M = Trivial-multLoopStr_0;
    thus M is almost_left_cancelable
    by STRUCT_0:def 10;
    let x be Element of M;
    assume x <> 0.M;
    let y,z being Element of M;
    assume y*x = z*x;
    thus thesis by STRUCT_0:def 10;
  end;
end;

registration
  cluster almost_cancelable strict 1-element for multLoopStr_0;
  existence
  proof
    take Trivial-multLoopStr_0;
    thus thesis;
  end;
end;

definition
  let M be multLoopStr_0;
  attr M is almost_left_invertible means
  for x being Element of M st x <> 0.M holds x is left_invertible;
  attr M is almost_right_invertible means
  for x being Element of M st x <> 0.M holds x is right_invertible;
end;

definition
  let M be multLoopStr_0;
  attr M is almost_invertible means
  M is almost_right_invertible almost_left_invertible;
end;

registration
  cluster almost_right_invertible almost_left_invertible -> almost_invertible
    for multLoopStr_0;
  coherence;
  cluster almost_invertible -> almost_right_invertible almost_left_invertible
    for multLoopStr_0;
  coherence;
end;

registration
  cluster Trivial-multLoopStr_0 -> almost_invertible;
  coherence
  proof
    set M = Trivial-multLoopStr_0;
    thus M is almost_right_invertible
    by STRUCT_0:def 10;
    let x being Element of M;
    assume x <> 0.M;
    take x;
    thus thesis by STRUCT_0:def 10;
  end;
end;

registration
  cluster almost_invertible almost_cancelable strict 1-element
    for multLoopStr_0;
  existence
  proof
    take Trivial-multLoopStr_0;
    thus thesis;
  end;
end;

begin :: Double

definition
  struct(addLoopStr,multLoopStr_0) doubleLoopStr (# carrier -> set, addF,
    multF -> BinOp of the carrier, OneF, ZeroF -> Element of the carrier #);
end;

registration
  let D,o,o1,d,e;
  cluster doubleLoopStr(#D,o,o1,d,e#) -> non empty;
  coherence;
end;

registration
  let T,f,f1,s,t;
  cluster doubleLoopStr(#T,f,f1,s,t#) -> trivial;
  coherence;
end;

registration
  let N,b,b1,m,n;
  cluster doubleLoopStr(#N,b,b1,m,n#) -> non trivial;
  coherence;
end;

definition
  func Trivial-doubleLoopStr -> doubleLoopStr equals
  doubleLoopStr(#{0}, op2, op2, op0, op0 #);
  coherence;
end;

registration
  cluster Trivial-doubleLoopStr -> 1-element strict;
  coherence;
end;

registration
  cluster strict 1-element for doubleLoopStr;
  existence
  proof
    take Trivial-doubleLoopStr;
    thus thesis;
  end;
end;

definition
 let M be multLoopStr, x,y be Element of M;
 func x/y -> Element of M equals x*/y;
 coherence;
end;