File size: 7,200 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.calculus.deriv
import analysis.analytic.basic
import analysis.calculus.cont_diff

/-!
# Frechet derivatives of analytic functions.

A function expressible as a power series at a point has a Frechet derivative there.
Also the special case in terms of `deriv` when the domain is 1-dimensional.
-/

open filter asymptotics
open_locale ennreal

variables {π•œ : Type*} [nontrivially_normed_field π•œ]
variables {E : Type*} [normed_add_comm_group E] [normed_space π•œ E]
variables {F : Type*} [normed_add_comm_group F] [normed_space π•œ F]

section fderiv

variables {p : formal_multilinear_series π•œ E F} {r : ℝβ‰₯0∞}
variables {f : E β†’ F} {x : E} {s : set E}

lemma has_fpower_series_at.has_strict_fderiv_at (h : has_fpower_series_at f p x) :
  has_strict_fderiv_at f (continuous_multilinear_curry_fin1 π•œ E F (p 1)) x :=
begin
  refine h.is_O_image_sub_norm_mul_norm_sub.trans_is_o (is_o.of_norm_right _),
  refine is_o_iff_exists_eq_mul.2 ⟨λ y, βˆ₯y - (x, x)βˆ₯, _, eventually_eq.rfl⟩,
  refine (continuous_id.sub continuous_const).norm.tendsto' _ _ _,
  rw [_root_.id, sub_self, norm_zero]
end

lemma has_fpower_series_at.has_fderiv_at (h : has_fpower_series_at f p x) :
  has_fderiv_at f (continuous_multilinear_curry_fin1 π•œ E F (p 1)) x :=
h.has_strict_fderiv_at.has_fderiv_at

lemma has_fpower_series_at.differentiable_at (h : has_fpower_series_at f p x) :
  differentiable_at π•œ f x :=
h.has_fderiv_at.differentiable_at

lemma analytic_at.differentiable_at : analytic_at π•œ f x β†’ differentiable_at π•œ f x
| ⟨p, hp⟩ := hp.differentiable_at

lemma analytic_at.differentiable_within_at (h : analytic_at π•œ f x) :
  differentiable_within_at π•œ f s x :=
h.differentiable_at.differentiable_within_at

lemma has_fpower_series_at.fderiv_eq (h : has_fpower_series_at f p x) :
  fderiv π•œ f x = continuous_multilinear_curry_fin1 π•œ E F (p 1) :=
h.has_fderiv_at.fderiv

lemma has_fpower_series_on_ball.differentiable_on [complete_space F]
  (h : has_fpower_series_on_ball f p x r) :
  differentiable_on π•œ f (emetric.ball x r) :=
Ξ» y hy, (h.analytic_at_of_mem hy).differentiable_within_at

lemma analytic_on.differentiable_on (h : analytic_on π•œ f s) :
  differentiable_on π•œ f s :=
Ξ» y hy, (h y hy).differentiable_within_at

lemma has_fpower_series_on_ball.has_fderiv_at [complete_space F]
  (h : has_fpower_series_on_ball f p x r) {y : E} (hy : (βˆ₯yβˆ₯β‚Š : ℝβ‰₯0∞) < r) :
  has_fderiv_at f (continuous_multilinear_curry_fin1 π•œ E F (p.change_origin y 1)) (x + y) :=
(h.change_origin hy).has_fpower_series_at.has_fderiv_at

lemma has_fpower_series_on_ball.fderiv_eq [complete_space F]
  (h : has_fpower_series_on_ball f p x r) {y : E} (hy : (βˆ₯yβˆ₯β‚Š : ℝβ‰₯0∞) < r) :
  fderiv π•œ f (x + y) = continuous_multilinear_curry_fin1 π•œ E F (p.change_origin y 1) :=
(h.has_fderiv_at hy).fderiv

/-- If a function has a power series on a ball, then so does its derivative. -/
lemma has_fpower_series_on_ball.fderiv [complete_space F]
  (h : has_fpower_series_on_ball f p x r) :
  has_fpower_series_on_ball (fderiv π•œ f)
    ((continuous_multilinear_curry_fin1 π•œ E F : (E [Γ—1]β†’L[π•œ] F) β†’L[π•œ] (E β†’L[π•œ] F))
      .comp_formal_multilinear_series (p.change_origin_series 1)) x r :=
begin
  suffices A : has_fpower_series_on_ball
    (Ξ» z, continuous_multilinear_curry_fin1 π•œ E F (p.change_origin (z - x) 1))
      ((continuous_multilinear_curry_fin1 π•œ E F : (E [Γ—1]β†’L[π•œ] F) β†’L[π•œ] (E β†’L[π•œ] F))
        .comp_formal_multilinear_series (p.change_origin_series 1)) x r,
  { apply A.congr,
    assume z hz,
    dsimp,
    rw [← h.fderiv_eq, add_sub_cancel'_right],
    simpa only [edist_eq_coe_nnnorm_sub, emetric.mem_ball] using hz},
  suffices B : has_fpower_series_on_ball (Ξ» z, p.change_origin (z - x) 1)
    (p.change_origin_series 1) x r,
      from (continuous_multilinear_curry_fin1 π•œ E F).to_continuous_linear_equiv
        .to_continuous_linear_map.comp_has_fpower_series_on_ball B,
  simpa using ((p.has_fpower_series_on_ball_change_origin 1 (h.r_pos.trans_le h.r_le)).mono
    h.r_pos h.r_le).comp_sub x,
end

/-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/
lemma analytic_on.fderiv [complete_space F] (h : analytic_on π•œ f s) :
  analytic_on π•œ (fderiv π•œ f) s :=
begin
  assume y hy,
  rcases h y hy with ⟨p, r, hp⟩,
  exact hp.fderiv.analytic_at,
end

/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/
lemma analytic_on.iterated_fderiv [complete_space F] (h : analytic_on π•œ f s) (n : β„•) :
  analytic_on π•œ (iterated_fderiv π•œ n f) s :=
begin
  induction n with n IH,
  { rw iterated_fderiv_zero_eq_comp,
    exact ((continuous_multilinear_curry_fin0 π•œ E F).symm : F β†’L[π•œ] (E [Γ—0]β†’L[π•œ] F))
      .comp_analytic_on h },
  { rw iterated_fderiv_succ_eq_comp_left,
    apply (continuous_multilinear_curry_left_equiv π•œ (Ξ» (i : fin (n + 1)), E) F)
      .to_continuous_linear_equiv.to_continuous_linear_map.comp_analytic_on,
    exact IH.fderiv }
end

/-- An analytic function is infinitely differentiable. -/
lemma analytic_on.cont_diff_on [complete_space F] (h : analytic_on π•œ f s) {n : with_top β„•} :
  cont_diff_on π•œ n f s :=
begin
  let t := {x | analytic_at π•œ f x},
  suffices : cont_diff_on π•œ n f t, from this.mono h,
  have H : analytic_on π•œ f t := Ξ» x hx, hx,
  have t_open : is_open t := is_open_analytic_at π•œ f,
  apply cont_diff_on_of_continuous_on_differentiable_on,
  { assume m hm,
    apply (H.iterated_fderiv m).continuous_on.congr,
    assume x hx,
    exact iterated_fderiv_within_of_is_open _ t_open hx },
  { assume m hm,
    apply (H.iterated_fderiv m).differentiable_on.congr,
    assume x hx,
    exact iterated_fderiv_within_of_is_open _ t_open hx }
end

end fderiv

section deriv

variables {p : formal_multilinear_series π•œ π•œ F} {r : ℝβ‰₯0∞}
variables {f : π•œ β†’ F} {x : π•œ} {s : set π•œ}

protected lemma has_fpower_series_at.has_strict_deriv_at (h : has_fpower_series_at f p x) :
  has_strict_deriv_at f (p 1 (Ξ» _, 1)) x :=
h.has_strict_fderiv_at.has_strict_deriv_at

protected lemma has_fpower_series_at.has_deriv_at (h : has_fpower_series_at f p x) :
  has_deriv_at f (p 1 (Ξ» _, 1)) x :=
h.has_strict_deriv_at.has_deriv_at

protected lemma has_fpower_series_at.deriv (h : has_fpower_series_at f p x) :
  deriv f x = p 1 (Ξ» _, 1) :=
h.has_deriv_at.deriv

/-- If a function is analytic on a set `s`, so is its derivative. -/
lemma analytic_on.deriv [complete_space F] (h : analytic_on π•œ f s) :
  analytic_on π•œ (deriv f) s :=
(continuous_linear_map.apply π•œ F (1 : π•œ)).comp_analytic_on h.fderiv

/-- If a function is analytic on a set `s`, so are its successive derivatives. -/
lemma analytic_on.iterated_deriv [complete_space F] (h : analytic_on π•œ f s) (n : β„•) :
  analytic_on π•œ (deriv^[n] f) s :=
begin
  induction n with n IH,
  { exact h },
  { simpa only [function.iterate_succ', function.comp_app] using IH.deriv }
end

end deriv