Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 43,299 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.box_integral.partition.filter
import analysis.box_integral.partition.measure
import topology.uniform_space.compact_separated
/-!
# Integrals of Riemann, Henstock-Kurzweil, and McShane
In this file we define the integral of a function over a box in `ℝⁿ. The same definition works for
Riemann, Henstock-Kurzweil, and McShane integrals.
As usual, we represent `ℝⁿ` as the type of functions `ι → ℝ` for some finite type `ι`. A rectangular
box `(l, u]` in `ℝⁿ` is defined to be the set `{x : ι → ℝ | ∀ i, l i < x i ∧ x i ≤ u i}`, see
`box_integral.box`.
Let `vol` be a box-additive function on boxes in `ℝⁿ` with codomain `E →L[ℝ] F`. Given a function
`f : ℝⁿ → E`, a box `I` and a tagged partition `π` of this box, the *integral sum* of `f` over `π`
with respect to the volume `vol` is the sum of `vol J (f (π.tag J))` over all boxes of `π`. Here
`π.tag J` is the point (tag) in `ℝⁿ` associated with the box `J`.
The integral is defined as the limit of integral sums along a filter. Different filters correspond
to different integration theories. In order to avoid code duplication, all our definitions and
theorems take an argument `l : box_integral.integration_params`. This is a type that holds three
boolean values, and encodes eight filters including those corresponding to Riemann,
Henstock-Kurzweil, and McShane integrals.
Following the design of infinite sums (see `has_sum` and `tsum`), we define a predicate
`box_integral.has_integral` and a function `box_integral.integral` that returns a vector satisfying
the predicate or zero if the function is not integrable.
Then we prove some basic properties of box integrals (linearity, a formula for the integral of a
constant). We also prove a version of the Henstock-Sacks inequality (see
`box_integral.integrable.dist_integral_sum_le_of_mem_base_set` and
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq`), prove
integrability of continuous functions, and provide a criterion for integrability w.r.t. a
non-Riemann filter (e.g., Henstock-Kurzweil and McShane).
## Notation
- `ℝⁿ`: local notation for `ι → ℝ`
## Tags
integral
-/
open_locale big_operators classical topological_space nnreal filter uniformity box_integral
open set finset function filter metric box_integral.integration_params
noncomputable theory
namespace box_integral
universes u v w
variables {ι : Type u} {E : Type v} {F : Type w} [normed_add_comm_group E] [normed_space ℝ E]
[normed_add_comm_group F] [normed_space ℝ F] {I J : box ι} {π : tagged_prepartition I}
open tagged_prepartition
local notation `ℝⁿ` := ι → ℝ
/-!
### Integral sum and its basic properties
-/
/-- The integral sum of `f : ℝⁿ → E` over a tagged prepartition `π` w.r.t. box-additive volume `vol`
with codomain `E →L[ℝ] F` is the sum of `vol J (f (π.tag J))` over all boxes of `π`. -/
def integral_sum (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : tagged_prepartition I) : F :=
∑ J in π.boxes, vol J (f (π.tag J))
lemma integral_sum_bUnion_tagged (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : prepartition I)
(πi : Π J, tagged_prepartition J) :
integral_sum f vol (π.bUnion_tagged πi) = ∑ J in π.boxes, integral_sum f vol (πi J) :=
begin
refine (π.sum_bUnion_boxes _ _).trans (sum_congr rfl $ λ J hJ, sum_congr rfl $ λ J' hJ', _),
rw π.tag_bUnion_tagged hJ hJ'
end
lemma integral_sum_bUnion_partition (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) (πi : Π J, prepartition J) (hπi : ∀ J ∈ π, (πi J).is_partition) :
integral_sum f vol (π.bUnion_prepartition πi) = integral_sum f vol π :=
begin
refine (π.to_prepartition.sum_bUnion_boxes _ _).trans (sum_congr rfl $ λ J hJ, _),
calc ∑ J' in (πi J).boxes, vol J' (f (π.tag $ π.to_prepartition.bUnion_index πi J'))
= ∑ J' in (πi J).boxes, vol J' (f (π.tag J)) :
sum_congr rfl (λ J' hJ', by rw [prepartition.bUnion_index_of_mem _ hJ hJ'])
... = vol J (f (π.tag J)) :
(vol.map ⟨λ g : E →L[ℝ] F, g (f (π.tag J)), rfl, λ _ _, rfl⟩).sum_partition_boxes
le_top (hπi J hJ)
end
lemma integral_sum_inf_partition (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) {π' : prepartition I} (h : π'.is_partition) :
integral_sum f vol (π.inf_prepartition π') = integral_sum f vol π :=
integral_sum_bUnion_partition f vol π _ $ λ J hJ, h.restrict (prepartition.le_of_mem _ hJ)
lemma integral_sum_fiberwise {α} (g : box ι → α) (f : ℝⁿ → E)
(vol : ι →ᵇᵃ (E →L[ℝ] F)) (π : tagged_prepartition I) :
∑ y in π.boxes.image g, integral_sum f vol (π.filter (λ x, g x = y)) = integral_sum f vol π :=
π.to_prepartition.sum_fiberwise g (λ J, vol J (f $ π.tag J))
lemma integral_sum_sub_partitions (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
{π₁ π₂ : tagged_prepartition I} (h₁ : π₁.is_partition) (h₂ : π₂.is_partition) :
integral_sum f vol π₁ - integral_sum f vol π₂ =
∑ J in (π₁.to_prepartition ⊓ π₂.to_prepartition).boxes,
(vol J (f $ (π₁.inf_prepartition π₂.to_prepartition).tag J) -
vol J (f $ (π₂.inf_prepartition π₁.to_prepartition).tag J)) :=
begin
rw [← integral_sum_inf_partition f vol π₁ h₂,
← integral_sum_inf_partition f vol π₂ h₁, integral_sum, integral_sum,
finset.sum_sub_distrib],
simp only [inf_prepartition_to_prepartition, _root_.inf_comm]
end
@[simp] lemma integral_sum_disj_union (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
{π₁ π₂ : tagged_prepartition I} (h : disjoint π₁.Union π₂.Union) :
integral_sum f vol (π₁.disj_union π₂ h) = integral_sum f vol π₁ + integral_sum f vol π₂ :=
begin
refine (prepartition.sum_disj_union_boxes h _).trans
(congr_arg2 (+) (sum_congr rfl $ λ J hJ, _) (sum_congr rfl $ λ J hJ, _)),
{ rw disj_union_tag_of_mem_left _ hJ },
{ rw disj_union_tag_of_mem_right _ hJ }
end
@[simp] lemma integral_sum_add (f g : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) :
integral_sum (f + g) vol π = integral_sum f vol π + integral_sum g vol π :=
by simp only [integral_sum, pi.add_apply, (vol _).map_add, finset.sum_add_distrib]
@[simp] lemma integral_sum_neg (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) :
integral_sum (-f) vol π = -integral_sum f vol π :=
by simp only [integral_sum, pi.neg_apply, (vol _).map_neg, finset.sum_neg_distrib]
@[simp] lemma integral_sum_smul (c : ℝ) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(π : tagged_prepartition I) :
integral_sum (c • f) vol π = c • integral_sum f vol π :=
by simp only [integral_sum, finset.smul_sum, pi.smul_apply, continuous_linear_map.map_smul]
variables [fintype ι]
/-!
### Basic integrability theory
-/
/-- The predicate `has_integral I l f vol y` says that `y` is the integral of `f` over `I` along `l`
w.r.t. volume `vol`. This means that integral sums of `f` tend to `𝓝 y` along
`box_integral.integration_params.to_filter_Union I ⊤`. -/
def has_integral (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F))
(y : F) : Prop :=
tendsto (integral_sum f vol) (l.to_filter_Union I ⊤) (𝓝 y)
/-- A function is integrable if there exists a vector that satisfies the `has_integral`
predicate. -/
def integrable (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) :=
∃ y, has_integral I l f vol y
/-- The integral of a function `f` over a box `I` along a filter `l` w.r.t. a volume `vol`. Returns
zero on non-integrable functions. -/
def integral (I : box ι) (l : integration_params) (f : ℝⁿ → E) (vol : ι →ᵇᵃ (E →L[ℝ] F)) :=
if h : integrable I l f vol then h.some else 0
variables {l : integration_params} {f g : ℝⁿ → E} {vol : ι →ᵇᵃ (E →L[ℝ] F)} {y y' : F}
/-- Reinterpret `box_integral.has_integral` as `filter.tendsto`, e.g., dot-notation theorems
that are shadowed in the `box_integral.has_integral` namespace. -/
lemma has_integral.tendsto (h : has_integral I l f vol y) :
tendsto (integral_sum f vol) (l.to_filter_Union I ⊤) (𝓝 y) := h
/-- The `ε`-`δ` definition of `box_integral.has_integral`. -/
lemma has_integral_iff : has_integral I l f vol y ↔
∀ ε > (0 : ℝ), ∃ r : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧
∀ c π, l.mem_base_set I c (r c) π → is_partition π → dist (integral_sum f vol π) y ≤ ε :=
((l.has_basis_to_filter_Union_top I).tendsto_iff nhds_basis_closed_ball).trans $
by simp [@forall_swap ℝ≥0 (tagged_prepartition I)]
/-- Quite often it is more natural to prove an estimate of the form `a * ε`, not `ε` in the RHS of
`box_integral.has_integral_iff`, so we provide this auxiliary lemma. -/
lemma has_integral_of_mul (a : ℝ) (h : ∀ ε : ℝ, 0 < ε →
∃ r: ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧ ∀ c π, l.mem_base_set I c (r c) π →
is_partition π → dist (integral_sum f vol π) y ≤ a * ε) :
has_integral I l f vol y :=
begin
refine has_integral_iff.2 (λ ε hε, _),
rcases exists_pos_mul_lt hε a with ⟨ε', hε', ha⟩,
rcases h ε' hε' with ⟨r, hr, H⟩,
exact ⟨r, hr, λ c π hπ hπp, (H c π hπ hπp).trans ha.le⟩
end
lemma integrable_iff_cauchy [complete_space F] :
integrable I l f vol ↔ cauchy ((l.to_filter_Union I ⊤).map (integral_sum f vol)) :=
cauchy_map_iff_exists_tendsto.symm
/-- In a complete space, a function is integrable if and only if its integral sums form a Cauchy
net. Here we restate this fact in terms of `∀ ε > 0, ∃ r, ...`. -/
lemma integrable_iff_cauchy_basis [complete_space F] :
integrable I l f vol ↔ ∀ ε > (0 : ℝ), ∃ r : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ), (∀ c, l.r_cond (r c)) ∧
∀ c₁ c₂ π₁ π₂, l.mem_base_set I c₁ (r c₁) π₁ → π₁.is_partition → l.mem_base_set I c₂ (r c₂) π₂ →
π₂.is_partition → dist (integral_sum f vol π₁) (integral_sum f vol π₂) ≤ ε :=
begin
rw [integrable_iff_cauchy, cauchy_map_iff',
(l.has_basis_to_filter_Union_top _).prod_self.tendsto_iff uniformity_basis_dist_le],
refine forall₂_congr (λ ε ε0, exists_congr $ λ r, _),
simp only [exists_prop, prod.forall, set.mem_Union, exists_imp_distrib,
prod_mk_mem_set_prod_eq, and_imp, mem_inter_eq, mem_set_of_eq],
exact and_congr iff.rfl ⟨λ H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂, H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂,
λ H π₁ π₂ c₁ h₁ hU₁ c₂ h₂ hU₂, H c₁ c₂ π₁ π₂ h₁ hU₁ h₂ hU₂⟩
end
lemma has_integral.mono {l₁ l₂ : integration_params} (h : has_integral I l₁ f vol y)
(hl : l₂ ≤ l₁) : has_integral I l₂ f vol y :=
h.mono_left $ integration_params.to_filter_Union_mono _ hl _
protected lemma integrable.has_integral (h : integrable I l f vol) :
has_integral I l f vol (integral I l f vol) :=
by { rw [integral, dif_pos h], exact classical.some_spec h }
lemma integrable.mono {l'} (h : integrable I l f vol) (hle : l' ≤ l) : integrable I l' f vol :=
⟨_, h.has_integral.mono hle⟩
lemma has_integral.unique (h : has_integral I l f vol y) (h' : has_integral I l f vol y') :
y = y' :=
tendsto_nhds_unique h h'
lemma has_integral.integrable (h : has_integral I l f vol y) : integrable I l f vol := ⟨_, h⟩
lemma has_integral.integral_eq (h : has_integral I l f vol y) :
integral I l f vol = y :=
h.integrable.has_integral.unique h
lemma has_integral.add (h : has_integral I l f vol y) (h' : has_integral I l g vol y') :
has_integral I l (f + g) vol (y + y') :=
by simpa only [has_integral, ← integral_sum_add] using h.add h'
lemma integrable.add (hf : integrable I l f vol) (hg : integrable I l g vol) :
integrable I l (f + g) vol :=
(hf.has_integral.add hg.has_integral).integrable
lemma integral_add (hf : integrable I l f vol) (hg : integrable I l g vol) :
integral I l (f + g) vol = integral I l f vol + integral I l g vol :=
(hf.has_integral.add hg.has_integral).integral_eq
lemma has_integral.neg (hf : has_integral I l f vol y) : has_integral I l (-f) vol (-y) :=
by simpa only [has_integral, ← integral_sum_neg] using hf.neg
lemma integrable.neg (hf : integrable I l f vol) : integrable I l (-f) vol :=
hf.has_integral.neg.integrable
lemma integrable.of_neg (hf : integrable I l (-f) vol) : integrable I l f vol := neg_neg f ▸ hf.neg
@[simp] lemma integrable_neg : integrable I l (-f) vol ↔ integrable I l f vol :=
⟨λ h, h.of_neg, λ h, h.neg⟩
@[simp] lemma integral_neg : integral I l (-f) vol = -integral I l f vol :=
if h : integrable I l f vol then h.has_integral.neg.integral_eq
else by rw [integral, integral, dif_neg h, dif_neg (mt integrable.of_neg h), neg_zero]
lemma has_integral.sub (h : has_integral I l f vol y) (h' : has_integral I l g vol y') :
has_integral I l (f - g) vol (y - y') :=
by simpa only [sub_eq_add_neg] using h.add h'.neg
lemma integrable.sub (hf : integrable I l f vol) (hg : integrable I l g vol) :
integrable I l (f - g) vol :=
(hf.has_integral.sub hg.has_integral).integrable
lemma integral_sub (hf : integrable I l f vol) (hg : integrable I l g vol) :
integral I l (f - g) vol = integral I l f vol - integral I l g vol :=
(hf.has_integral.sub hg.has_integral).integral_eq
lemma has_integral_const (c : E) : has_integral I l (λ _, c) vol (vol I c) :=
tendsto_const_nhds.congr' $ (l.eventually_is_partition I).mono $ λ π hπ,
((vol.map ⟨λ g : E →L[ℝ] F, g c, rfl, λ _ _, rfl⟩).sum_partition_boxes le_top hπ).symm
@[simp] lemma integral_const (c : E) : integral I l (λ _, c) vol = vol I c :=
(has_integral_const c).integral_eq
lemma integrable_const (c : E) : integrable I l (λ _, c) vol :=
⟨_, has_integral_const c⟩
lemma has_integral_zero : has_integral I l (λ _, (0:E)) vol 0 :=
by simpa only [← (vol I).map_zero] using has_integral_const (0 : E)
lemma integrable_zero : integrable I l (λ _, (0:E)) vol := ⟨0, has_integral_zero⟩
lemma integral_zero : integral I l (λ _, (0:E)) vol = 0 := has_integral_zero.integral_eq
lemma has_integral_sum {α : Type*} {s : finset α} {f : α → ℝⁿ → E} {g : α → F}
(h : ∀ i ∈ s, has_integral I l (f i) vol (g i)) :
has_integral I l (λ x, ∑ i in s, f i x) vol (∑ i in s, g i) :=
begin
induction s using finset.induction_on with a s ha ihs, { simp [has_integral_zero] },
simp only [finset.sum_insert ha], rw finset.forall_mem_insert at h,
exact h.1.add (ihs h.2)
end
lemma has_integral.smul (hf : has_integral I l f vol y) (c : ℝ) :
has_integral I l (c • f) vol (c • y) :=
by simpa only [has_integral, ← integral_sum_smul]
using (tendsto_const_nhds : tendsto _ _ (𝓝 c)).smul hf
lemma integrable.smul (hf : integrable I l f vol) (c : ℝ) :
integrable I l (c • f) vol :=
(hf.has_integral.smul c).integrable
lemma integrable.of_smul {c : ℝ} (hf : integrable I l (c • f) vol) (hc : c ≠ 0) :
integrable I l f vol :=
by { convert hf.smul c⁻¹, ext x, simp only [pi.smul_apply, inv_smul_smul₀ hc] }
@[simp] lemma integral_smul (c : ℝ) : integral I l (λ x, c • f x) vol = c • integral I l f vol :=
begin
rcases eq_or_ne c 0 with rfl | hc, { simp only [zero_smul, integral_zero] },
by_cases hf : integrable I l f vol,
{ exact (hf.has_integral.smul c).integral_eq },
{ have : ¬integrable I l (λ x, c • f x) vol, from mt (λ h, h.of_smul hc) hf,
rw [integral, integral, dif_neg hf, dif_neg this, smul_zero] }
end
open measure_theory
/-- The integral of a nonnegative function w.r.t. a volume generated by a locally-finite measure is
nonnegative. -/
lemma integral_nonneg {g : ℝⁿ → ℝ} (hg : ∀ x ∈ I.Icc, 0 ≤ g x)
(μ : measure ℝⁿ) [is_locally_finite_measure μ] :
0 ≤ integral I l g μ.to_box_additive.to_smul :=
begin
by_cases hgi : integrable I l g μ.to_box_additive.to_smul,
{ refine ge_of_tendsto' hgi.has_integral (λ π, sum_nonneg $ λ J hJ, _),
exact mul_nonneg ennreal.to_real_nonneg (hg _ $ π.tag_mem_Icc _) },
{ rw [integral, dif_neg hgi] }
end
/-- If `∥f x∥ ≤ g x` on `[l, u]` and `g` is integrable, then the norm of the integral of `f` is less
than or equal to the integral of `g`. -/
lemma norm_integral_le_of_norm_le {g : ℝⁿ → ℝ} (hle : ∀ x ∈ I.Icc, ∥f x∥ ≤ g x)
(μ : measure ℝⁿ) [is_locally_finite_measure μ]
(hg : integrable I l g μ.to_box_additive.to_smul) :
∥(integral I l f μ.to_box_additive.to_smul : E)∥ ≤
integral I l g μ.to_box_additive.to_smul :=
begin
by_cases hfi : integrable.{u v v} I l f μ.to_box_additive.to_smul,
{ refine le_of_tendsto_of_tendsto' hfi.has_integral.norm hg.has_integral (λ π, _),
refine norm_sum_le_of_le _ (λ J hJ, _),
simp only [box_additive_map.to_smul_apply, norm_smul, smul_eq_mul, real.norm_eq_abs,
μ.to_box_additive_apply, abs_of_nonneg ennreal.to_real_nonneg],
exact mul_le_mul_of_nonneg_left (hle _ $ π.tag_mem_Icc _) ennreal.to_real_nonneg },
{ rw [integral, dif_neg hfi, norm_zero],
exact integral_nonneg (λ x hx, (norm_nonneg _).trans (hle x hx)) μ }
end
lemma norm_integral_le_of_le_const {c : ℝ} (hc : ∀ x ∈ I.Icc, ∥f x∥ ≤ c)
(μ : measure ℝⁿ) [is_locally_finite_measure μ] :
∥(integral I l f μ.to_box_additive.to_smul : E)∥ ≤ (μ I).to_real * c :=
by simpa only [integral_const]
using norm_integral_le_of_norm_le hc μ (integrable_const c)
/-!
# Henstock-Sacks inequality and integrability on subboxes
Henstock-Sacks inequality for Henstock-Kurzweil integral says the following. Let `f` be a function
integrable on a box `I`; let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged partition of
`I` subordinate to `r`, the integral sum over this partition is `ε`-close to the integral. Then for
any tagged prepartition (i.e. a finite collections of pairwise disjoint subboxes of `I` with tagged
points) `π`, the integral sum over `π` differs from the integral of `f` over the part of `I` covered
by `π` by at most `ε`. The actual statement in the library is a bit more complicated to make it work
for any `box_integral.integration_params`. We formalize several versions of this inequality in
`box_integral.integrable.dist_integral_sum_le_of_mem_base_set`,
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq`, and
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set`.
Instead of using predicate assumptions on `r`, we define
`box_integral.integrable.convergence_r (h : integrable I l f vol) (ε : ℝ) (c : ℝ≥0) : ℝⁿ → (0, ∞)`
to be a function `r` such that
- if `l.bRiemann`, then `r` is a constant;
- if `ε > 0`, then for any tagged partition `π` of `I` subordinate to `r` (more precisely,
satisfying the predicate `l.mem_base_set I c r`), the integral sum of `f` over `π` differs from
the integral of `f` over `I` by at most `ε`.
The proof is mostly based on
[Russel A. Gordon, *The integrals of Lebesgue, Denjoy, Perron, and Henstock*][Gordon55].
-/
namespace integrable
/-- If `ε > 0`, then `box_integral.integrable.convergence_r` is a function `r : ℝ≥0 → ℝⁿ → (0, ∞)`
such that for every `c : ℝ≥0`, for every tagged partition `π` subordinate to `r` (and satisfying
additional distortion estimates if `box_integral.integration_params.bDistortion l = tt`), the
corresponding integral sum is `ε`-close to the integral.
If `box.integral.integration_params.bRiemann = tt`, then `r c x` does not depend on `x`. If `ε ≤ 0`,
then we use `r c x = 1`. -/
def convergence_r (h : integrable I l f vol) (ε : ℝ) : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) :=
if hε : 0 < ε then (has_integral_iff.1 h.has_integral ε hε).some
else λ _ _, ⟨1, set.mem_Ioi.2 zero_lt_one⟩
variables {c c₁ c₂ : ℝ≥0} {ε ε₁ ε₂ : ℝ} {π₁ π₂ : tagged_prepartition I}
lemma convergence_r_cond (h : integrable I l f vol) (ε : ℝ) (c : ℝ≥0) :
l.r_cond (h.convergence_r ε c) :=
begin
rw convergence_r, split_ifs with h₀,
exacts [(has_integral_iff.1 h.has_integral ε h₀).some_spec.1 _, λ _ x, rfl]
end
lemma dist_integral_sum_integral_le_of_mem_base_set (h : integrable I l f vol) (h₀ : 0 < ε)
(hπ : l.mem_base_set I c (h.convergence_r ε c) π) (hπp : π.is_partition) :
dist (integral_sum f vol π) (integral I l f vol) ≤ ε :=
begin
rw [convergence_r, dif_pos h₀] at hπ,
exact (has_integral_iff.1 h.has_integral ε h₀).some_spec.2 c _ hπ hπp
end
/-- **Henstock-Sacks inequality**. Let `r₁ r₂ : ℝⁿ → (0, ∞)` be function such that for any tagged
*partition* of `I` subordinate to `rₖ`, `k=1,2`, the integral sum of `f` over this partition differs
from the integral of `f` by at most `εₖ`. Then for any two tagged *prepartition* `π₁ π₂` subordinate
to `r₁` and `r₂` respectively and covering the same part of `I`, the integral sums of `f` over these
prepartitions differ from each other by at most `ε₁ + ε₂`.
The actual statement
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`;
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to
account for additional requirements like being a Henstock partition or having a bounded
distortion.
See also `box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq` and
`box_integral.integrable.dist_integral_sum_sum_integral_le_of_mem_base_set`.
-/
lemma dist_integral_sum_le_of_mem_base_set (h : integrable I l f vol)
(hpos₁ : 0 < ε₁) (hpos₂ : 0 < ε₂) (h₁ : l.mem_base_set I c₁ (h.convergence_r ε₁ c₁) π₁)
(h₂ : l.mem_base_set I c₂ (h.convergence_r ε₂ c₂) π₂) (HU : π₁.Union = π₂.Union) :
dist (integral_sum f vol π₁) (integral_sum f vol π₂) ≤ ε₁ + ε₂ :=
begin
rcases h₁.exists_common_compl h₂ HU with ⟨π, hπU, hπc₁, hπc₂⟩,
set r : ℝⁿ → Ioi (0 : ℝ) := λ x, min (h.convergence_r ε₁ c₁ x) (h.convergence_r ε₂ c₂ x),
have hr : l.r_cond r := (h.convergence_r_cond _ c₁).min (h.convergence_r_cond _ c₂),
set πr := π.to_subordinate r,
have H₁ : dist (integral_sum f vol (π₁.union_compl_to_subordinate π hπU r))
(integral I l f vol) ≤ ε₁,
from h.dist_integral_sum_integral_le_of_mem_base_set hpos₁
(h₁.union_compl_to_subordinate (λ _ _, min_le_left _ _) hπU hπc₁)
(is_partition_union_compl_to_subordinate _ _ _ _),
rw HU at hπU,
have H₂ : dist (integral_sum f vol (π₂.union_compl_to_subordinate π hπU r))
(integral I l f vol) ≤ ε₂,
from h.dist_integral_sum_integral_le_of_mem_base_set hpos₂
(h₂.union_compl_to_subordinate (λ _ _, min_le_right _ _) hπU hπc₂)
(is_partition_union_compl_to_subordinate _ _ _ _),
simpa [union_compl_to_subordinate] using (dist_triangle_right _ _ _).trans (add_le_add H₁ H₂)
end
/-- If `f` is integrable on `I` along `l`, then for two sufficiently fine tagged prepartitions
(in the sense of the filter `box_integral.integration_params.to_filter l I`) such that they cover
the same part of `I`, the integral sums of `f` over `π₁` and `π₂` are very close to each other. -/
lemma tendsto_integral_sum_to_filter_prod_self_inf_Union_eq_uniformity (h : integrable I l f vol) :
tendsto
(λ π : tagged_prepartition I × tagged_prepartition I,
(integral_sum f vol π.1, integral_sum f vol π.2))
((l.to_filter I ×ᶠ l.to_filter I) ⊓ 𝓟 {π | π.1.Union = π.2.Union}) (𝓤 F) :=
begin
refine (((l.has_basis_to_filter I).prod_self.inf_principal _).tendsto_iff
uniformity_basis_dist_le).2 (λ ε ε0, _),
replace ε0 := half_pos ε0,
use [h.convergence_r (ε / 2), h.convergence_r_cond (ε / 2)], rintro ⟨π₁, π₂⟩ ⟨⟨h₁, h₂⟩, hU⟩,
rw ← add_halves ε,
exact h.dist_integral_sum_le_of_mem_base_set ε0 ε0 h₁.some_spec h₂.some_spec hU
end
/-- If `f` is integrable on a box `I` along `l`, then for any fixed subset `s` of `I` that can be
represented as a finite union of boxes, the integral sums of `f` over tagged prepartitions that
cover exactly `s` form a Cauchy “sequence” along `l`. -/
lemma cauchy_map_integral_sum_to_filter_Union (h : integrable I l f vol) (π₀ : prepartition I) :
cauchy ((l.to_filter_Union I π₀).map (integral_sum f vol)) :=
begin
refine ⟨infer_instance, _⟩,
rw [prod_map_map_eq, ← to_filter_inf_Union_eq, ← prod_inf_prod, prod_principal_principal],
exact h.tendsto_integral_sum_to_filter_prod_self_inf_Union_eq_uniformity.mono_left
(inf_le_inf_left _ $ principal_mono.2 $ λ π h, h.1.trans h.2.symm)
end
variable [complete_space F]
lemma to_subbox_aux (h : integrable I l f vol) (hJ : J ≤ I) :
∃ y : F, has_integral J l f vol y ∧
tendsto (integral_sum f vol) (l.to_filter_Union I (prepartition.single I J hJ)) (𝓝 y) :=
begin
refine (cauchy_map_iff_exists_tendsto.1
(h.cauchy_map_integral_sum_to_filter_Union (prepartition.single I J hJ))).imp (λ y hy, ⟨_, hy⟩),
convert hy.comp (l.tendsto_embed_box_to_filter_Union_top hJ) -- faster than `exact` here
end
/-- If `f` is integrable on a box `I`, then it is integrable on any subbox of `I`. -/
lemma to_subbox (h : integrable I l f vol) (hJ : J ≤ I) : integrable J l f vol :=
(h.to_subbox_aux hJ).imp $ λ y, and.left
/-- If `f` is integrable on a box `I`, then integral sums of `f` over tagged prepartitions
that cover exactly a subbox `J ≤ I` tend to the integral of `f` over `J` along `l`. -/
lemma tendsto_integral_sum_to_filter_Union_single (h : integrable I l f vol) (hJ : J ≤ I) :
tendsto (integral_sum f vol) (l.to_filter_Union I (prepartition.single I J hJ))
(𝓝 $ integral J l f vol) :=
let ⟨y, h₁, h₂⟩ := h.to_subbox_aux hJ in h₁.integral_eq.symm ▸ h₂
/-- **Henstock-Sacks inequality**. Let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged
*partition* of `I` subordinate to `r`, the integral sum of `f` over this partition differs from the
integral of `f` by at most `ε`. Then for any tagged *prepartition* `π` subordinate to `r`, the
integral sum of `f` over this prepartition differs from the integral of `f` over the part of `I`
covered by `π` by at most `ε`.
The actual statement
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`;
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to
account for additional requirements like being a Henstock partition or having a bounded
distortion;
- takes an extra argument `π₀ : prepartition I` and an assumption `π.Union = π₀.Union` instead of
using `π.to_prepartition`.
-/
lemma dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq (h : integrable I l f vol)
(h0 : 0 < ε) (hπ : l.mem_base_set I c (h.convergence_r ε c) π) {π₀ : prepartition I}
(hU : π.Union = π₀.Union) :
dist (integral_sum f vol π) (∑ J in π₀.boxes, integral J l f vol) ≤ ε :=
begin
/- Let us prove that the distance is less than or equal to `ε + δ` for all positive `δ`. -/
refine le_of_forall_pos_le_add (λ δ δ0, _),
/- First we choose some constants. -/
set δ' : ℝ := δ / (π₀.boxes.card + 1),
have H0 : 0 < (π₀.boxes.card + 1 : ℝ) := nat.cast_add_one_pos _,
have δ'0 : 0 < δ' := div_pos δ0 H0,
set C := max π₀.distortion π₀.compl.distortion,
/- Next we choose a tagged partition of each `J ∈ π₀` such that the integral sum of `f` over this
partition is `δ'`-close to the integral of `f` over `J`. -/
have : ∀ J ∈ π₀, ∃ πi : tagged_prepartition J, πi.is_partition ∧
dist (integral_sum f vol πi) (integral J l f vol) ≤ δ' ∧
l.mem_base_set J C (h.convergence_r δ' C) πi,
{ intros J hJ,
have Hle : J ≤ I := π₀.le_of_mem hJ,
have HJi : integrable J l f vol := h.to_subbox Hle,
set r := λ x, min (h.convergence_r δ' C x) (HJi.convergence_r δ' C x),
have hr : l.r_cond r, from (h.convergence_r_cond _ C).min (HJi.convergence_r_cond _ C),
have hJd : J.distortion ≤ C, from le_trans (finset.le_sup hJ) (le_max_left _ _),
rcases l.exists_mem_base_set_is_partition J hJd r with ⟨πJ, hC, hp⟩,
have hC₁ : l.mem_base_set J C (HJi.convergence_r δ' C) πJ,
{ refine hC.mono J le_rfl le_rfl (λ x hx, _), exact min_le_right _ _ },
have hC₂ : l.mem_base_set J C (h.convergence_r δ' C) πJ,
{ refine hC.mono J le_rfl le_rfl (λ x hx, _), exact min_le_left _ _ },
exact ⟨πJ, hp, HJi.dist_integral_sum_integral_le_of_mem_base_set δ'0 hC₁ hp, hC₂⟩ },
/- Now we combine these tagged partitions into a tagged prepartition of `I` that covers the
same part of `I` as `π₀` and apply `box_integral.dist_integral_sum_le_of_mem_base_set` to
`π` and this prepartition. -/
choose! πi hπip hπiδ' hπiC,
have : l.mem_base_set I C (h.convergence_r δ' C) (π₀.bUnion_tagged πi),
from bUnion_tagged_mem_base_set hπiC hπip (λ _, le_max_right _ _),
have hU' : π.Union = (π₀.bUnion_tagged πi).Union,
from hU.trans (prepartition.Union_bUnion_partition _ hπip).symm,
have := h.dist_integral_sum_le_of_mem_base_set h0 δ'0 hπ this hU',
rw integral_sum_bUnion_tagged at this,
calc dist (integral_sum f vol π) (∑ J in π₀.boxes, integral J l f vol)
≤ dist (integral_sum f vol π) (∑ J in π₀.boxes, integral_sum f vol (πi J)) +
dist (∑ J in π₀.boxes, integral_sum f vol (πi J)) (∑ J in π₀.boxes, integral J l f vol) :
dist_triangle _ _ _
... ≤ (ε + δ') + ∑ J in π₀.boxes, δ' : add_le_add this (dist_sum_sum_le_of_le _ hπiδ')
... = ε + δ : by { field_simp [H0.ne'], ring }
end
/-- **Henstock-Sacks inequality**. Let `r : ℝⁿ → (0, ∞)` be a function such that for any tagged
*partition* of `I` subordinate to `r`, the integral sum of `f` over this partition differs from the
integral of `f` by at most `ε`. Then for any tagged *prepartition* `π` subordinate to `r`, the
integral sum of `f` over this prepartition differs from the integral of `f` over the part of `I`
covered by `π` by at most `ε`.
The actual statement
- uses `box_integral.integrable.convergence_r` instead of a predicate assumption on `r`;
- uses `box_integral.integration_params.mem_base_set` instead of “subordinate to `r`” to
account for additional requirements like being a Henstock partition or having a bounded
distortion;
-/
lemma dist_integral_sum_sum_integral_le_of_mem_base_set (h : integrable I l f vol)
(h0 : 0 < ε) (hπ : l.mem_base_set I c (h.convergence_r ε c) π) :
dist (integral_sum f vol π) (∑ J in π.boxes, integral J l f vol) ≤ ε :=
h.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq h0 hπ rfl
/-- Integral sum of `f` over a tagged prepartition `π` such that `π.Union = π₀.Union` tends to the
sum of integrals of `f` over the boxes of `π₀`. -/
lemma tendsto_integral_sum_sum_integral (h : integrable I l f vol) (π₀ : prepartition I) :
tendsto (integral_sum f vol) (l.to_filter_Union I π₀) (𝓝 $ ∑ J in π₀.boxes, integral J l f vol) :=
begin
refine ((l.has_basis_to_filter_Union I π₀).tendsto_iff nhds_basis_closed_ball).2 (λ ε ε0, _),
refine ⟨h.convergence_r ε, h.convergence_r_cond ε, _⟩,
simp only [mem_inter_eq, set.mem_Union, mem_set_of_eq],
rintro π ⟨c, hc, hU⟩,
exact h.dist_integral_sum_sum_integral_le_of_mem_base_set_of_Union_eq ε0 hc hU
end
/-- If `f` is integrable on `I`, then `λ J, integral J l f vol` is box-additive on subboxes of `I`:
if `π₁`, `π₂` are two prepartitions of `I` covering the same part of `I`, then the sum of integrals
of `f` over the boxes of `π₁` is equal to the sum of integrals of `f` over the boxes of `π₂`.
See also `box_integral.integrable.to_box_additive` for a bundled version. -/
lemma sum_integral_congr (h : integrable I l f vol) {π₁ π₂ : prepartition I}
(hU : π₁.Union = π₂.Union) :
∑ J in π₁.boxes, integral J l f vol = ∑ J in π₂.boxes, integral J l f vol :=
begin
refine tendsto_nhds_unique (h.tendsto_integral_sum_sum_integral π₁) _,
rw l.to_filter_Union_congr _ hU,
exact h.tendsto_integral_sum_sum_integral π₂
end
/-- If `f` is integrable on `I`, then `λ J, integral J l f vol` is box-additive on subboxes of `I`:
if `π₁`, `π₂` are two prepartitions of `I` covering the same part of `I`, then the sum of integrals
of `f` over the boxes of `π₁` is equal to the sum of integrals of `f` over the boxes of `π₂`.
See also `box_integral.integrable.sum_integral_congr` for an unbundled version. -/
@[simps] def to_box_additive (h : integrable I l f vol) : ι →ᵇᵃ[I] F :=
{ to_fun := λ J, integral J l f vol,
sum_partition_boxes' := λ J hJ π hπ,
begin
replace hπ := hπ.Union_eq, rw ← prepartition.Union_top at hπ,
rw [(h.to_subbox (with_top.coe_le_coe.1 hJ)).sum_integral_congr hπ,
prepartition.top_boxes, sum_singleton]
end }
end integrable
open measure_theory
/-!
### Integrability conditions
-/
variable (l)
/-- A continuous function is box-integrable with respect to any locally finite measure.
This is true for any volume with bounded variation. -/
lemma integrable_of_continuous_on [complete_space E] {I : box ι} {f : ℝⁿ → E}
(hc : continuous_on f I.Icc) (μ : measure ℝⁿ) [is_locally_finite_measure μ] :
integrable.{u v v} I l f μ.to_box_additive.to_smul :=
begin
have huc := I.is_compact_Icc.uniform_continuous_on_of_continuous hc,
rw metric.uniform_continuous_on_iff_le at huc,
refine integrable_iff_cauchy_basis.2 (λ ε ε0, _),
rcases exists_pos_mul_lt ε0 (μ.to_box_additive I) with ⟨ε', ε0', hε⟩,
rcases huc ε' ε0' with ⟨δ, δ0 : 0 < δ, Hδ⟩,
refine ⟨λ _ _, ⟨δ / 2, half_pos δ0⟩, λ _ _ _, rfl, λ c₁ c₂ π₁ π₂ h₁ h₁p h₂ h₂p, _⟩,
simp only [dist_eq_norm, integral_sum_sub_partitions _ _ h₁p h₂p,
box_additive_map.to_smul_apply, ← smul_sub],
have : ∀ J ∈ π₁.to_prepartition ⊓ π₂.to_prepartition,
∥μ.to_box_additive J • (f ((π₁.inf_prepartition π₂.to_prepartition).tag J) -
f ((π₂.inf_prepartition π₁.to_prepartition).tag J))∥ ≤ μ.to_box_additive J * ε',
{ intros J hJ,
have : 0 ≤ μ.to_box_additive J, from ennreal.to_real_nonneg,
rw [norm_smul, real.norm_eq_abs, abs_of_nonneg this, ← dist_eq_norm],
refine mul_le_mul_of_nonneg_left _ this,
refine Hδ _ (tagged_prepartition.tag_mem_Icc _ _) _ (tagged_prepartition.tag_mem_Icc _ _) _,
rw [← add_halves δ],
refine (dist_triangle_left _ _ J.upper).trans (add_le_add (h₁.1 _ _ _) (h₂.1 _ _ _)),
{ exact prepartition.bUnion_index_mem _ hJ },
{ exact box.le_iff_Icc.1 (prepartition.le_bUnion_index _ hJ) J.upper_mem_Icc },
{ rw _root_.inf_comm at hJ,
exact prepartition.bUnion_index_mem _ hJ },
{ rw _root_.inf_comm at hJ,
exact box.le_iff_Icc.1 (prepartition.le_bUnion_index _ hJ) J.upper_mem_Icc } },
refine (norm_sum_le_of_le _ this).trans _,
rw [← finset.sum_mul, μ.to_box_additive.sum_partition_boxes le_top (h₁p.inf h₂p)],
exact hε.le
end
variable {l}
/-- This is an auxiliary lemma used to prove two statements at once. Use one of the next two
lemmas instead. -/
lemma has_integral_of_bRiemann_eq_ff_of_forall_is_o (hl : l.bRiemann = ff)
(B : ι →ᵇᵃ[I] ℝ) (hB0 : ∀ J, 0 ≤ B J) (g : ι →ᵇᵃ[I] F) (s : set ℝⁿ) (hs : s.countable)
(hlH : s.nonempty → l.bHenstock = tt)
(H₁ : ∀ (c : ℝ≥0) (x ∈ I.Icc ∩ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc →
(l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε)
(H₂ : ∀ (c : ℝ≥0) (x ∈ I.Icc \ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → (l.bHenstock → x ∈ J.Icc) →
(l.bDistortion → J.distortion ≤ c) → dist (vol J (f x)) (g J) ≤ ε * B J) :
has_integral I l f vol (g I) :=
begin
/- We choose `r x` differently for `x ∈ s` and `x ∉ s`.
For `x ∈ s`, we choose `εs` such that `∑' x : s, εs x < ε / 2 / 2 ^ #ι`, then choose `r x` so that
`dist (vol J (f x)) (g J) ≤ εs x` for `J` in the `r x`-neighborhood of `x`. This guarantees that
the sum of these distances over boxes `J` such that `π.tag J ∈ s` is less than `ε / 2`. We need an
additional multiplier `2 ^ #ι` because different boxes can have the same tag.
For `x ∉ s`, we choose `r x` so that `dist (vol (J (f x))) (g J) ≤ (ε / 2 / B I) * B J` for a box
`J` in the `δ`-neighborhood of `x`. -/
refine ((l.has_basis_to_filter_Union_top _).tendsto_iff metric.nhds_basis_closed_ball).2 _,
intros ε ε0,
simp only [subtype.exists'] at H₁ H₂,
choose! δ₁ Hδ₁ using H₁,
choose! δ₂ Hδ₂ using H₂,
have ε0' := half_pos ε0, have H0 : 0 < (2 ^ fintype.card ι : ℝ), from pow_pos zero_lt_two _,
rcases hs.exists_pos_forall_sum_le (div_pos ε0' H0) with ⟨εs, hεs0, hεs⟩,
simp only [le_div_iff' H0, mul_sum] at hεs,
rcases exists_pos_mul_lt ε0' (B I) with ⟨ε', ε'0, hεI⟩,
set δ : ℝ≥0 → ℝⁿ → Ioi (0 : ℝ) := λ c x, if x ∈ s then δ₁ c x (εs x) else (δ₂ c) x ε',
refine ⟨δ, λ c, l.r_cond_of_bRiemann_eq_ff hl, _⟩,
simp only [set.mem_Union, mem_inter_eq, mem_set_of_eq],
rintro π ⟨c, hπδ, hπp⟩,
/- Now we split the sum into two parts based on whether `π.tag J` belongs to `s` or not. -/
rw [← g.sum_partition_boxes le_rfl hπp, mem_closed_ball, integral_sum,
← sum_filter_add_sum_filter_not π.boxes (λ J, π.tag J ∈ s),
← sum_filter_add_sum_filter_not π.boxes (λ J, π.tag J ∈ s), ← add_halves ε],
refine dist_add_add_le_of_le _ _,
{ unfreezingI { rcases s.eq_empty_or_nonempty with rfl|hsne }, { simp [ε0'.le] },
/- For the boxes such that `π.tag J ∈ s`, we use the fact that at most `2 ^ #ι` boxes have the
same tag. -/
specialize hlH hsne,
have : ∀ J ∈ π.boxes.filter (λ J, π.tag J ∈ s), dist (vol J (f $ π.tag J)) (g J) ≤ εs (π.tag J),
{ intros J hJ, rw finset.mem_filter at hJ, cases hJ with hJ hJs,
refine Hδ₁ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ (hεs0 _) _ (π.le_of_mem' _ hJ) _
(hπδ.2 hlH J hJ) (λ hD, (finset.le_sup hJ).trans (hπδ.3 hD)),
convert hπδ.1 J hJ, exact (dif_pos hJs).symm },
refine (dist_sum_sum_le_of_le _ this).trans _,
rw sum_comp,
refine (sum_le_sum _).trans (hεs _ _),
{ rintro b -,
rw [← nat.cast_two, ← nat.cast_pow, ← nsmul_eq_mul],
refine nsmul_le_nsmul (hεs0 _).le _,
refine (finset.card_le_of_subset _).trans ((hπδ.is_Henstock hlH).card_filter_tag_eq_le b),
exact filter_subset_filter _ (filter_subset _ _) },
{ rw [finset.coe_image, set.image_subset_iff],
exact λ J hJ, (finset.mem_filter.1 hJ).2 } },
/- Now we deal with boxes such that `π.tag J ∉ s`.
In this case the estimate is straightforward. -/
have H₂ : ∀ J ∈ π.boxes.filter (λ J, π.tag J ∉ s), dist (vol J (f $ π.tag J)) (g J) ≤ ε' * B J,
{ intros J hJ, rw finset.mem_filter at hJ, cases hJ with hJ hJs,
refine Hδ₂ c _ ⟨π.tag_mem_Icc _, hJs⟩ _ ε'0 _ (π.le_of_mem' _ hJ) _ (λ hH, hπδ.2 hH J hJ)
(λ hD, (finset.le_sup hJ).trans (hπδ.3 hD)),
convert hπδ.1 J hJ, exact (dif_neg hJs).symm },
refine (dist_sum_sum_le_of_le _ H₂).trans
((sum_le_sum_of_subset_of_nonneg (filter_subset _ _) _).trans _),
{ exact λ _ _ _, mul_nonneg ε'0.le (hB0 _) },
{ rw [← mul_sum, B.sum_partition_boxes le_rfl hπp, mul_comm],
exact hεI.le }
end
/-- A function `f` has Henstock (or `⊥`) integral over `I` is equal to the value of a box-additive
function `g` on `I` provided that `vol J (f x)` is sufficiently close to `g J` for sufficiently
small boxes `J ∋ x`. This lemma is useful to prove, e.g., to prove the Divergence theorem for
integral along `⊥`.
Let `l` be either `box_integral.integration_params.Henstock` or `⊥`. Let `g` a box-additive function
on subboxes of `I`. Suppose that there exists a nonnegative box-additive function `B` and a
countable set `s` with the following property.
For every `c : ℝ≥0`, a point `x ∈ I.Icc`, and a positive `ε` there exists `δ > 0` such that for any
box `J ≤ I` such that
- `x ∈ J.Icc ⊆ metric.closed_ball x δ`;
- if `l.bDistortion` (i.e., `l = ⊥`), then the distortion of `J` is less than or equal to `c`,
the distance between the term `vol J (f x)` of an integral sum corresponding to `J` and `g J` is
less than or equal to `ε` if `x ∈ s` and is less than or equal to `ε * B J` otherwise.
Then `f` is integrable on `I along `l` with integral `g I`. -/
lemma has_integral_of_le_Henstock_of_forall_is_o (hl : l ≤ Henstock) (B : ι →ᵇᵃ[I] ℝ)
(hB0 : ∀ J, 0 ≤ B J) (g : ι →ᵇᵃ[I] F) (s : set ℝⁿ) (hs : s.countable)
(H₁ : ∀ (c : ℝ≥0) (x ∈ I.Icc ∩ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc → (l.bDistortion → J.distortion ≤ c) →
dist (vol J (f x)) (g J) ≤ ε)
(H₂ : ∀ (c : ℝ≥0) (x ∈ I.Icc \ s) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → x ∈ J.Icc → (l.bDistortion → J.distortion ≤ c) →
dist (vol J (f x)) (g J) ≤ ε * B J) :
has_integral I l f vol (g I) :=
have A : l.bHenstock, from hl.2.1.resolve_left dec_trivial,
has_integral_of_bRiemann_eq_ff_of_forall_is_o (hl.1.resolve_right dec_trivial) B hB0 _ s hs (λ _, A)
H₁ $ by simpa only [A, true_implies_iff] using H₂
/-- Suppose that there exists a nonnegative box-additive function `B` with the following property.
For every `c : ℝ≥0`, a point `x ∈ I.Icc`, and a positive `ε` there exists `δ > 0` such that for any
box `J ≤ I` such that
- `J.Icc ⊆ metric.closed_ball x δ`;
- if `l.bDistortion` (i.e., `l = ⊥`), then the distortion of `J` is less than or equal to `c`,
the distance between the term `vol J (f x)` of an integral sum corresponding to `J` and `g J` is
less than or equal to `ε * B J`.
Then `f` is McShane integrable on `I` with integral `g I`. -/
lemma has_integral_McShane_of_forall_is_o (B : ι →ᵇᵃ[I] ℝ) (hB0 : ∀ J, 0 ≤ B J)
(g : ι →ᵇᵃ[I] F) (H : ∀ (c : ℝ≥0) (x ∈ I.Icc) (ε > (0 : ℝ)), ∃ δ > 0, ∀ J ≤ I,
J.Icc ⊆ metric.closed_ball x δ → dist (vol J (f x)) (g J) ≤ ε * B J) :
has_integral I McShane f vol (g I) :=
has_integral_of_bRiemann_eq_ff_of_forall_is_o rfl B hB0 g ∅ countable_empty (λ ⟨x, hx⟩, hx.elim)
(λ c x hx, hx.2.elim) $
by simpa only [McShane, coe_sort_ff, false_implies_iff, true_implies_iff, diff_empty] using H
end box_integral
|