Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 1,699 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
/-
Copyright (c) 2022 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.convex.star
import topology.homotopy.contractible
/-!
# A convex set is contractible
In this file we prove that a (star) convex set in a real topological vector space is a contractible
topological space.
-/
variables {E : Type*} [add_comm_group E] [module ℝ E] [topological_space E]
[has_continuous_add E] [has_continuous_smul ℝ E] {s : set E} {x : E}
/-- A non-empty star convex set is a contractible space. -/
protected lemma star_convex.contractible_space (h : star_convex ℝ x s) (hne : s.nonempty) :
contractible_space s :=
begin
refine (contractible_iff_id_nullhomotopic _).2 ⟨⟨x, h.mem hne⟩,
⟨⟨⟨λ p, ⟨p.1.1 • x + (1 - p.1.1) • p.2, _⟩, _⟩, λ x, _, λ x, _⟩⟩⟩,
{ exact h p.2.2 p.1.2.1 (sub_nonneg.2 p.1.2.2) (add_sub_cancel'_right _ _) },
{ exact continuous_subtype_mk _
(((continuous_subtype_val.comp continuous_fst).smul continuous_const).add
((continuous_const.sub $ continuous_subtype_val.comp continuous_fst).smul
(continuous_subtype_val.comp continuous_snd))) },
{ ext1, simp },
{ ext1, simp }
end
/-- A non-empty convex set is a contractible space. -/
protected lemma convex.contractible_space (hs : convex ℝ s) (hne : s.nonempty) :
contractible_space s :=
let ⟨x, hx⟩ := hne in (hs.star_convex hx).contractible_space hne
@[priority 100] instance real_topological_vector_space.contractible_space : contractible_space E :=
(homeomorph.set.univ E).contractible_space_iff.mp $ convex_univ.contractible_space set.univ_nonempty
|