Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 24,816 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
/-
Copyright (c) 2020 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anatole Dedecker
-/
import analysis.calculus.mean_value
/-!
# L'HΓ΄pital's rule for 0/0 indeterminate forms
In this file, we prove several forms of "L'Hopital's rule" for computing 0/0
indeterminate forms. The proof of `has_deriv_at.lhopital_zero_right_on_Ioo`
is based on the one given in the corresponding
[Wikibooks](https://en.wikibooks.org/wiki/Calculus/L%27H%C3%B4pital%27s_Rule)
chapter, and all other statements are derived from this one by composing by
carefully chosen functions.
Note that the filter `f'/g'` tends to isn't required to be one of `π a`,
`at_top` or `at_bot`. In fact, we give a slightly stronger statement by
allowing it to be any filter on `β`.
Each statement is available in a `has_deriv_at` form and a `deriv` form, which
is denoted by each statement being in either the `has_deriv_at` or the `deriv`
namespace.
## Tags
L'HΓ΄pital's rule, L'Hopital's rule
-/
open filter set
open_locale filter topological_space pointwise
variables {a b : β} (hab : a < b) {l : filter β} {f f' g g' : β β β}
/-!
## Interval-based versions
We start by proving statements where all conditions (derivability, `g' β 0`) have
to be satisfied on an explicitly-provided interval.
-/
namespace has_deriv_at
include hab
theorem lhopital_zero_right_on_Ioo
(hff' : β x β Ioo a b, has_deriv_at f (f' x) x) (hgg' : β x β Ioo a b, has_deriv_at g (g' x) x)
(hg' : β x β Ioo a b, g' x β 0)
(hfa : tendsto f (π[>] a) (π 0)) (hga : tendsto g (π[>] a) (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) (π[>] a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[>] a) l :=
begin
have sub : β x β Ioo a b, Ioo a x β Ioo a b := Ξ» x hx, Ioo_subset_Ioo (le_refl a) (le_of_lt hx.2),
have hg : β x β (Ioo a b), g x β 0,
{ intros x hx h,
have : tendsto g (π[<] x) (π 0),
{ rw [β h, β nhds_within_Ioo_eq_nhds_within_Iio hx.1],
exact ((hgg' x hx).continuous_at.continuous_within_at.mono $ sub x hx).tendsto },
obtain β¨y, hyx, hyβ© : β c β Ioo a x, g' c = 0,
from exists_has_deriv_at_eq_zero' hx.1 hga this (Ξ» y hy, hgg' y $ sub x hx hy),
exact hg' y (sub x hx hyx) hy },
have : β x β Ioo a b, β c β Ioo a x, (f x) * (g' c) = (g x) * (f' c),
{ intros x hx,
rw [β sub_zero (f x), β sub_zero (g x)],
exact exists_ratio_has_deriv_at_eq_ratio_slope' g g' hx.1 f f'
(Ξ» y hy, hgg' y $ sub x hx hy) (Ξ» y hy, hff' y $ sub x hx hy) hga hfa
(tendsto_nhds_within_of_tendsto_nhds (hgg' x hx).continuous_at.tendsto)
(tendsto_nhds_within_of_tendsto_nhds (hff' x hx).continuous_at.tendsto) },
choose! c hc using this,
have : β x β Ioo a b, ((Ξ» x', (f' x') / (g' x')) β c) x = f x / g x,
{ intros x hx,
rcases hc x hx with β¨hβ, hββ©,
field_simp [hg x hx, hg' (c x) ((sub x hx) hβ)],
simp only [hβ],
rwa mul_comm },
have cmp : β x β Ioo a b, a < c x β§ c x < x,
from Ξ» x hx, (hc x hx).1,
rw β nhds_within_Ioo_eq_nhds_within_Ioi hab,
apply tendsto_nhds_within_congr this,
simp only,
apply hdiv.comp,
refine tendsto_nhds_within_of_tendsto_nhds_of_eventually_within _
(tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds
(tendsto_nhds_within_of_tendsto_nhds tendsto_id) _ _) _,
all_goals
{ apply eventually_nhds_within_of_forall,
intros x hx,
have := cmp x hx,
try {simp},
linarith [this] }
end
theorem lhopital_zero_right_on_Ico
(hff' : β x β Ioo a b, has_deriv_at f (f' x) x) (hgg' : β x β Ioo a b, has_deriv_at g (g' x) x)
(hcf : continuous_on f (Ico a b)) (hcg : continuous_on g (Ico a b))
(hg' : β x β Ioo a b, g' x β 0)
(hfa : f a = 0) (hga : g a = 0)
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) (nhds_within a (Ioi a)) l) :
tendsto (Ξ» x, (f x) / (g x)) (nhds_within a (Ioi a)) l :=
begin
refine lhopital_zero_right_on_Ioo hab hff' hgg' hg' _ _ hdiv,
{ rw [β hfa, β nhds_within_Ioo_eq_nhds_within_Ioi hab],
exact ((hcf a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto },
{ rw [β hga, β nhds_within_Ioo_eq_nhds_within_Ioi hab],
exact ((hcg a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto },
end
theorem lhopital_zero_left_on_Ioo
(hff' : β x β Ioo a b, has_deriv_at f (f' x) x) (hgg' : β x β Ioo a b, has_deriv_at g (g' x) x)
(hg' : β x β Ioo a b, g' x β 0)
(hfb : tendsto f (nhds_within b (Iio b)) (π 0)) (hgb : tendsto g (nhds_within b (Iio b)) (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) (nhds_within b (Iio b)) l) :
tendsto (Ξ» x, (f x) / (g x)) (nhds_within b (Iio b)) l :=
begin
-- Here, we essentially compose by `has_neg.neg`. The following is mostly technical details.
have hdnf : β x β -Ioo a b, has_deriv_at (f β has_neg.neg) (f' (-x) * (-1)) x,
from Ξ» x hx, comp x (hff' (-x) hx) (has_deriv_at_neg x),
have hdng : β x β -Ioo a b, has_deriv_at (g β has_neg.neg) (g' (-x) * (-1)) x,
from Ξ» x hx, comp x (hgg' (-x) hx) (has_deriv_at_neg x),
rw preimage_neg_Ioo at hdnf,
rw preimage_neg_Ioo at hdng,
have := lhopital_zero_right_on_Ioo (neg_lt_neg hab) hdnf hdng
(by { intros x hx h,
apply hg' _ (by {rw β preimage_neg_Ioo at hx, exact hx}),
rwa [mul_comm, β neg_eq_neg_one_mul, neg_eq_zero] at h })
(hfb.comp tendsto_neg_nhds_within_Ioi_neg)
(hgb.comp tendsto_neg_nhds_within_Ioi_neg)
(by { simp only [neg_div_neg_eq, mul_one, mul_neg],
exact (tendsto_congr $ Ξ» x, rfl).mp (hdiv.comp tendsto_neg_nhds_within_Ioi_neg) }),
have := this.comp tendsto_neg_nhds_within_Iio,
unfold function.comp at this,
simpa only [neg_neg]
end
theorem lhopital_zero_left_on_Ioc
(hff' : β x β Ioo a b, has_deriv_at f (f' x) x) (hgg' : β x β Ioo a b, has_deriv_at g (g' x) x)
(hcf : continuous_on f (Ioc a b)) (hcg : continuous_on g (Ioc a b))
(hg' : β x β Ioo a b, g' x β 0)
(hfb : f b = 0) (hgb : g b = 0)
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) (nhds_within b (Iio b)) l) :
tendsto (Ξ» x, (f x) / (g x)) (nhds_within b (Iio b)) l :=
begin
refine lhopital_zero_left_on_Ioo hab hff' hgg' hg' _ _ hdiv,
{ rw [β hfb, β nhds_within_Ioo_eq_nhds_within_Iio hab],
exact ((hcf b $ right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto },
{ rw [β hgb, β nhds_within_Ioo_eq_nhds_within_Iio hab],
exact ((hcg b $ right_mem_Ioc.mpr hab).mono Ioo_subset_Ioc_self).tendsto },
end
omit hab
theorem lhopital_zero_at_top_on_Ioi
(hff' : β x β Ioi a, has_deriv_at f (f' x) x) (hgg' : β x β Ioi a, has_deriv_at g (g' x) x)
(hg' : β x β Ioi a, g' x β 0)
(hftop : tendsto f at_top (π 0)) (hgtop : tendsto g at_top (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) at_top l) :
tendsto (Ξ» x, (f x) / (g x)) at_top l :=
begin
obtain β¨ a', haa', ha'β© : β a', a < a' β§ 0 < a' :=
β¨1 + max a 0, β¨lt_of_le_of_lt (le_max_left a 0) (lt_one_add _),
lt_of_le_of_lt (le_max_right a 0) (lt_one_add _)β©β©,
have fact1 : β (x:β), x β Ioo 0 a'β»ΒΉ β x β 0 := Ξ» _ hx, (ne_of_lt hx.1).symm,
have fact2 : β x β Ioo 0 a'β»ΒΉ, a < xβ»ΒΉ,
from Ξ» _ hx, lt_trans haa' ((lt_inv ha' hx.1).mpr hx.2),
have hdnf : β x β Ioo 0 a'β»ΒΉ, has_deriv_at (f β has_inv.inv) (f' (xβ»ΒΉ) * (-(x^2)β»ΒΉ)) x,
from Ξ» x hx, comp x (hff' (xβ»ΒΉ) $ fact2 x hx) (has_deriv_at_inv $ fact1 x hx),
have hdng : β x β Ioo 0 a'β»ΒΉ, has_deriv_at (g β has_inv.inv) (g' (xβ»ΒΉ) * (-(x^2)β»ΒΉ)) x,
from Ξ» x hx, comp x (hgg' (xβ»ΒΉ) $ fact2 x hx) (has_deriv_at_inv $ fact1 x hx),
have := lhopital_zero_right_on_Ioo (inv_pos.mpr ha') hdnf hdng
(by { intros x hx,
refine mul_ne_zero _ (neg_ne_zero.mpr $ inv_ne_zero $ pow_ne_zero _ $ fact1 x hx),
exact hg' _ (fact2 x hx) })
(hftop.comp tendsto_inv_zero_at_top)
(hgtop.comp tendsto_inv_zero_at_top)
(by { refine (tendsto_congr' _).mp (hdiv.comp tendsto_inv_zero_at_top),
rw eventually_eq_iff_exists_mem,
use [Ioi 0, self_mem_nhds_within],
intros x hx,
unfold function.comp,
erw mul_div_mul_right,
refine neg_ne_zero.mpr (inv_ne_zero $ pow_ne_zero _ $ ne_of_gt hx) }),
have := this.comp tendsto_inv_at_top_zero',
unfold function.comp at this,
simpa only [inv_inv],
end
theorem lhopital_zero_at_bot_on_Iio
(hff' : β x β Iio a, has_deriv_at f (f' x) x) (hgg' : β x β Iio a, has_deriv_at g (g' x) x)
(hg' : β x β Iio a, g' x β 0)
(hfbot : tendsto f at_bot (π 0)) (hgbot : tendsto g at_bot (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) at_bot l) :
tendsto (Ξ» x, (f x) / (g x)) at_bot l :=
begin
-- Here, we essentially compose by `has_neg.neg`. The following is mostly technical details.
have hdnf : β x β -Iio a, has_deriv_at (f β has_neg.neg) (f' (-x) * (-1)) x,
from Ξ» x hx, comp x (hff' (-x) hx) (has_deriv_at_neg x),
have hdng : β x β -Iio a, has_deriv_at (g β has_neg.neg) (g' (-x) * (-1)) x,
from Ξ» x hx, comp x (hgg' (-x) hx) (has_deriv_at_neg x),
rw preimage_neg_Iio at hdnf,
rw preimage_neg_Iio at hdng,
have := lhopital_zero_at_top_on_Ioi hdnf hdng
(by { intros x hx h,
apply hg' _ (by {rw β preimage_neg_Iio at hx, exact hx}),
rwa [mul_comm, β neg_eq_neg_one_mul, neg_eq_zero] at h })
(hfbot.comp tendsto_neg_at_top_at_bot)
(hgbot.comp tendsto_neg_at_top_at_bot)
(by { simp only [mul_one, mul_neg, neg_div_neg_eq],
exact (tendsto_congr $ Ξ» x, rfl).mp (hdiv.comp tendsto_neg_at_top_at_bot) }),
have := this.comp tendsto_neg_at_bot_at_top,
unfold function.comp at this,
simpa only [neg_neg],
end
end has_deriv_at
namespace deriv
include hab
theorem lhopital_zero_right_on_Ioo
(hdf : differentiable_on β f (Ioo a b)) (hg' : β x β Ioo a b, deriv g x β 0)
(hfa : tendsto f (π[>] a) (π 0)) (hga : tendsto g (π[>] a) (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) (π[>] a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[>] a) l :=
begin
have hdf : β x β Ioo a b, differentiable_at β f x,
from Ξ» x hx, (hdf x hx).differentiable_at (Ioo_mem_nhds hx.1 hx.2),
have hdg : β x β Ioo a b, differentiable_at β g x,
from Ξ» x hx, classical.by_contradiction (Ξ» h, hg' x hx (deriv_zero_of_not_differentiable_at h)),
exact has_deriv_at.lhopital_zero_right_on_Ioo hab (Ξ» x hx, (hdf x hx).has_deriv_at)
(Ξ» x hx, (hdg x hx).has_deriv_at) hg' hfa hga hdiv
end
theorem lhopital_zero_right_on_Ico
(hdf : differentiable_on β f (Ioo a b))
(hcf : continuous_on f (Ico a b)) (hcg : continuous_on g (Ico a b))
(hg' : β x β (Ioo a b), (deriv g) x β 0)
(hfa : f a = 0) (hga : g a = 0)
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) (nhds_within a (Ioi a)) l) :
tendsto (Ξ» x, (f x) / (g x)) (nhds_within a (Ioi a)) l :=
begin
refine lhopital_zero_right_on_Ioo hab hdf hg' _ _ hdiv,
{ rw [β hfa, β nhds_within_Ioo_eq_nhds_within_Ioi hab],
exact ((hcf a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto },
{ rw [β hga, β nhds_within_Ioo_eq_nhds_within_Ioi hab],
exact ((hcg a $ left_mem_Ico.mpr hab).mono Ioo_subset_Ico_self).tendsto },
end
theorem lhopital_zero_left_on_Ioo
(hdf : differentiable_on β f (Ioo a b))
(hg' : β x β (Ioo a b), (deriv g) x β 0)
(hfb : tendsto f (nhds_within b (Iio b)) (π 0)) (hgb : tendsto g (nhds_within b (Iio b)) (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) (nhds_within b (Iio b)) l) :
tendsto (Ξ» x, (f x) / (g x)) (nhds_within b (Iio b)) l :=
begin
have hdf : β x β Ioo a b, differentiable_at β f x,
from Ξ» x hx, (hdf x hx).differentiable_at (Ioo_mem_nhds hx.1 hx.2),
have hdg : β x β Ioo a b, differentiable_at β g x,
from Ξ» x hx, classical.by_contradiction (Ξ» h, hg' x hx (deriv_zero_of_not_differentiable_at h)),
exact has_deriv_at.lhopital_zero_left_on_Ioo hab (Ξ» x hx, (hdf x hx).has_deriv_at)
(Ξ» x hx, (hdg x hx).has_deriv_at) hg' hfb hgb hdiv
end
omit hab
theorem lhopital_zero_at_top_on_Ioi
(hdf : differentiable_on β f (Ioi a))
(hg' : β x β (Ioi a), (deriv g) x β 0)
(hftop : tendsto f at_top (π 0)) (hgtop : tendsto g at_top (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) at_top l) :
tendsto (Ξ» x, (f x) / (g x)) at_top l :=
begin
have hdf : β x β Ioi a, differentiable_at β f x,
from Ξ» x hx, (hdf x hx).differentiable_at (Ioi_mem_nhds hx),
have hdg : β x β Ioi a, differentiable_at β g x,
from Ξ» x hx, classical.by_contradiction (Ξ» h, hg' x hx (deriv_zero_of_not_differentiable_at h)),
exact has_deriv_at.lhopital_zero_at_top_on_Ioi (Ξ» x hx, (hdf x hx).has_deriv_at)
(Ξ» x hx, (hdg x hx).has_deriv_at) hg' hftop hgtop hdiv,
end
theorem lhopital_zero_at_bot_on_Iio
(hdf : differentiable_on β f (Iio a))
(hg' : β x β (Iio a), (deriv g) x β 0)
(hfbot : tendsto f at_bot (π 0)) (hgbot : tendsto g at_bot (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) at_bot l) :
tendsto (Ξ» x, (f x) / (g x)) at_bot l :=
begin
have hdf : β x β Iio a, differentiable_at β f x,
from Ξ» x hx, (hdf x hx).differentiable_at (Iio_mem_nhds hx),
have hdg : β x β Iio a, differentiable_at β g x,
from Ξ» x hx, classical.by_contradiction (Ξ» h, hg' x hx (deriv_zero_of_not_differentiable_at h)),
exact has_deriv_at.lhopital_zero_at_bot_on_Iio (Ξ» x hx, (hdf x hx).has_deriv_at)
(Ξ» x hx, (hdg x hx).has_deriv_at) hg' hfbot hgbot hdiv,
end
end deriv
/-!
## Generic versions
The following statements no longer any explicit interval, as they only require
conditions holding eventually.
-/
namespace has_deriv_at
/-- L'HΓ΄pital's rule for approaching a real from the right, `has_deriv_at` version -/
theorem lhopital_zero_nhds_right
(hff' : βαΆ x in π[>] a, has_deriv_at f (f' x) x)
(hgg' : βαΆ x in π[>] a, has_deriv_at g (g' x) x)
(hg' : βαΆ x in π[>] a, g' x β 0)
(hfa : tendsto f (π[>] a) (π 0)) (hga : tendsto g (π[>] a) (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) (π[>] a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[>] a) l :=
begin
rw eventually_iff_exists_mem at *,
rcases hff' with β¨sβ, hsβ, hff'β©,
rcases hgg' with β¨sβ, hsβ, hgg'β©,
rcases hg' with β¨sβ, hsβ, hg'β©,
let s := sβ β© sβ β© sβ,
have hs : s β π[>] a := inter_mem (inter_mem hsβ hsβ) hsβ,
rw mem_nhds_within_Ioi_iff_exists_Ioo_subset at hs,
rcases hs with β¨u, hau, huβ©,
refine lhopital_zero_right_on_Ioo hau _ _ _ hfa hga hdiv;
intros x hx;
apply_assumption;
exact (hu hx).1.1 <|> exact (hu hx).1.2 <|> exact (hu hx).2
end
/-- L'HΓ΄pital's rule for approaching a real from the left, `has_deriv_at` version -/
theorem lhopital_zero_nhds_left
(hff' : βαΆ x in π[<] a, has_deriv_at f (f' x) x)
(hgg' : βαΆ x in π[<] a, has_deriv_at g (g' x) x)
(hg' : βαΆ x in π[<] a, g' x β 0)
(hfa : tendsto f (π[<] a) (π 0)) (hga : tendsto g (π[<] a) (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) (π[<] a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[<] a) l :=
begin
rw eventually_iff_exists_mem at *,
rcases hff' with β¨sβ, hsβ, hff'β©,
rcases hgg' with β¨sβ, hsβ, hgg'β©,
rcases hg' with β¨sβ, hsβ, hg'β©,
let s := sβ β© sβ β© sβ,
have hs : s β π[<] a := inter_mem (inter_mem hsβ hsβ) hsβ,
rw mem_nhds_within_Iio_iff_exists_Ioo_subset at hs,
rcases hs with β¨l, hal, hlβ©,
refine lhopital_zero_left_on_Ioo hal _ _ _ hfa hga hdiv;
intros x hx;
apply_assumption;
exact (hl hx).1.1 <|> exact (hl hx).1.2 <|> exact (hl hx).2
end
/-- L'HΓ΄pital's rule for approaching a real, `has_deriv_at` version. This
does not require anything about the situation at `a` -/
theorem lhopital_zero_nhds'
(hff' : βαΆ x in π[univ \ {a}] a, has_deriv_at f (f' x) x)
(hgg' : βαΆ x in π[univ \ {a}] a, has_deriv_at g (g' x) x)
(hg' : βαΆ x in π[univ \ {a}] a, g' x β 0)
(hfa : tendsto f (π[univ \ {a}] a) (π 0)) (hga : tendsto g (π[univ \ {a}] a) (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) (π[univ \ {a}] a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[univ \ {a}] a) l :=
begin
have : univ \ {a} = Iio a βͺ Ioi a,
{ ext, rw [mem_diff_singleton, eq_true_intro $ mem_univ x, true_and, ne_iff_lt_or_gt], refl },
simp only [this, nhds_within_union, tendsto_sup, eventually_sup] at *,
exact β¨lhopital_zero_nhds_left hff'.1 hgg'.1 hg'.1 hfa.1 hga.1 hdiv.1,
lhopital_zero_nhds_right hff'.2 hgg'.2 hg'.2 hfa.2 hga.2 hdiv.2β©
end
/-- **L'HΓ΄pital's rule** for approaching a real, `has_deriv_at` version -/
theorem lhopital_zero_nhds
(hff' : βαΆ x in π a, has_deriv_at f (f' x) x)
(hgg' : βαΆ x in π a, has_deriv_at g (g' x) x)
(hg' : βαΆ x in π a, g' x β 0)
(hfa : tendsto f (π a) (π 0)) (hga : tendsto g (π a) (π 0))
(hdiv : tendsto (Ξ» x, f' x / g' x) (π a) l) :
tendsto (Ξ» x, f x / g x) (π[univ \ {a}] a) l :=
begin
apply @lhopital_zero_nhds' _ _ _ f' _ g';
apply eventually_nhds_within_of_eventually_nhds <|> apply tendsto_nhds_within_of_tendsto_nhds;
assumption
end
/-- L'HΓ΄pital's rule for approaching +β, `has_deriv_at` version -/
theorem lhopital_zero_at_top
(hff' : βαΆ x in at_top, has_deriv_at f (f' x) x)
(hgg' : βαΆ x in at_top, has_deriv_at g (g' x) x)
(hg' : βαΆ x in at_top, g' x β 0)
(hftop : tendsto f at_top (π 0)) (hgtop : tendsto g at_top (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) at_top l) :
tendsto (Ξ» x, (f x) / (g x)) at_top l :=
begin
rw eventually_iff_exists_mem at *,
rcases hff' with β¨sβ, hsβ, hff'β©,
rcases hgg' with β¨sβ, hsβ, hgg'β©,
rcases hg' with β¨sβ, hsβ, hg'β©,
let s := sβ β© sβ β© sβ,
have hs : s β at_top := inter_mem (inter_mem hsβ hsβ) hsβ,
rw mem_at_top_sets at hs,
rcases hs with β¨l, hlβ©,
have hl' : Ioi l β s := Ξ» x hx, hl x (le_of_lt hx),
refine lhopital_zero_at_top_on_Ioi _ _ (Ξ» x hx, hg' x $ (hl' hx).2) hftop hgtop hdiv;
intros x hx;
apply_assumption;
exact (hl' hx).1.1 <|> exact (hl' hx).1.2
end
/-- L'HΓ΄pital's rule for approaching -β, `has_deriv_at` version -/
theorem lhopital_zero_at_bot
(hff' : βαΆ x in at_bot, has_deriv_at f (f' x) x)
(hgg' : βαΆ x in at_bot, has_deriv_at g (g' x) x)
(hg' : βαΆ x in at_bot, g' x β 0)
(hfbot : tendsto f at_bot (π 0)) (hgbot : tendsto g at_bot (π 0))
(hdiv : tendsto (Ξ» x, (f' x) / (g' x)) at_bot l) :
tendsto (Ξ» x, (f x) / (g x)) at_bot l :=
begin
rw eventually_iff_exists_mem at *,
rcases hff' with β¨sβ, hsβ, hff'β©,
rcases hgg' with β¨sβ, hsβ, hgg'β©,
rcases hg' with β¨sβ, hsβ, hg'β©,
let s := sβ β© sβ β© sβ,
have hs : s β at_bot := inter_mem (inter_mem hsβ hsβ) hsβ,
rw mem_at_bot_sets at hs,
rcases hs with β¨l, hlβ©,
have hl' : Iio l β s := Ξ» x hx, hl x (le_of_lt hx),
refine lhopital_zero_at_bot_on_Iio _ _ (Ξ» x hx, hg' x $ (hl' hx).2) hfbot hgbot hdiv;
intros x hx;
apply_assumption;
exact (hl' hx).1.1 <|> exact (hl' hx).1.2
end
end has_deriv_at
namespace deriv
/-- **L'HΓ΄pital's rule** for approaching a real from the right, `deriv` version -/
theorem lhopital_zero_nhds_right
(hdf : βαΆ x in π[>] a, differentiable_at β f x)
(hg' : βαΆ x in π[>] a, deriv g x β 0)
(hfa : tendsto f (π[>] a) (π 0)) (hga : tendsto g (π[>] a) (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) (π[>] a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[>] a) l :=
begin
have hdg : βαΆ x in π[>] a, differentiable_at β g x,
from hg'.mp (eventually_of_forall $
Ξ» _ hg', classical.by_contradiction (Ξ» h, hg' (deriv_zero_of_not_differentiable_at h))),
have hdf' : βαΆ x in π[>] a, has_deriv_at f (deriv f x) x,
from hdf.mp (eventually_of_forall $ Ξ» _, differentiable_at.has_deriv_at),
have hdg' : βαΆ x in π[>] a, has_deriv_at g (deriv g x) x,
from hdg.mp (eventually_of_forall $ Ξ» _, differentiable_at.has_deriv_at),
exact has_deriv_at.lhopital_zero_nhds_right hdf' hdg' hg' hfa hga hdiv
end
/-- **L'HΓ΄pital's rule** for approaching a real from the left, `deriv` version -/
theorem lhopital_zero_nhds_left
(hdf : βαΆ x in π[<] a, differentiable_at β f x)
(hg' : βαΆ x in π[<] a, deriv g x β 0)
(hfa : tendsto f (π[<] a) (π 0)) (hga : tendsto g (π[<] a) (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) (π[<] a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[<] a) l :=
begin
have hdg : βαΆ x in π[<] a, differentiable_at β g x,
from hg'.mp (eventually_of_forall $
Ξ» _ hg', classical.by_contradiction (Ξ» h, hg' (deriv_zero_of_not_differentiable_at h))),
have hdf' : βαΆ x in π[<] a, has_deriv_at f (deriv f x) x,
from hdf.mp (eventually_of_forall $ Ξ» _, differentiable_at.has_deriv_at),
have hdg' : βαΆ x in π[<] a, has_deriv_at g (deriv g x) x,
from hdg.mp (eventually_of_forall $ Ξ» _, differentiable_at.has_deriv_at),
exact has_deriv_at.lhopital_zero_nhds_left hdf' hdg' hg' hfa hga hdiv
end
/-- **L'HΓ΄pital's rule** for approaching a real, `deriv` version. This
does not require anything about the situation at `a` -/
theorem lhopital_zero_nhds'
(hdf : βαΆ x in π[univ \ {a}] a, differentiable_at β f x)
(hg' : βαΆ x in π[univ \ {a}] a, deriv g x β 0)
(hfa : tendsto f (π[univ \ {a}] a) (π 0)) (hga : tendsto g (π[univ \ {a}] a) (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) (π[univ \ {a}] a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[univ \ {a}] a) l :=
begin
have : univ \ {a} = Iio a βͺ Ioi a,
{ ext, rw [mem_diff_singleton, eq_true_intro $ mem_univ x, true_and, ne_iff_lt_or_gt], refl },
simp only [this, nhds_within_union, tendsto_sup, eventually_sup] at *,
exact β¨lhopital_zero_nhds_left hdf.1 hg'.1 hfa.1 hga.1 hdiv.1,
lhopital_zero_nhds_right hdf.2 hg'.2 hfa.2 hga.2 hdiv.2β©,
end
/-- **L'HΓ΄pital's rule** for approaching a real, `deriv` version -/
theorem lhopital_zero_nhds
(hdf : βαΆ x in π a, differentiable_at β f x)
(hg' : βαΆ x in π a, deriv g x β 0)
(hfa : tendsto f (π a) (π 0)) (hga : tendsto g (π a) (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) (π a) l) :
tendsto (Ξ» x, (f x) / (g x)) (π[univ \ {a}] a) l :=
begin
apply lhopital_zero_nhds';
apply eventually_nhds_within_of_eventually_nhds <|> apply tendsto_nhds_within_of_tendsto_nhds;
assumption
end
/-- **L'HΓ΄pital's rule** for approaching +β, `deriv` version -/
theorem lhopital_zero_at_top
(hdf : βαΆ (x : β) in at_top, differentiable_at β f x)
(hg' : βαΆ (x : β) in at_top, deriv g x β 0)
(hftop : tendsto f at_top (π 0)) (hgtop : tendsto g at_top (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) at_top l) :
tendsto (Ξ» x, (f x) / (g x)) at_top l :=
begin
have hdg : βαΆ x in at_top, differentiable_at β g x,
from hg'.mp (eventually_of_forall $
Ξ» _ hg', classical.by_contradiction (Ξ» h, hg' (deriv_zero_of_not_differentiable_at h))),
have hdf' : βαΆ x in at_top, has_deriv_at f (deriv f x) x,
from hdf.mp (eventually_of_forall $ Ξ» _, differentiable_at.has_deriv_at),
have hdg' : βαΆ x in at_top, has_deriv_at g (deriv g x) x,
from hdg.mp (eventually_of_forall $ Ξ» _, differentiable_at.has_deriv_at),
exact has_deriv_at.lhopital_zero_at_top hdf' hdg' hg' hftop hgtop hdiv
end
/-- **L'HΓ΄pital's rule** for approaching -β, `deriv` version -/
theorem lhopital_zero_at_bot
(hdf : βαΆ (x : β) in at_bot, differentiable_at β f x)
(hg' : βαΆ (x : β) in at_bot, deriv g x β 0)
(hfbot : tendsto f at_bot (π 0)) (hgbot : tendsto g at_bot (π 0))
(hdiv : tendsto (Ξ» x, ((deriv f) x) / ((deriv g) x)) at_bot l) :
tendsto (Ξ» x, (f x) / (g x)) at_bot l :=
begin
have hdg : βαΆ x in at_bot, differentiable_at β g x,
from hg'.mp (eventually_of_forall $
Ξ» _ hg', classical.by_contradiction (Ξ» h, hg' (deriv_zero_of_not_differentiable_at h))),
have hdf' : βαΆ x in at_bot, has_deriv_at f (deriv f x) x,
from hdf.mp (eventually_of_forall $ Ξ» _, differentiable_at.has_deriv_at),
have hdg' : βαΆ x in at_bot, has_deriv_at g (deriv g x) x,
from hdg.mp (eventually_of_forall $ Ξ» _, differentiable_at.has_deriv_at),
exact has_deriv_at.lhopital_zero_at_bot hdf' hdg' hg' hfbot hgbot hdiv
end
end deriv
|