Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 7,946 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.calculus.inverse
import linear_algebra.dual
/-!
# Lagrange multipliers
In this file we formalize the
[Lagrange multipliers](https://en.wikipedia.org/wiki/Lagrange_multiplier) method of solving
conditional extremum problems: if a function `Ο` has a local extremum at `xβ` on the set
`f β»ΒΉ' {f xβ}`, `f x = (fβ x, ..., fβββ x)`, then the differentials of `fβ` and `Ο` are linearly
dependent. First we formulate a geometric version of this theorem which does not rely on the
target space being `ββΏ`, then restate it in terms of coordinates.
## TODO
Formalize Karush-Kuhn-Tucker theorem
## Tags
lagrange multiplier, local extremum
-/
open filter set
open_locale topological_space filter big_operators
variables {E F : Type*} [normed_add_comm_group E] [normed_space β E] [complete_space E]
[normed_add_comm_group F] [normed_space β F] [complete_space F]
{f : E β F} {Ο : E β β} {xβ : E} {f' : E βL[β] F} {Ο' : E βL[β] β}
/-- Lagrange multipliers theorem: if `Ο : E β β` has a local extremum on the set `{x | f x = f xβ}`
at `xβ`, both `f : E β F` and `Ο` are strictly differentiable at `xβ`, and the codomain of `f` is
a complete space, then the linear map `x β¦ (f' x, Ο' x)` is not surjective. -/
lemma is_local_extr_on.range_ne_top_of_has_strict_fderiv_at
(hextr : is_local_extr_on Ο {x | f x = f xβ} xβ) (hf' : has_strict_fderiv_at f f' xβ)
(hΟ' : has_strict_fderiv_at Ο Ο' xβ) :
(f'.prod Ο').range β β€ :=
begin
intro htop,
set fΟ := Ξ» x, (f x, Ο x),
have A : map Ο (π[f β»ΒΉ' {f xβ}] xβ) = π (Ο xβ),
{ change map (prod.snd β fΟ) (π[fΟ β»ΒΉ' {p | p.1 = f xβ}] xβ) = π (Ο xβ),
rw [β map_map, nhds_within, map_inf_principal_preimage,
(hf'.prod hΟ').map_nhds_eq_of_surj htop],
exact map_snd_nhds_within _ },
exact hextr.not_nhds_le_map A.ge
end
/-- Lagrange multipliers theorem: if `Ο : E β β` has a local extremum on the set `{x | f x = f xβ}`
at `xβ`, both `f : E β F` and `Ο` are strictly differentiable at `xβ`, and the codomain of `f` is
a complete space, then there exist `Ξ : dual β F` and `Ξβ : β` such that `(Ξ, Ξβ) β 0` and
`Ξ (f' x) + Ξβ β’ Ο' x = 0` for all `x`. -/
lemma is_local_extr_on.exists_linear_map_of_has_strict_fderiv_at
(hextr : is_local_extr_on Ο {x | f x = f xβ} xβ) (hf' : has_strict_fderiv_at f f' xβ)
(hΟ' : has_strict_fderiv_at Ο Ο' xβ) :
β (Ξ : module.dual β F) (Ξβ : β), (Ξ, Ξβ) β 0 β§ β x, Ξ (f' x) + Ξβ β’ Ο' x = 0 :=
begin
rcases submodule.exists_le_ker_of_lt_top _
(lt_top_iff_ne_top.2 $ hextr.range_ne_top_of_has_strict_fderiv_at hf' hΟ') with β¨Ξ', h0, hΞ'β©,
set e : ((F ββ[β] β) Γ β) ββ[β] (F Γ β ββ[β] β) :=
((linear_equiv.refl β (F ββ[β] β)).prod (linear_map.ring_lmap_equiv_self β β β).symm).trans
(linear_map.coprod_equiv β),
rcases e.surjective Ξ' with β¨β¨Ξ, Ξββ©, rflβ©,
refine β¨Ξ, Ξβ, e.map_ne_zero_iff.1 h0, Ξ» x, _β©,
convert linear_map.congr_fun (linear_map.range_le_ker_iff.1 hΞ') x using 1,
-- squeezed `simp [mul_comm]` to speed up elaboration
simp only [linear_map.coprod_equiv_apply, linear_equiv.refl_apply,
linear_map.ring_lmap_equiv_self_symm_apply, linear_map.comp_apply,
continuous_linear_map.coe_coe, continuous_linear_map.prod_apply,
linear_equiv.trans_apply, linear_equiv.prod_apply, linear_map.coprod_apply,
linear_map.smul_right_apply, linear_map.one_apply, smul_eq_mul, mul_comm]
end
/-- Lagrange multipliers theorem: if `Ο : E β β` has a local extremum on the set `{x | f x = f xβ}`
at `xβ`, and both `f : E β β` and `Ο` are strictly differentiable at `xβ`, then there exist
`a b : β` such that `(a, b) β 0` and `a β’ f' + b β’ Ο' = 0`. -/
lemma is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at_1d
{f : E β β} {f' : E βL[β] β}
(hextr : is_local_extr_on Ο {x | f x = f xβ} xβ) (hf' : has_strict_fderiv_at f f' xβ)
(hΟ' : has_strict_fderiv_at Ο Ο' xβ) :
β (a b : β), (a, b) β 0 β§ a β’ f' + b β’ Ο' = 0 :=
begin
obtain β¨Ξ, Ξβ, hΞ, hfΞβ© := hextr.exists_linear_map_of_has_strict_fderiv_at hf' hΟ',
refine β¨Ξ 1, Ξβ, _, _β©,
{ contrapose! hΞ,
simp only [prod.mk_eq_zero] at β’ hΞ,
refine β¨linear_map.ext (Ξ» x, _), hΞ.2β©,
simpa [hΞ.1] using Ξ.map_smul x 1 },
{ ext x,
have Hβ : Ξ (f' x) = f' x * Ξ 1,
{ simpa only [mul_one, algebra.id.smul_eq_mul] using Ξ.map_smul (f' x) 1 },
have Hβ : f' x * Ξ 1 + Ξβ * Ο' x = 0,
{ simpa only [algebra.id.smul_eq_mul, Hβ] using hfΞ x },
simpa [mul_comm] using Hβ }
end
/-- Lagrange multipliers theorem, 1d version. Let `f : ΞΉ β E β β` be a finite family of functions.
Suppose that `Ο : E β β` has a local extremum on the set `{x | β i, f i x = f i xβ}` at `xβ`.
Suppose that all functions `f i` as well as `Ο` are strictly differentiable at `xβ`.
Then the derivatives `f' i : E β L[β] β` and `Ο' : E βL[β] β` are linearly dependent:
there exist `Ξ : ΞΉ β β` and `Ξβ : β`, `(Ξ, Ξβ) β 0`, such that `β i, Ξ i β’ f' i + Ξβ β’ Ο' = 0`.
See also `is_local_extr_on.linear_dependent_of_has_strict_fderiv_at` for a version that
states `Β¬linear_independent β _` instead of existence of `Ξ` and `Ξβ`. -/
lemma is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at {ΞΉ : Type*} [fintype ΞΉ]
{f : ΞΉ β E β β} {f' : ΞΉ β E βL[β] β}
(hextr : is_local_extr_on Ο {x | β i, f i x = f i xβ} xβ)
(hf' : β i, has_strict_fderiv_at (f i) (f' i) xβ)
(hΟ' : has_strict_fderiv_at Ο Ο' xβ) :
β (Ξ : ΞΉ β β) (Ξβ : β), (Ξ, Ξβ) β 0 β§ β i, Ξ i β’ f' i + Ξβ β’ Ο' = 0 :=
begin
letI := classical.dec_eq ΞΉ,
replace hextr : is_local_extr_on Ο {x | (Ξ» i, f i x) = (Ξ» i, f i xβ)} xβ,
by simpa only [function.funext_iff] using hextr,
rcases hextr.exists_linear_map_of_has_strict_fderiv_at
(has_strict_fderiv_at_pi.2 (Ξ» i, hf' i)) hΟ'
with β¨Ξ, Ξβ, h0, hsumβ©,
rcases (linear_equiv.pi_ring β β ΞΉ β).symm.surjective Ξ with β¨Ξ, rflβ©,
refine β¨Ξ, Ξβ, _, _β©,
{ simpa only [ne.def, prod.ext_iff, linear_equiv.map_eq_zero_iff, prod.fst_zero] using h0 },
{ ext x, simpa [mul_comm] using hsum x }
end
/-- Lagrange multipliers theorem. Let `f : ΞΉ β E β β` be a finite family of functions.
Suppose that `Ο : E β β` has a local extremum on the set `{x | β i, f i x = f i xβ}` at `xβ`.
Suppose that all functions `f i` as well as `Ο` are strictly differentiable at `xβ`.
Then the derivatives `f' i : E β L[β] β` and `Ο' : E βL[β] β` are linearly dependent.
See also `is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at` for a version that
that states existence of Lagrange multipliers `Ξ` and `Ξβ` instead of using
`Β¬linear_independent β _` -/
lemma is_local_extr_on.linear_dependent_of_has_strict_fderiv_at {ΞΉ : Type*} [fintype ΞΉ]
{f : ΞΉ β E β β} {f' : ΞΉ β E βL[β] β}
(hextr : is_local_extr_on Ο {x | β i, f i x = f i xβ} xβ)
(hf' : β i, has_strict_fderiv_at (f i) (f' i) xβ)
(hΟ' : has_strict_fderiv_at Ο Ο' xβ) :
Β¬linear_independent β (option.elim Ο' f' : option ΞΉ β E βL[β] β) :=
begin
rw [fintype.linear_independent_iff], push_neg,
rcases hextr.exists_multipliers_of_has_strict_fderiv_at hf' hΟ' with β¨Ξ, Ξβ, hΞ, hΞfβ©,
refine β¨option.elim Ξβ Ξ, _, _β©,
{ simpa [add_comm] using hΞf },
{ simpa [function.funext_iff, not_and_distrib, or_comm, option.exists] using hΞ }
end
|