Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 17,039 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
:: Basic Algebraic Structures
:: by Library Committee
environ
vocabularies XBOOLE_0, SUBSET_1, BINOP_1, ZFMISC_1, STRUCT_0, ARYTM_3,
FUNCT_1, FUNCT_5, SUPINF_2, ARYTM_1, RELAT_1, MESFUNC1, ALGSTR_0, CARD_1;
notations TARSKI, XBOOLE_0, SUBSET_1, ZFMISC_1, BINOP_1, FUNCT_5, ORDINAL1,
CARD_1, STRUCT_0;
constructors BINOP_1, STRUCT_0, ZFMISC_1, FUNCT_5;
registrations ZFMISC_1, CARD_1, STRUCT_0;
theorems STRUCT_0;
begin :: Additive structures
reserve D for non empty set,
d,e for Element of D,
o,o1 for BinOp of D;
reserve T for trivial set,
s,t for Element of T,
f,f1 for BinOp of T;
reserve N for non trivial set,
n,m for Element of N,
b,b1 for BinOp of N;
definition
struct (1-sorted) addMagma (# carrier -> set, addF -> BinOp of the carrier
#);
end;
registration
let D,o;
cluster addMagma(#D,o#) -> non empty;
coherence;
end;
registration
let T,f;
cluster addMagma(#T,f#) -> trivial;
coherence;
end;
registration
let N,b;
cluster addMagma(#N,b#) -> non trivial;
coherence;
end;
definition
let M be addMagma;
let x,y be Element of M;
func x+y -> Element of M equals
(the addF of M).(x,y);
coherence;
end;
definition
func Trivial-addMagma -> addMagma equals
addMagma(#{0}, op2 #);
coherence;
end;
registration
cluster Trivial-addMagma -> 1-element strict;
coherence;
end;
registration
cluster strict 1-element for addMagma;
existence
proof
take Trivial-addMagma;
thus thesis;
end;
end;
definition
let M be addMagma, x be Element of M;
attr x is left_add-cancelable means
for y,z being Element of M st x+y = x+z holds y = z;
attr x is right_add-cancelable means
for y,z being Element of M st y+ x = z+x holds y = z;
end;
definition
let M be addMagma, x be Element of M;
attr x is add-cancelable means
x is right_add-cancelable left_add-cancelable;
end;
registration
let M be addMagma;
cluster right_add-cancelable left_add-cancelable -> add-cancelable for
Element
of M;
coherence;
cluster add-cancelable -> right_add-cancelable left_add-cancelable for
Element
of M;
coherence;
end;
definition
let M be addMagma;
attr M is left_add-cancelable means
:Def6:
for x being Element of M holds x is left_add-cancelable;
attr M is right_add-cancelable means
:Def7:
for x being Element of M holds x is right_add-cancelable;
end;
definition
let M be addMagma;
attr M is add-cancelable means
M is right_add-cancelable left_add-cancelable;
end;
registration
cluster right_add-cancelable left_add-cancelable -> add-cancelable for
addMagma;
coherence;
cluster add-cancelable -> right_add-cancelable left_add-cancelable for
addMagma;
coherence;
end;
registration
cluster Trivial-addMagma -> add-cancelable;
coherence
proof
set M = Trivial-addMagma;
thus M is right_add-cancelable
proof
let x,y,z be Element of M;
assume y+x = z+x;
thus thesis by STRUCT_0:def 10;
end;
let x,y,z being Element of M;
assume x+y = x+z;
thus thesis by STRUCT_0:def 10;
end;
end;
registration
cluster add-cancelable strict 1-element for addMagma;
existence
proof
take Trivial-addMagma;
thus thesis;
end;
end;
registration
let M be left_add-cancelable addMagma;
cluster -> left_add-cancelable for Element of M;
coherence by Def6;
end;
registration
let M be right_add-cancelable addMagma;
cluster -> right_add-cancelable for Element of M;
coherence by Def7;
end;
definition
struct (ZeroStr,addMagma) addLoopStr (# carrier -> set, addF -> BinOp of the
carrier, ZeroF -> Element of the carrier #);
end;
registration
let D,o,d;
cluster addLoopStr(#D,o,d#) -> non empty;
coherence;
end;
registration
let T,f,t;
cluster addLoopStr(#T,f,t#) -> trivial;
coherence;
end;
registration
let N,b,m;
cluster addLoopStr(#N,b,m#) -> non trivial;
coherence;
end;
definition
func Trivial-addLoopStr -> addLoopStr equals
addLoopStr(#{0}, op2, op0 #);
coherence;
end;
registration
cluster Trivial-addLoopStr -> 1-element strict;
coherence;
end;
registration
cluster strict 1-element for addLoopStr;
existence
proof
take Trivial-addLoopStr;
thus thesis;
end;
end;
definition
let M be addLoopStr, x be Element of M;
attr x is left_complementable means
ex y being Element of M st y+x = 0.M;
attr x is right_complementable means
ex y being Element of M st x+y = 0.M;
end;
definition
let M be addLoopStr, x be Element of M;
attr x is complementable means
x is right_complementable left_complementable;
end;
registration
let M be addLoopStr;
cluster right_complementable left_complementable -> complementable for
Element
of M;
coherence;
cluster complementable -> right_complementable left_complementable for
Element
of M;
coherence;
end;
definition
let M be addLoopStr, x be Element of M;
assume
A1: x is left_complementable right_add-cancelable;
func -x -> Element of M means
it + x = 0.M;
existence by A1;
uniqueness by A1;
end;
definition
let V be addLoopStr;
let v,w be Element of V;
func v - w -> Element of V equals
v + -w;
correctness;
end;
registration
cluster Trivial-addLoopStr -> add-cancelable;
coherence
proof
set M = Trivial-addLoopStr;
thus M is right_add-cancelable
proof
let x,y,z be Element of M;
assume y+x = z+x;
thus thesis by STRUCT_0:def 10;
end;
let x,y,z being Element of M;
assume x+y = x+z;
thus thesis by STRUCT_0:def 10;
end;
end;
definition
let M be addLoopStr;
attr M is left_complementable means
:Def15:
for x being Element of M holds x is left_complementable;
attr M is right_complementable means
:Def16:
for x being Element of M holds x is right_complementable;
end;
definition
let M be addLoopStr;
attr M is complementable means
M is right_complementable left_complementable;
end;
registration
cluster right_complementable left_complementable -> complementable
for addLoopStr;
coherence;
cluster complementable -> right_complementable left_complementable
for addLoopStr;
coherence;
end;
registration
cluster Trivial-addLoopStr -> complementable;
coherence
proof
set M = Trivial-addLoopStr;
thus M is right_complementable
proof
let x be Element of M;
take x;
thus thesis by STRUCT_0:def 10;
end;
let x being Element of M;
take x;
thus thesis by STRUCT_0:def 10;
end;
end;
registration
cluster complementable add-cancelable strict 1-element for addLoopStr;
existence
proof
take Trivial-addLoopStr;
thus thesis;
end;
end;
registration
let M be left_complementable addLoopStr;
cluster -> left_complementable for Element of M;
coherence by Def15;
end;
registration
let M be right_complementable addLoopStr;
cluster -> right_complementable for Element of M;
coherence by Def16;
end;
begin :: Multiplicative structures
definition
struct (1-sorted) multMagma (# carrier -> set, multF -> BinOp of the carrier
#);
end;
registration
let D,o;
cluster multMagma(#D,o#) -> non empty;
coherence;
end;
registration
let T,f;
cluster multMagma(#T,f#) -> trivial;
coherence;
end;
registration
let N,b;
cluster multMagma(#N,b#) -> non trivial;
coherence;
end;
definition
let M be multMagma;
let x,y be Element of M;
func x*y -> Element of M equals
(the multF of M).(x,y);
coherence;
end;
definition
func Trivial-multMagma -> multMagma equals
multMagma(#{0}, op2 #);
coherence;
end;
registration
cluster Trivial-multMagma -> 1-element strict;
coherence;
end;
registration
cluster strict 1-element for multMagma;
existence
proof
take Trivial-multMagma;
thus thesis;
end;
end;
definition
let M be multMagma, x be Element of M;
attr x is left_mult-cancelable means
for y,z being Element of M st x*y = x*z holds y = z;
attr x is right_mult-cancelable means
for y,z being Element of M st y*x = z*x holds y = z;
end;
definition
let M be multMagma, x be Element of M;
attr x is mult-cancelable means
x is right_mult-cancelable left_mult-cancelable;
end;
registration
let M be multMagma;
cluster right_mult-cancelable left_mult-cancelable -> mult-cancelable
for Element of M;
coherence;
cluster mult-cancelable -> right_mult-cancelable left_mult-cancelable
for Element of M;
coherence;
end;
definition
let M be multMagma;
attr M is left_mult-cancelable means
:Def23:
for x being Element of M holds x is left_mult-cancelable;
attr M is right_mult-cancelable means
:Def24:
for x being Element of M holds x is right_mult-cancelable;
end;
definition
let M be multMagma;
attr M is mult-cancelable means
M is left_mult-cancelable right_mult-cancelable;
end;
registration
cluster right_mult-cancelable left_mult-cancelable -> mult-cancelable
for multMagma;
coherence;
cluster mult-cancelable -> right_mult-cancelable left_mult-cancelable
for multMagma;
coherence;
end;
registration
cluster Trivial-multMagma -> mult-cancelable;
coherence
proof
set M = Trivial-multMagma;
thus M is left_mult-cancelable
proof
let x,y,z be Element of M;
assume x*y = x*z;
thus thesis by STRUCT_0:def 10;
end;
let x,y,z being Element of M;
assume y*x = z*x;
thus thesis by STRUCT_0:def 10;
end;
end;
registration
cluster mult-cancelable strict 1-element for multMagma;
existence
proof
take Trivial-multMagma;
thus thesis;
end;
end;
registration
let M be left_mult-cancelable multMagma;
cluster -> left_mult-cancelable for Element of M;
coherence by Def23;
end;
registration
let M be right_mult-cancelable multMagma;
cluster -> right_mult-cancelable for Element of M;
coherence by Def24;
end;
definition
struct (OneStr,multMagma) multLoopStr (# carrier -> set, multF -> BinOp of
the carrier, OneF -> Element of the carrier #);
end;
registration
let D,o,d;
cluster multLoopStr(#D,o,d#) -> non empty;
coherence;
end;
registration
let T,f,t;
cluster multLoopStr(#T,f,t#) -> trivial;
coherence;
end;
registration
let N,b,m;
cluster multLoopStr(#N,b,m#) -> non trivial;
coherence;
end;
definition
func Trivial-multLoopStr -> multLoopStr equals
multLoopStr(#{0}, op2, op0 #);
coherence;
end;
registration
cluster Trivial-multLoopStr -> 1-element strict;
coherence;
end;
registration
cluster strict 1-element for multLoopStr;
existence
proof
take Trivial-multLoopStr;
thus thesis;
end;
end;
registration
cluster Trivial-multLoopStr -> mult-cancelable;
coherence
proof
set M = Trivial-multLoopStr;
thus M is left_mult-cancelable
proof
let x,y,z be Element of M;
assume x*y = x*z;
thus thesis by STRUCT_0:def 10;
end;
let x,y,z being Element of M;
assume y*x = z*x;
thus thesis by STRUCT_0:def 10;
end;
end;
definition
let M be multLoopStr, x be Element of M;
attr x is left_invertible means
ex y being Element of M st y*x = 1.M;
attr x is right_invertible means
ex y being Element of M st x*y = 1.M;
end;
definition
let M be multLoopStr, x be Element of M;
attr x is invertible means
x is right_invertible left_invertible;
end;
registration
let M be multLoopStr;
cluster right_invertible left_invertible -> invertible for Element of M;
coherence;
cluster invertible -> right_invertible left_invertible for Element of M;
coherence;
end;
definition
let M be multLoopStr, x be Element of M;
assume that
A1: x is left_invertible and
A2: x is right_mult-cancelable;
func /x -> Element of M means
it * x = 1.M;
existence by A1;
uniqueness by A2;
end;
definition
let M be multLoopStr;
attr M is left_invertible means
:Def31:
for x being Element of M holds x is left_invertible;
attr M is right_invertible means
:Def32:
for x being Element of M holds x is right_invertible;
end;
definition
let M be multLoopStr;
attr M is invertible means
M is right_invertible left_invertible;
end;
registration
cluster right_invertible left_invertible -> invertible for multLoopStr;
coherence;
cluster invertible -> right_invertible left_invertible for multLoopStr;
coherence;
end;
registration
cluster Trivial-multLoopStr -> invertible;
coherence
proof
set M = Trivial-multLoopStr;
thus M is right_invertible
proof
let x be Element of M;
take x;
thus thesis by STRUCT_0:def 10;
end;
let x being Element of M;
take x;
thus thesis by STRUCT_0:def 10;
end;
end;
registration
cluster invertible mult-cancelable strict 1-element for multLoopStr;
existence
proof
take Trivial-multLoopStr;
thus thesis;
end;
end;
registration
let M be left_invertible multLoopStr;
cluster -> left_invertible for Element of M;
coherence by Def31;
end;
registration
let M be right_invertible multLoopStr;
cluster -> right_invertible for Element of M;
coherence by Def32;
end;
begin :: Almost
definition
struct (multLoopStr,ZeroOneStr) multLoopStr_0 (# carrier -> set, multF ->
BinOp of the carrier, ZeroF, OneF -> Element of the carrier #);
end;
registration
let D,o,d,e;
cluster multLoopStr_0(#D,o,d,e#) -> non empty;
coherence;
end;
registration
let T,f,s,t;
cluster multLoopStr_0(#T,f,s,t#) -> trivial;
coherence;
end;
registration
let N,b,m,n;
cluster multLoopStr_0(#N,b,m,n#) -> non trivial;
coherence;
end;
definition
func Trivial-multLoopStr_0 -> multLoopStr_0 equals
multLoopStr_0(#{0}, op2,op0, op0 #);
coherence;
end;
registration
cluster Trivial-multLoopStr_0 -> 1-element strict;
coherence;
end;
registration
cluster strict 1-element for multLoopStr_0;
existence
proof
take Trivial-multLoopStr_0;
thus thesis;
end;
end;
::$CD
definition
let M be multLoopStr_0;
attr M is almost_left_cancelable means
for x being Element of M st x <> 0.M holds x is left_mult-cancelable;
attr M is almost_right_cancelable means
for x being Element of M st x <> 0.M holds x is right_mult-cancelable;
end;
definition
let M be multLoopStr_0;
attr M is almost_cancelable means
M is almost_left_cancelable almost_right_cancelable;
end;
registration
cluster almost_right_cancelable almost_left_cancelable -> almost_cancelable
for multLoopStr_0;
coherence;
cluster almost_cancelable -> almost_right_cancelable almost_left_cancelable
for multLoopStr_0;
coherence;
end;
registration
cluster Trivial-multLoopStr_0 -> almost_cancelable;
coherence
proof
set M = Trivial-multLoopStr_0;
thus M is almost_left_cancelable
by STRUCT_0:def 10;
let x be Element of M;
assume x <> 0.M;
let y,z being Element of M;
assume y*x = z*x;
thus thesis by STRUCT_0:def 10;
end;
end;
registration
cluster almost_cancelable strict 1-element for multLoopStr_0;
existence
proof
take Trivial-multLoopStr_0;
thus thesis;
end;
end;
definition
let M be multLoopStr_0;
attr M is almost_left_invertible means
for x being Element of M st x <> 0.M holds x is left_invertible;
attr M is almost_right_invertible means
for x being Element of M st x <> 0.M holds x is right_invertible;
end;
definition
let M be multLoopStr_0;
attr M is almost_invertible means
M is almost_right_invertible almost_left_invertible;
end;
registration
cluster almost_right_invertible almost_left_invertible -> almost_invertible
for multLoopStr_0;
coherence;
cluster almost_invertible -> almost_right_invertible almost_left_invertible
for multLoopStr_0;
coherence;
end;
registration
cluster Trivial-multLoopStr_0 -> almost_invertible;
coherence
proof
set M = Trivial-multLoopStr_0;
thus M is almost_right_invertible
by STRUCT_0:def 10;
let x being Element of M;
assume x <> 0.M;
take x;
thus thesis by STRUCT_0:def 10;
end;
end;
registration
cluster almost_invertible almost_cancelable strict 1-element
for multLoopStr_0;
existence
proof
take Trivial-multLoopStr_0;
thus thesis;
end;
end;
begin :: Double
definition
struct(addLoopStr,multLoopStr_0) doubleLoopStr (# carrier -> set, addF,
multF -> BinOp of the carrier, OneF, ZeroF -> Element of the carrier #);
end;
registration
let D,o,o1,d,e;
cluster doubleLoopStr(#D,o,o1,d,e#) -> non empty;
coherence;
end;
registration
let T,f,f1,s,t;
cluster doubleLoopStr(#T,f,f1,s,t#) -> trivial;
coherence;
end;
registration
let N,b,b1,m,n;
cluster doubleLoopStr(#N,b,b1,m,n#) -> non trivial;
coherence;
end;
definition
func Trivial-doubleLoopStr -> doubleLoopStr equals
doubleLoopStr(#{0}, op2, op2, op0, op0 #);
coherence;
end;
registration
cluster Trivial-doubleLoopStr -> 1-element strict;
coherence;
end;
registration
cluster strict 1-element for doubleLoopStr;
existence
proof
take Trivial-doubleLoopStr;
thus thesis;
end;
end;
definition
let M be multLoopStr, x,y be Element of M;
func x/y -> Element of M equals x*/y;
coherence;
end;
|