Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,211 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/-
Copyright (c) 2022 YaΓ«l Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: YaΓ«l Dillies
-/
import analysis.convex.combination

/-!
# Convex join

This file defines the convex join of two sets. The convex join of `s` and `t` is the union of the
segments with one end in `s` and the other in `t`. This is notably a useful gadget to deal with
convex hulls of finite sets.
-/

open set
open_locale big_operators

variables {ΞΉ : Sort*} {π•œ E : Type*}

section ordered_semiring
variables (π•œ) [ordered_semiring π•œ] [add_comm_monoid E] [module π•œ E] {s t s₁ sβ‚‚ t₁ tβ‚‚ u : set E}
  {x y : E}

/-- The join of two sets is the union of the segments joining them. This can be interpreted as the
topological join, but within the original space. -/
def convex_join (s t : set E) : set E := ⋃ (x ∈ s) (y ∈ t), segment π•œ x y

variables {π•œ}

lemma mem_convex_join : x ∈ convex_join π•œ s t ↔ βˆƒ (a ∈ s) (b ∈ t), x ∈ segment π•œ a b :=
by simp [convex_join]

lemma convex_join_comm (s t : set E) : convex_join π•œ s t = convex_join π•œ t s :=
(Unionβ‚‚_comm _).trans $ by simp_rw [convex_join, segment_symm]

lemma convex_join_mono (hs : s₁ βŠ† sβ‚‚) (ht : t₁ βŠ† tβ‚‚) : convex_join π•œ s₁ t₁ βŠ† convex_join π•œ sβ‚‚ tβ‚‚ :=
bUnion_mono hs $ Ξ» x hx, bUnion_mono ht $ Ξ» y hy, subset.rfl

lemma convex_join_mono_left (hs : s₁ βŠ† sβ‚‚) : convex_join π•œ s₁ t βŠ† convex_join π•œ sβ‚‚ t :=
convex_join_mono hs subset.rfl

lemma convex_join_mono_right (ht : t₁ βŠ† tβ‚‚) : convex_join π•œ s t₁ βŠ† convex_join π•œ s tβ‚‚ :=
convex_join_mono subset.rfl ht

@[simp] lemma convex_join_empty_left (t : set E) : convex_join π•œ βˆ… t = βˆ… := by simp [convex_join]
@[simp] lemma convex_join_empty_right (s : set E) : convex_join π•œ s βˆ… = βˆ… := by simp [convex_join]

@[simp] lemma convex_join_singleton_left (t : set E) (x : E) :
  convex_join π•œ {x} t = ⋃ (y ∈ t), segment π•œ x y := by simp [convex_join]

@[simp] lemma convex_join_singleton_right (s : set E) (y : E) :
  convex_join π•œ s {y} = ⋃ (x ∈ s), segment π•œ x y := by simp [convex_join]

@[simp] lemma convex_join_singletons (x : E) : convex_join π•œ {x} {y} = segment π•œ x y :=
by simp [convex_join]

@[simp] lemma convex_join_union_left (s₁ sβ‚‚ t : set E) :
  convex_join π•œ (s₁ βˆͺ sβ‚‚) t = convex_join π•œ s₁ t βˆͺ convex_join π•œ sβ‚‚ t :=
by simp_rw [convex_join, mem_union_eq, Union_or, Union_union_distrib]

@[simp] lemma convex_join_union_right (s t₁ tβ‚‚ : set E) :
  convex_join π•œ s (t₁ βˆͺ tβ‚‚) = convex_join π•œ s t₁ βˆͺ convex_join π•œ s tβ‚‚ :=
by simp_rw [convex_join, mem_union_eq, Union_or, Union_union_distrib]

@[simp] lemma convex_join_Union_left (s : ΞΉ β†’ set E) (t : set E) :
  convex_join π•œ (⋃ i, s i) t = ⋃ i, convex_join π•œ (s i) t :=
by { simp_rw [convex_join, mem_Union, Union_exists], exact Union_comm _ }

@[simp] lemma convex_join_Union_right (s : set E) (t : ΞΉ β†’ set E) :
  convex_join π•œ s (⋃ i, t i) = ⋃ i, convex_join π•œ s (t i) :=
by simp_rw [convex_join_comm s, convex_join_Union_left]

lemma segment_subset_convex_join (hx : x ∈ s) (hy : y ∈ t) : segment π•œ x y βŠ† convex_join π•œ s t :=
(subset_Unionβ‚‚ y hy).trans (subset_Unionβ‚‚ x hx)

lemma subset_convex_join_left (h : t.nonempty) : s βŠ† convex_join π•œ s t :=
λ x hx, let ⟨y, hy⟩ := h in segment_subset_convex_join hx hy $ left_mem_segment _ _ _

lemma subset_convex_join_right (h : s.nonempty) : t βŠ† convex_join π•œ s t :=
λ y hy, let ⟨x, hx⟩ := h in segment_subset_convex_join hx hy $ right_mem_segment _ _ _

lemma convex_join_subset (hs : s βŠ† u) (ht : t βŠ† u) (hu : convex π•œ u) : convex_join π•œ s t βŠ† u :=
Unionβ‚‚_subset $ Ξ» x hx, Unionβ‚‚_subset $ Ξ» y hy, hu.segment_subset (hs hx) (ht hy)

lemma convex_join_subset_convex_hull (s t : set E) : convex_join π•œ s t βŠ† convex_hull π•œ (s βˆͺ t) :=
convex_join_subset ((subset_union_left _ _).trans $ subset_convex_hull _ _)
  ((subset_union_right _ _).trans $ subset_convex_hull _ _) $ convex_convex_hull _ _

end ordered_semiring

section linear_ordered_field
variables [linear_ordered_field π•œ] [add_comm_group E] [module π•œ E] {s t u : set E} {x y : E}

lemma convex_join_assoc_aux (s t u : set E) :
  convex_join π•œ (convex_join π•œ s t) u βŠ† convex_join π•œ s (convex_join π•œ t u) :=
begin
  simp_rw [subset_def, mem_convex_join],
  rintro _ ⟨z, ⟨x, hx, y, hy, a₁, b₁, ha₁, hb₁, hab₁, rfl⟩, z, hz, aβ‚‚, bβ‚‚, haβ‚‚, hbβ‚‚, habβ‚‚, rfl⟩,
  obtain rfl | hbβ‚‚ := hbβ‚‚.eq_or_lt,
  { refine ⟨x, hx, y, ⟨y, hy, z, hz, left_mem_segment _ _ _⟩, a₁, b₁, ha₁, hb₁, hab₁, _⟩,
    rw add_zero at habβ‚‚,
    rw [habβ‚‚, one_smul, zero_smul, add_zero] },
  have haβ‚‚b₁ : 0 ≀ aβ‚‚ * b₁ := mul_nonneg haβ‚‚ hb₁,
  have hab : 0 < aβ‚‚ * b₁ + bβ‚‚ := add_pos_of_nonneg_of_pos haβ‚‚b₁ hbβ‚‚,
  refine ⟨x, hx, ((aβ‚‚ * b₁) / (aβ‚‚ * b₁ + bβ‚‚)) β€’ y + (bβ‚‚ / (aβ‚‚ * b₁ + bβ‚‚)) β€’ z,
    ⟨y, hy, z, hz, _, _, _, _, _, rfl⟩, aβ‚‚ * a₁, aβ‚‚ * b₁ + bβ‚‚, mul_nonneg haβ‚‚ ha₁, hab.le, _, _⟩,
  { exact div_nonneg haβ‚‚b₁ hab.le },
  { exact div_nonneg hbβ‚‚.le hab.le },
  { rw [←add_div, div_self hab.ne'] },
  { rw [←add_assoc, ←mul_add, hab₁, mul_one, habβ‚‚] },
  { simp_rw [smul_add, ←mul_smul, mul_div_cancel' _ hab.ne', add_assoc] }
end

lemma convex_join_assoc (s t u : set E) :
  convex_join π•œ (convex_join π•œ s t) u = convex_join π•œ s (convex_join π•œ t u) :=
begin
  refine (convex_join_assoc_aux _ _ _).antisymm _,
  simp_rw [convex_join_comm s, convex_join_comm _ u],
  exact convex_join_assoc_aux _ _ _,
end

lemma convex_join_left_comm (s t u : set E) :
  convex_join π•œ s (convex_join π•œ t u) = convex_join π•œ t (convex_join π•œ s u) :=
by simp_rw [←convex_join_assoc, convex_join_comm]

lemma convex_join_right_comm (s t u : set E) :
  convex_join π•œ (convex_join π•œ s t) u = convex_join π•œ (convex_join π•œ s u) t :=
by simp_rw [convex_join_assoc, convex_join_comm]

lemma convex_join_convex_join_convex_join_comm (s t u v : set E) :
  convex_join π•œ (convex_join π•œ s t) (convex_join π•œ u v) =
    convex_join π•œ (convex_join π•œ s u) (convex_join π•œ t v) :=
by simp_rw [←convex_join_assoc, convex_join_right_comm]

lemma convex_hull_insert (hs : s.nonempty) :
  convex_hull π•œ (insert x s) = convex_join π•œ {x} (convex_hull π•œ s) :=
begin
  classical,
  refine (convex_join_subset ((singleton_subset_iff.2 $ mem_insert _ _).trans $ subset_convex_hull
    _ _) (convex_hull_mono $ subset_insert _ _) $ convex_convex_hull _ _).antisymm' (Ξ» x hx, _),
  rw convex_hull_eq at hx,
  obtain ⟨ι, t, w, z, hwβ‚€, hw₁, hz, rfl⟩ := hx,
  have : (βˆ‘ i in t.filter (Ξ» i, z i = x), w i) β€’ x + βˆ‘ i in t.filter (Ξ» i, z i β‰  x), w i β€’ z i =
    t.center_mass w z,
  { rw [finset.center_mass_eq_of_sum_1 _ _ hw₁, finset.sum_smul],
    convert finset.sum_filter_add_sum_filter_not _ _ (w β€’ z) using 2,
    refine finset.sum_congr rfl (Ξ» i hi, _),
    rw [pi.smul_apply', (finset.mem_filter.1 hi).2] },
  rw ←this,
  have hwβ‚€' : βˆ€ i ∈ t.filter (Ξ» i, z i β‰  x), 0 ≀ w i := Ξ» i hi, hwβ‚€ _ $ finset.filter_subset _ _ hi,
  obtain hw | hw := (finset.sum_nonneg hwβ‚€').eq_or_gt,
  { rw [←finset.sum_filter_add_sum_filter_not _ (Ξ» i, z i = x), hw, add_zero] at hw₁,
    rw [hw₁, one_smul, finset.sum_eq_zero, add_zero],
    { exact subset_convex_join_left hs.convex_hull (mem_singleton _) },
    simp_rw finset.sum_eq_zero_iff_of_nonneg hwβ‚€' at hw,
    rintro i hi,
    rw [hw _ hi, zero_smul] },
  refine mem_convex_join.2 ⟨x, mem_singleton _, (t.filter $ Ξ» i, z i β‰  x).center_mass w z,
    finset.center_mass_mem_convex_hull _ hwβ‚€' hw (Ξ» i hi, _),
    βˆ‘ i in t.filter (Ξ» i, z i = x), w i, βˆ‘ i in t.filter (Ξ» i, z i β‰  x), w i,
    finset.sum_nonneg (Ξ» i hi, hwβ‚€ _ $ finset.filter_subset _ _ hi), finset.sum_nonneg hwβ‚€', _, _⟩,
  { rw finset.mem_filter at hi,
    exact mem_of_mem_insert_of_ne (hz _ hi.1) hi.2 },
  { rw [finset.sum_filter_add_sum_filter_not, hw₁] },
  { rw [finset.center_mass, smul_inv_smulβ‚€ hw.ne', finset.sum_smul] }
end

lemma convex_join_segments (a b c d : E) :
  convex_join π•œ (segment π•œ a b) (segment π•œ c d) = convex_hull π•œ {a, b, c, d} :=
by simp only [convex_hull_insert, insert_nonempty, singleton_nonempty, convex_hull_pair,
    ←convex_join_assoc, convex_join_singletons]

lemma convex_join_segment_singleton (a b c : E) :
  convex_join π•œ (segment π•œ a b) {c} = convex_hull π•œ {a, b, c} :=
by rw [←pair_eq_singleton, ←convex_join_segments, segment_same, pair_eq_singleton]

lemma convex_join_singleton_segment (a b c : E) :
  convex_join π•œ {a} (segment π•œ b c) = convex_hull π•œ {a, b, c} :=
by rw [←segment_same π•œ, convex_join_segments, insert_idem]

protected lemma convex.convex_join (hs : convex π•œ s) (ht : convex π•œ t) :
  convex π•œ (convex_join π•œ s t) :=
begin
  rw convex_iff_segment_subset at ⊒ ht hs,
  simp_rw mem_convex_join,
  rintro x y ⟨xa, hxa, xb, hxb, hx⟩ ⟨ya, hya, yb, hyb, hy⟩,
  refine (segment_subset_convex_join hx hy).trans _,
  have triv : ({xa, xb, ya, yb} : set E) = {xa, ya, xb, yb} := by simp only [set.insert_comm],
  rw [convex_join_segments, triv, ←convex_join_segments],
  exact convex_join_mono (hs hxa hya) (ht hxb hyb),
end

protected lemma convex.convex_hull_union (hs : convex π•œ s) (ht : convex π•œ t) (hsβ‚€ : s.nonempty)
  (htβ‚€ : t.nonempty) :
  convex_hull π•œ (s βˆͺ t) = convex_join π•œ s t :=
(convex_hull_min (union_subset (subset_convex_join_left htβ‚€) $ subset_convex_join_right hsβ‚€) $
  hs.convex_join ht).antisymm $ convex_join_subset_convex_hull _ _

lemma convex_hull_union (hs : s.nonempty) (ht : t.nonempty) :
  convex_hull π•œ (s βˆͺ t) = convex_join π•œ (convex_hull π•œ s) (convex_hull π•œ t) :=
begin
  rw [←convex_hull_convex_hull_union_left, ←convex_hull_convex_hull_union_right],
  exact (convex_convex_hull π•œ s).convex_hull_union (convex_convex_hull π•œ t)
    hs.convex_hull ht.convex_hull,
end

end linear_ordered_field