File size: 17,862 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.box_integral.basic
import measure_theory.measure.regular

/-!
# McShane integrability vs Bochner integrability

In this file we prove that any Bochner integrable function is McShane integrable (hence, it is
Henstock and `⊥` integrable) with the same integral. The proof is based on
[Russel A. Gordon, *The integrals of Lebesgue, Denjoy, Perron, and Henstock*][Gordon55].

## Tags

integral, McShane integral, Bochner integral
-/

open_locale classical nnreal ennreal topological_space big_operators

universes u v

variables {ι : Type u} {E : Type v} [fintype ι] [normed_add_comm_group E] [normed_space ℝ E]

open measure_theory metric set finset filter box_integral

namespace box_integral

/-- The indicator function of a measurable set is McShane integrable with respect to any
locally-finite measure. -/
lemma has_integral_indicator_const (l : integration_params) (hl : l.bRiemann = ff)
  {s : set (ι → ℝ)} (hs : measurable_set s) (I : box ι) (y : E)
  (μ : measure (ι → ℝ)) [is_locally_finite_measure μ] :
  has_integral.{u v v} I l (s.indicator (λ _, y)) μ.to_box_additive.to_smul
    ((μ (s ∩ I)).to_real • y) :=
begin
  refine has_integral_of_mul (∥y∥) (λ ε ε0, _),
  lift ε to ℝ≥0 using ε0.le, rw nnreal.coe_pos at ε0,
  /- First we choose a closed set `F ⊆ s ∩ I.Icc` and an open set `U ⊇ s` such that
  both `(s ∩ I.Icc) \ F` and `U \ s` have measuer less than `ε`. -/
  have A : μ (s ∩ I.Icc) ≠ ∞,
    from ((measure_mono $ set.inter_subset_right _ _).trans_lt (I.measure_Icc_lt_top μ)).ne,
  have B : μ (s ∩ I) ≠ ∞,
    from ((measure_mono $ set.inter_subset_right _ _).trans_lt (I.measure_coe_lt_top μ)).ne,
  obtain ⟨F, hFs, hFc, hμF⟩ : ∃ F ⊆ s ∩ I.Icc, is_closed F ∧ μ ((s ∩ I.Icc) \ F) < ε,
    from (hs.inter I.measurable_set_Icc).exists_is_closed_diff_lt A (ennreal.coe_pos.2 ε0).ne',
  obtain ⟨U, hsU, hUo, hUt, hμU⟩ : ∃ U ⊇ s ∩ I.Icc, is_open U ∧ μ U < ∞ ∧ μ (U \ (s ∩ I.Icc)) < ε,
    from (hs.inter I.measurable_set_Icc).exists_is_open_diff_lt A (ennreal.coe_pos.2 ε0).ne',
  /- Then we choose `r` so that `closed_ball x (r x) ⊆ U` whenever `x ∈ s ∩ I.Icc` and
  `closed_ball x (r x)` is disjoint with `F` otherwise. -/
  have : ∀ x ∈ s ∩ I.Icc, ∃ r : Ioi (0 : ℝ), closed_ball x r ⊆ U,
    from λ x hx, subtype.exists'.1 (nhds_basis_closed_ball.mem_iff.1 (hUo.mem_nhds $ hsU hx)),
  choose! rs hrsU,
  have : ∀ x ∈ I.Icc \ s, ∃ r : Ioi (0 : ℝ), closed_ball x r ⊆ Fᶜ,
    from λ x hx, subtype.exists'.1 (nhds_basis_closed_ball.mem_iff.1 (hFc.is_open_compl.mem_nhds $
      λ hx', hx.2 (hFs hx').1)),
  choose! rs' hrs'F,
  set r : (ι → ℝ) → Ioi (0 : ℝ) := s.piecewise rs rs',
  refine ⟨λ c, r, λ c, l.r_cond_of_bRiemann_eq_ff hl, λ c π hπ hπp, _⟩, rw mul_comm,
  /- Then the union of boxes `J ∈ π` such that `π.tag ∈ s` includes `F` and is included by `U`,
  hence its measure is `ε`-close to the measure of `s`. -/
  dsimp [integral_sum],
  simp only [mem_closed_ball, dist_eq_norm, ← indicator_const_smul_apply,
    sum_indicator_eq_sum_filter, ← sum_smul, ← sub_smul, norm_smul, real.norm_eq_abs,
    ← prepartition.filter_boxes, ← prepartition.measure_Union_to_real],
  refine mul_le_mul_of_nonneg_right _ (norm_nonneg y),
  set t := (π.to_prepartition.filter (λ J, π.tag J ∈ s)).Union,
  change abs ((μ t).to_real - (μ (s ∩ I)).to_real) ≤ ε,
  have htU : t ⊆ U ∩ I,
  { simp only [t, prepartition.Union_def, Union_subset_iff, prepartition.mem_filter, and_imp],
    refine λ J hJ hJs x hx, ⟨hrsU _ ⟨hJs, π.tag_mem_Icc J⟩  _, π.le_of_mem' J hJ hx⟩,
    simpa only [r, s.piecewise_eq_of_mem _ _ hJs] using.1 J hJ (box.coe_subset_Icc hx) },
  refine abs_sub_le_iff.2 ⟨_, _⟩,
  { refine (ennreal.le_to_real_sub B).trans (ennreal.to_real_le_coe_of_le_coe _),
    refine (tsub_le_tsub (measure_mono htU) le_rfl).trans (le_measure_diff.trans _),
    refine (measure_mono $ λ x hx, _).trans hμU.le,
    exact ⟨hx.1.1, λ hx', hx.2 ⟨hx'.1, hx.1.2⟩⟩ },
  { have hμt : μ t ≠ ∞ :=
      ((measure_mono (htU.trans (inter_subset_left _ _))).trans_lt hUt).ne,
    refine (ennreal.le_to_real_sub hμt).trans (ennreal.to_real_le_coe_of_le_coe _),
    refine le_measure_diff.trans ((measure_mono _).trans hμF.le),
    rintro x ⟨⟨hxs, hxI⟩, hxt⟩,
    refine ⟨⟨hxs, box.coe_subset_Icc hxI⟩, λ hxF, hxt _⟩,
    simp only [t, prepartition.Union_def, prepartition.mem_filter, set.mem_Union, exists_prop],
    rcases hπp x hxI with ⟨J, hJπ, hxJ⟩,
    refine ⟨J, ⟨hJπ, _⟩, hxJ⟩,
    contrapose hxF,
    refine hrs'F _ ⟨π.tag_mem_Icc J, hxF⟩ _,
    simpa only [r, s.piecewise_eq_of_not_mem _ _ hxF] using hπ.1 J hJπ (box.coe_subset_Icc hxJ) }
end

/-- If `f` is a.e. equal to zero on a rectangular box, then it has McShane integral zero on this
box. -/
lemma has_integral_zero_of_ae_eq_zero {l : integration_params} {I : box ι} {f : (ι → ℝ) → E}
  {μ : measure (ι → ℝ)} [is_locally_finite_measure μ] (hf : f =ᵐ[μ.restrict I] 0)
  (hl : l.bRiemann = ff) :
  has_integral.{u v v} I l f μ.to_box_additive.to_smul 0 :=
begin
  /- Each set `{x | n < ∥f x∥ ≤ n + 1}`, `n : ℕ`, has measure zero. We cover it by an open set of
  measure less than `ε / 2 ^ n / (n + 1)`. Then the norm of the integral sum is less than `ε`. -/
  refine has_integral_iff.2 (λ ε ε0, _),
  lift ε to ℝ≥0 using ε0.lt.le, rw [gt_iff_lt, nnreal.coe_pos] at ε0,
  rcases nnreal.exists_pos_sum_of_encodable ε0.ne'with ⟨δ, δ0, c, hδc, hcε⟩,
  haveI := fact.mk (I.measure_coe_lt_top μ),
  change μ.restrict I {x | f x ≠ 0} = 0 at hf,
  set N : (ι → ℝ) → ℕ := λ x, ⌈∥f x∥⌉₊,
  have N0 : ∀ {x}, N x = 0 ↔ f x = 0, by { intro x, simp [N] },
  have : ∀ n, ∃ U ⊇ N ⁻¹' {n}, is_open U ∧ μ.restrict I U < δ n / n,
  { refine λ n, (N ⁻¹' {n}).exists_is_open_lt_of_lt _ _,
    cases n,
    { simpa [ennreal.div_zero (ennreal.coe_pos.20 _)).ne']
        using measure_lt_top (μ.restrict I) _ },
    { refine (measure_mono_null _ hf).le.trans_lt _,
      { exact λ x hxN hxf, n.succ_ne_zero ((eq.symm hxN).trans $ N0.2 hxf) },
      { simp [(δ0 _).ne'] } } },
  choose U hNU hUo hμU,
  have : ∀ x, ∃ r : Ioi (0 : ℝ), closed_ball x r ⊆ U (N x),
    from λ x, subtype.exists'.1 (nhds_basis_closed_ball.mem_iff.1 ((hUo _).mem_nhds (hNU _ rfl))),
  choose r hrU,
  refine ⟨λ _, r, λ c, l.r_cond_of_bRiemann_eq_ff hl, λ c π hπ hπp, _⟩,
  rw [dist_eq_norm, sub_zero, ← integral_sum_fiberwise (λ J, N (π.tag J))],
  refine le_trans _ (nnreal.coe_lt_coe.2 hcε).le,
  refine (norm_sum_le_of_le _ _).trans
    (sum_le_has_sum _ (λ n _, (δ n).2) (nnreal.has_sum_coe.2 hδc)),
  rintro n -,
  dsimp [integral_sum],
  have : ∀ J ∈ π.filter (λ J, N (π.tag J) = n),
    ∥(μ ↑J).to_real • f (π.tag J)∥ ≤ (μ J).to_real * n,
  { intros J hJ, rw tagged_prepartition.mem_filter at hJ,
    rw [norm_smul, real.norm_eq_abs, abs_of_nonneg ennreal.to_real_nonneg],
    exact mul_le_mul_of_nonneg_left (hJ.2 ▸ nat.le_ceil _) ennreal.to_real_nonneg },
  refine (norm_sum_le_of_le _ this).trans _, clear this,
  rw [← sum_mul, ← prepartition.measure_Union_to_real],
  generalize hm : μ (π.filter (λ J, N (π.tag J) = n)).Union = m,
  have : m < δ n / n,
  { simp only [measure.restrict_apply (hUo _).measurable_set] at hμU,
    refine hm ▸ (measure_mono _).trans_lt (hμU _),
    simp only [set.subset_def, tagged_prepartition.mem_Union, exists_prop,
      tagged_prepartition.mem_filter],
    rintro x ⟨J, ⟨hJ, rfl⟩, hx⟩,
    exact ⟨hrU _ (hπ.1 _ hJ (box.coe_subset_Icc hx)), π.le_of_mem' J hJ hx⟩ },
  lift m to ℝ≥0 using ne_top_of_lt this,
  rw [ennreal.coe_to_real, ← nnreal.coe_nat_cast, ← nnreal.coe_mul, nnreal.coe_le_coe,
    ← ennreal.coe_le_coe, ennreal.coe_mul, ennreal.coe_nat, mul_comm],
  exact (mul_le_mul_left' this.le _).trans ennreal.mul_div_le
end

/-- If `f` has integral `y` on a box `I` with respect to a locally finite measure `μ` and `g` is
a.e. equal to `f` on `I`, then `g` has the same integral on `I`.  -/
lemma has_integral.congr_ae {l : integration_params} {I : box ι} {y : E} {f g : (ι → ℝ) → E}
  {μ : measure (ι → ℝ)} [is_locally_finite_measure μ]
  (hf : has_integral.{u v v} I l f μ.to_box_additive.to_smul y)
  (hfg : f =ᵐ[μ.restrict I] g) (hl : l.bRiemann = ff) :
  has_integral.{u v v} I l g μ.to_box_additive.to_smul y :=
begin
  have : (g - f) =ᵐ[μ.restrict I] 0, from hfg.mono (λ x hx, sub_eq_zero.2 hx.symm),
  simpa using hf.add (has_integral_zero_of_ae_eq_zero this hl)
end

end box_integral

namespace measure_theory

namespace simple_func

/-- A simple function is McShane integrable w.r.t. any locally finite measure. -/
lemma has_box_integral (f : simple_func (ι → ℝ) E) (μ : measure (ι → ℝ))
  [is_locally_finite_measure μ] (I : box ι) (l : integration_params) (hl : l.bRiemann = ff) :
  has_integral.{u v v} I l f μ.to_box_additive.to_smul (f.integral (μ.restrict I)) :=
begin
  induction f using measure_theory.simple_func.induction with y s hs f g hd hfi hgi,
  { simpa [function.const, measure.restrict_apply hs]
      using box_integral.has_integral_indicator_const l hl hs I y μ },
  { borelize E, haveI := fact.mk (I.measure_coe_lt_top μ),
    rw integral_add,
    exacts [hfi.add hgi, integrable_iff.2 $ λ _ _, measure_lt_top _ _,
      integrable_iff.2 $ λ _ _, measure_lt_top _ _] }
end

/-- For a simple function, its McShane (or Henstock, or `⊥`) box integral is equal to its
integral in the sense of `measure_theory.simple_func.integral`. -/
lemma box_integral_eq_integral (f : simple_func (ι → ℝ) E) (μ : measure (ι → ℝ))
  [is_locally_finite_measure μ] (I : box ι) (l : integration_params) (hl : l.bRiemann = ff) :
  box_integral.integral.{u v v} I l f μ.to_box_additive.to_smul = f.integral (μ.restrict I) :=
(f.has_box_integral μ I l hl).integral_eq

end simple_func

open topological_space

/-- If `f : ℝⁿ → E` is Bochner integrable w.r.t. a locally finite measure `μ` on a rectangular box
`I`, then it is McShane integrable on `I` with the same integral.  -/
lemma integrable_on.has_box_integral [complete_space E] {f : (ι → ℝ) → E} {μ : measure (ι → ℝ)}
  [is_locally_finite_measure μ] {I : box ι} (hf : integrable_on f I μ) (l : integration_params)
  (hl : l.bRiemann = ff) :
  has_integral.{u v v} I l f μ.to_box_additive.to_smul (∫ x in I, f x ∂ μ) :=
begin
  borelize E,
  /- First we replace an `ae_strongly_measurable` function by a measurable one. -/
  rcases hf.ae_strongly_measurable with ⟨g, hg, hfg⟩,
  haveI : separable_space (range g ∪ {0} : set E) := hg.separable_space_range_union_singleton,
  rw integral_congr_ae hfg, have hgi : integrable_on g I μ := (integrable_congr hfg).1 hf,
  refine box_integral.has_integral.congr_ae _ hfg.symm hl,
  clear_dependent f,
  /- Now consider the sequence of simple functions
  `simple_func.approx_on g hg.measurable (range g ∪ {0}) 0 (by simp)`
  approximating `g`. Recall some properties of this sequence. -/
  set f : ℕ → simple_func (ι → ℝ) E :=
    simple_func.approx_on g hg.measurable (range g ∪ {0}) 0 (by simp),
  have hfi : ∀ n, integrable_on (f n) I μ,
    from simple_func.integrable_approx_on_range hg.measurable hgi,
  have hfi' := λ n, ((f n).has_box_integral μ I l hl).integrable,
  have hfgi : tendsto (λ n, (f n).integral (μ.restrict I)) at_top (𝓝 $ ∫ x in I, g x ∂μ),
    from tendsto_integral_approx_on_of_measurable_of_range_subset hg.measurable hgi _ subset.rfl,
  have hfg_mono : ∀ x {m n}, m ≤ n → ∥f n x - g x∥ ≤ ∥f m x - g x∥,
  { intros x m n hmn,
    rw [← dist_eq_norm, ← dist_eq_norm, dist_nndist, dist_nndist, nnreal.coe_le_coe,
      ← ennreal.coe_le_coe, ← edist_nndist, ← edist_nndist],
    exact simple_func.edist_approx_on_mono hg.measurable _ x hmn },
  /- Now consider `ε > 0`. We need to find `r` such that for any tagged partition subordinate
  to `r`, the integral sum is `(μ I + 1 + 1) * ε`-close to the Bochner integral. -/
  refine has_integral_of_mul ((μ I).to_real + 1 + 1) (λ ε ε0, _),
  lift ε to ℝ≥0 using ε0.le, rw nnreal.coe_pos at ε0, have ε0' := ennreal.coe_pos.2 ε0,
  /- Choose `N` such that the integral of `∥f N x - g x∥` is less than or equal to `ε`. -/
  obtain ⟨N₀, hN₀⟩ : ∃ N : ℕ, ∫ x in I, ∥f N x - g x∥ ∂μ ≤ ε,
  { have : tendsto (λ n, ∫⁻ x in I, ∥f n x - g x∥₊ ∂μ) at_top (𝓝 0),
      from simple_func.tendsto_approx_on_range_L1_nnnorm hg.measurable hgi,
    refine (this.eventually (ge_mem_nhds ε0')).exists.imp (λ N hN, _),
    exact integral_coe_le_of_lintegral_coe_le hN },
  /- For each `x`, we choose `Nx x ≥ N₀` such that `dist (f Nx x) (g x) ≤ ε`. -/
  have : ∀ x, ∃ N₁, N₀ ≤ N₁ ∧ dist (f N₁ x) (g x) ≤ ε,
  { intro x,
    have : tendsto (λ n, f n x) at_top (𝓝 $ g x),
      from simple_func.tendsto_approx_on hg.measurable _ (subset_closure (by simp)),
    exact ((eventually_ge_at_top N₀).and $ this $ closed_ball_mem_nhds _ ε0).exists },
  choose Nx hNx hNxε,
  /- We also choose a convergent series with `∑' i : ℕ, δ i < ε`. -/
  rcases nnreal.exists_pos_sum_of_encodable ε0.ne'with ⟨δ, δ0, c, hδc, hcε⟩,
  /- Since each simple function `fᵢ` is integrable, there exists `rᵢ : ℝⁿ → (0, ∞)` such that
  the integral sum of `f` over any tagged prepartition is `δᵢ`-close to the sum of integrals
  of `fᵢ` over the boxes of this prepartition. For each `x`, we choose `r (Nx x)` as the radius
  at `x`. -/
  set r : ℝ≥0 → (ι → ℝ) → Ioi (0 : ℝ) := λ c x, (hfi' $ Nx x).convergence_r (δ $ Nx x) c x,
  refine ⟨r, λ c, l.r_cond_of_bRiemann_eq_ff hl, λ c π hπ hπp, _⟩,
  /- Now we prove the estimate in 3 "jumps": first we replace `g x` in the formula for the
  integral sum by `f (Nx x)`; then we replace each `μ J • f (Nx (π.tag J)) (π.tag J)`
  by the Bochner integral of `f (Nx (π.tag J)) x` over `J`, then we jump to the Bochner
  integral of `g`. -/
  refine (dist_triangle4 _ (∑ J in π.boxes, (μ J).to_real • f (Nx $ π.tag J) (π.tag J))
    (∑ J in π.boxes, ∫ x in J, f (Nx $ π.tag J) x ∂μ) _).trans _,
  rw [add_mul, add_mul, one_mul],
  refine add_le_add_three _ _ _,
  { /- Since each `f (Nx $ π.tag J)` is `ε`-close to `g (π.tag J)`, replacing the latter with
    the former in the formula for the integral sum changes the sum at most by `μ I * ε`. -/
    rw [← hπp.Union_eq, π.to_prepartition.measure_Union_to_real, sum_mul, integral_sum],
    refine dist_sum_sum_le_of_le _ (λ J hJ, _), dsimp,
    rw [dist_eq_norm, ← smul_sub, norm_smul, real.norm_eq_abs,
      abs_of_nonneg ennreal.to_real_nonneg],
    refine mul_le_mul_of_nonneg_left _ ennreal.to_real_nonneg,
    rw [← dist_eq_norm'], exact hNxε _ },
  { /- We group the terms of both sums by the values of `Nx (π.tag J)`.
    For each `N`, the sum of Bochner integrals over the boxes is equal
    to the sum of box integrals, and the sum of box integrals is `δᵢ`-close
    to the corresponding integral sum due to the Henstock-Sacks inequality. -/
    rw [← π.to_prepartition.sum_fiberwise (λ J, Nx (π.tag J)),
      ← π.to_prepartition.sum_fiberwise (λ J, Nx (π.tag J))],
    refine le_trans _ (nnreal.coe_lt_coe.2 hcε).le,
    refine (dist_sum_sum_le_of_le _ (λ n hn, _)).trans
      (sum_le_has_sum _ (λ n _, (δ n).2) (nnreal.has_sum_coe.2 hδc)),
    have hNxn : ∀ J ∈ π.filter (λ J, Nx (π.tag J) = n), Nx (π.tag J) = n,
      from λ J hJ, (π.mem_filter.1 hJ).2,
    have hrn : ∀ J ∈ π.filter (λ J, Nx (π.tag J) = n),
      r c (π.tag J) = (hfi' n).convergence_r (δ n) c (π.tag J),
    { intros J hJ,
      obtain rfl := hNxn J hJ,
      refl },
    have : l.mem_base_set I c ((hfi' n).convergence_r (δ n) c) (π.filter (λ J, Nx (π.tag J) = n)),
      from (hπ.filter _).mono' _ le_rfl le_rfl (λ J hJ, (hrn J hJ).le),
    convert (hfi' n).dist_integral_sum_sum_integral_le_of_mem_base_set (δ0 _) this using 2,
    { refine sum_congr rfl (λ J hJ, _),
      simp [hNxn J hJ] },
    { refine sum_congr rfl (λ J hJ, _),
      rw [← simple_func.integral_eq_integral, simple_func.box_integral_eq_integral _ _ _ _ hl,
        hNxn J hJ],
      exact (hfi _).mono_set (prepartition.le_of_mem _ hJ) } },
  { /-  For the last jump, we use the fact that the distance between `f (Nx x) x` and `g x` is less
    than or equal to the distance between `f N₀ x` and `g x` and the integral of `∥f N₀ x - g x∥`
    is less than or equal to `ε`. -/
    refine le_trans _ hN₀,
    have hfi : ∀ n (J ∈ π), integrable_on (f n) ↑J  μ,
      from λ n J hJ, (hfi n).mono_set (π.le_of_mem' J hJ),
    have hgi : ∀ J ∈ π, integrable_on g ↑J μ, from λ J hJ, hgi.mono_set (π.le_of_mem' J hJ),
    have hfgi : ∀ n (J ∈ π), integrable_on (λ x, ∥f n x - g x∥) J μ,
      from λ n J hJ, ((hfi n J hJ).sub (hgi J hJ)).norm,
    rw [← hπp.Union_eq, prepartition.Union_def',
      integral_finset_bUnion π.boxes (λ J hJ, J.measurable_set_coe) π.pairwise_disjoint hgi,
      integral_finset_bUnion π.boxes (λ J hJ, J.measurable_set_coe) π.pairwise_disjoint (hfgi _)],
    refine dist_sum_sum_le_of_le _ (λ J hJ, _),
    rw [dist_eq_norm, ← integral_sub (hfi _ J hJ) (hgi J hJ)],
    refine norm_integral_le_of_norm_le (hfgi _ J hJ) (eventually_of_forall $ λ x, _),
    exact hfg_mono x (hNx (π.tag J)) }
end

end measure_theory