File size: 9,336 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/-
Copyright (c) 2021 Yaël Dillies, Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies, Bhavik Mehta
-/
import analysis.convex.extreme
import analysis.convex.function
import analysis.normed_space.ordered

/-!
# Exposed sets

This file defines exposed sets and exposed points for sets in a real vector space.

An exposed subset of `A` is a subset of `A` that is the set of all maximal points of a functional
(a continuous linear map `E → 𝕜`) over `A`. By convention, `∅` is an exposed subset of all sets.
This allows for better functoriality of the definition (the intersection of two exposed subsets is
exposed, faces of a polytope form a bounded lattice).
This is an analytic notion of "being on the side of". It is stronger than being extreme (see
`is_exposed.is_extreme`), but weaker (for exposed points) than being a vertex.

An exposed set of `A` is sometimes called a "face of `A`", but we decided to reserve this
terminology to the more specific notion of a face of a polytope (sometimes hopefully soon out
on mathlib!).

## Main declarations

* `is_exposed 𝕜 A B`: States that `B` is an exposed set of `A` (in the literature, `A` is often
  implicit).
* `is_exposed.is_extreme`: An exposed set is also extreme.

## References

See chapter 8 of [Barry Simon, *Convexity*][simon2011]

## TODO

Define intrinsic frontier/interior and prove the lemmas related to exposed sets and points.

Generalise to Locally Convex Topological Vector Spaces™

More not-yet-PRed stuff is available on the branch `sperner_again`.
-/

open_locale classical affine big_operators
open set

variables (𝕜 : Type*) {E : Type*} [normed_linear_ordered_field 𝕜] [normed_add_comm_group E]
  [normed_space 𝕜 E] {l : E →L[𝕜] 𝕜} {A B C : set E} {X : finset E} {x : E}

/-- A set `B` is exposed with respect to `A` iff it maximizes some functional over `A` (and contains
all points maximizing it). Written `is_exposed 𝕜 A B`. -/
def is_exposed (A B : set E) : Prop :=
B.nonempty → ∃ l : E →L[𝕜] 𝕜, B = {x ∈ A | ∀ y ∈ A, l y ≤ l x}

variables {𝕜}

/-- A useful way to build exposed sets from intersecting `A` with halfspaces (modelled by an
inequality with a functional). -/
def continuous_linear_map.to_exposed (l : E →L[𝕜] 𝕜) (A : set E) : set E :=
{x ∈ A | ∀ y ∈ A, l y ≤ l x}

lemma continuous_linear_map.to_exposed.is_exposed : is_exposed 𝕜 A (l.to_exposed A) := λ h, ⟨l, rfl⟩

lemma is_exposed_empty : is_exposed 𝕜 A ∅ :=
λ ⟨x, hx⟩, by { exfalso, exact hx }

namespace is_exposed

protected lemma subset (hAB : is_exposed 𝕜 A B) : B ⊆ A :=
begin
  rintro x hx,
  obtain ⟨_, rfl⟩ := hAB ⟨x, hx⟩,
  exact hx.1,
end

@[refl] protected lemma refl (A : set E) : is_exposed 𝕜 A A :=
λ ⟨w, hw⟩, ⟨0, subset.antisymm (λ x hx, ⟨hx, λ y hy, by exact le_refl 0⟩) (λ x hx, hx.1)⟩

protected lemma antisymm (hB : is_exposed 𝕜 A B) (hA : is_exposed 𝕜 B A) :
  A = B :=
hA.subset.antisymm hB.subset

/- `is_exposed` is *not* transitive: Consider a (topologically) open cube with vertices
`A₀₀₀, ..., A₁₁₁` and add to it the triangle `A₀₀₀A₀₀₁A₀₁₀`. Then `A₀₀₁A₀₁₀` is an exposed subset
of `A₀₀₀A₀₀₁A₀₁₀` which is an exposed subset of the cube, but `A₀₀₁A₀₁₀` is not itself an exposed
subset of the cube. -/

protected lemma mono (hC : is_exposed 𝕜 A C) (hBA : B ⊆ A) (hCB : C ⊆ B) :
  is_exposed 𝕜 B C :=
begin
  rintro ⟨w, hw⟩,
  obtain ⟨l, rfl⟩ := hC ⟨w, hw⟩,
  exact ⟨l, subset.antisymm (λ x hx, ⟨hCB hx, λ y hy, hx.2 y (hBA hy)⟩)
    (λ x hx, ⟨hBA hx.1, λ y hy, (hw.2 y hy).trans (hx.2 w (hCB hw))⟩)⟩,
end

/-- If `B` is an exposed subset of `A`, then `B` is the intersection of `A` with some closed
halfspace. The converse is *not* true. It would require that the corresponding open halfspace
doesn't intersect `A`. -/
lemma eq_inter_halfspace (hAB : is_exposed 𝕜 A B) :
  ∃ l : E →L[𝕜] 𝕜, ∃ a, B = {x ∈ A | a ≤ l x} :=
begin
  obtain hB | hB := B.eq_empty_or_nonempty,
  { refine ⟨0, 1, _⟩,
    rw [hB, eq_comm, eq_empty_iff_forall_not_mem],
    rintro x ⟨-, h⟩,
    rw continuous_linear_map.zero_apply at h,
    linarith },
  obtain ⟨l, rfl⟩ := hAB hB,
  obtain ⟨w, hw⟩ := hB,
  exact ⟨l, l w, subset.antisymm (λ x hx, ⟨hx.1, hx.2 w hw.1⟩)
    (λ x hx, ⟨hx.1, λ y hy, (hw.2 y hy).trans hx.2⟩)⟩,
end

protected lemma inter (hB : is_exposed 𝕜 A B) (hC : is_exposed 𝕜 A C) :
  is_exposed 𝕜 A (B ∩ C) :=
begin
  rintro ⟨w, hwB, hwC⟩,
  obtain ⟨l₁, rfl⟩ := hB ⟨w, hwB⟩,
  obtain ⟨l₂, rfl⟩ := hC ⟨w, hwC⟩,
  refine ⟨l₁ + l₂, subset.antisymm _ _⟩,
  { rintro x ⟨⟨hxA, hxB⟩, ⟨-, hxC⟩⟩,
    exact ⟨hxA, λ z hz, add_le_add (hxB z hz) (hxC z hz)⟩ },
  rintro x ⟨hxA, hx⟩,
  refine ⟨⟨hxA, λ y hy, _⟩, hxA, λ y hy, _⟩,
  { exact (add_le_add_iff_right (l₂ x)).1 ((add_le_add (hwB.2 y hy) (hwC.2 x hxA)).trans
      (hx w hwB.1)) },
  { exact (add_le_add_iff_left (l₁ x)).1 (le_trans (add_le_add (hwB.2 x hxA) (hwC.2 y hy))
    (hx w hwB.1)) }
end

lemma sInter {F : finset (set E)} (hF : F.nonempty)
  (hAF : ∀ B ∈ F, is_exposed 𝕜 A B) :
  is_exposed 𝕜 A (⋂₀ F) :=
begin
  revert hF F,
  refine finset.induction _ _,
  { rintro h,
    exfalso,
    exact empty_not_nonempty h },
  rintro C F _ hF _ hCF,
  rw [finset.coe_insert, sInter_insert],
  obtain rfl | hFnemp := F.eq_empty_or_nonempty,
  { rw [finset.coe_empty, sInter_empty, inter_univ],
    exact hCF C (finset.mem_singleton_self C) },
  exact (hCF C (finset.mem_insert_self C F)).inter (hF hFnemp (λ B hB,
    hCF B(finset.mem_insert_of_mem hB))),
end

lemma inter_left (hC : is_exposed 𝕜 A C) (hCB : C ⊆ B) :
  is_exposed 𝕜 (A ∩ B) C :=
begin
  rintro ⟨w, hw⟩,
  obtain ⟨l, rfl⟩ := hC ⟨w, hw⟩,
  exact ⟨l, subset.antisymm (λ x hx, ⟨⟨hx.1, hCB hx⟩, λ y hy, hx.2 y hy.1⟩)
    (λ x ⟨⟨hxC, _⟩, hx⟩, ⟨hxC, λ y hy, (hw.2 y hy).trans (hx w ⟨hC.subset hw, hCB hw⟩)⟩)⟩,
end

lemma inter_right (hC : is_exposed 𝕜 B C) (hCA : C ⊆ A) :
  is_exposed 𝕜 (A ∩ B) C :=
begin
  rw inter_comm,
  exact hC.inter_left hCA,
end

protected lemma is_extreme (hAB : is_exposed 𝕜 A B) :
  is_extreme 𝕜 A B :=
begin
  refine ⟨hAB.subset, λ x₁ hx₁A x₂ hx₂A x hxB hx, _⟩,
  obtain ⟨l, rfl⟩ := hAB ⟨x, hxB⟩,
  have hl : convex_on 𝕜 univ l := l.to_linear_map.convex_on convex_univ,
  have hlx₁ := hxB.2 x₁ hx₁A,
  have hlx₂ := hxB.2 x₂ hx₂A,
  refine ⟨⟨hx₁A, λ y hy, _⟩, ⟨hx₂A, λ y hy, _⟩⟩,
  { rw hlx₁.antisymm (hl.le_left_of_right_le (mem_univ _) (mem_univ _) hx hlx₂),
    exact hxB.2 y hy },
  { rw hlx₂.antisymm (hl.le_right_of_left_le (mem_univ _) (mem_univ _) hx hlx₁),
    exact hxB.2 y hy }
end

protected lemma convex (hAB : is_exposed 𝕜 A B) (hA : convex 𝕜 A) :
  convex 𝕜 B :=
begin
  obtain rfl | hB := B.eq_empty_or_nonempty,
  { exact convex_empty },
  obtain ⟨l, rfl⟩ := hAB hB,
  exact λ x₁ x₂ hx₁ hx₂ a b ha hb hab, ⟨hA hx₁.1 hx₂.1 ha hb hab, λ y hy,
    ((l.to_linear_map.concave_on convex_univ).convex_ge _
    ⟨mem_univ _, hx₁.2 y hy⟩ ⟨mem_univ _, hx₂.2 y hy⟩ ha hb hab).2⟩,
end

protected lemma is_closed [order_closed_topology 𝕜] (hAB : is_exposed 𝕜 A B) (hA : is_closed A) :
  is_closed B :=
begin
  obtain ⟨l, a, rfl⟩ := hAB.eq_inter_halfspace,
  exact hA.is_closed_le continuous_on_const l.continuous.continuous_on,
end

protected lemma is_compact [order_closed_topology 𝕜] (hAB : is_exposed 𝕜 A B) (hA : is_compact A) :
  is_compact B :=
compact_of_is_closed_subset hA (hAB.is_closed hA.is_closed) hAB.subset

end is_exposed

variables (𝕜)

/-- A point is exposed with respect to `A` iff there exists an hyperplane whose intersection with
`A` is exactly that point. -/
def set.exposed_points (A : set E) :
  set E :=
{x ∈ A | ∃ l : E →L[𝕜] 𝕜, ∀ y ∈ A, l y ≤ l x ∧ (l x ≤ l y → y = x)}

variables {𝕜}

lemma exposed_point_def :
  x ∈ A.exposed_points 𝕜 ↔ x ∈ A ∧ ∃ l : E →L[𝕜] 𝕜, ∀ y ∈ A, l y ≤ l x ∧ (l x ≤ l y → y = x) :=
iff.rfl

lemma exposed_points_subset :
  A.exposed_points 𝕜 ⊆ A :=
λ x hx, hx.1

@[simp] lemma exposed_points_empty :
  (∅ : set E).exposed_points 𝕜 = ∅ :=
subset_empty_iff.1 exposed_points_subset

/-- Exposed points exactly correspond to exposed singletons. -/
lemma mem_exposed_points_iff_exposed_singleton :
  x ∈ A.exposed_points 𝕜 ↔ is_exposed 𝕜 A {x} :=
begin
  use λ ⟨hxA, l, hl⟩ h, ⟨l, eq.symm $ eq_singleton_iff_unique_mem.2 ⟨⟨hxA, λ y hy, (hl y hy).1⟩,
    λ z hz, (hl z hz.1).2 (hz.2 x hxA)⟩⟩,
  rintro h,
  obtain ⟨l, hl⟩ := h ⟨x, mem_singleton _⟩,
  rw [eq_comm, eq_singleton_iff_unique_mem] at hl,
  exact ⟨hl.1.1, l, λ y hy, ⟨hl.1.2 y hy, λ hxy, hl.2 y ⟨hy, λ z hz, (hl.1.2 z hz).trans hxy⟩⟩⟩,
end

lemma exposed_points_subset_extreme_points :
  A.exposed_points 𝕜 ⊆ A.extreme_points 𝕜 :=
λ x hx, mem_extreme_points_iff_extreme_singleton.2
  (mem_exposed_points_iff_exposed_singleton.1 hx).is_extreme