Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,017 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
/-
Copyright (c) 2021 YaΓ«l Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: YaΓ«l Dillies
-/
import analysis.convex.basic
import topology.algebra.order.basic
/-!
# Strictly convex sets
This file defines strictly convex sets.
A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/
open set
open_locale convex pointwise
variables {π π E F Ξ² : Type*}
open function set
open_locale convex
section ordered_semiring
variables [ordered_semiring π] [topological_space E] [topological_space F]
section add_comm_monoid
variables [add_comm_monoid E] [add_comm_monoid F]
section has_smul
variables (π) [has_smul π E] [has_smul π F] (s : set E)
/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def strict_convex : Prop :=
s.pairwise $ Ξ» x y, β β¦a b : πβ¦, 0 < a β 0 < b β a + b = 1 β a β’ x + b β’ y β interior s
variables {π s} {x y : E} {a b : π}
lemma strict_convex_iff_open_segment_subset :
strict_convex π s β s.pairwise (Ξ» x y, open_segment π x y β interior s) :=
forallβ
_congr $ Ξ» x hx y hy hxy, (open_segment_subset_iff π).symm
lemma strict_convex.open_segment_subset (hs : strict_convex π s) (hx : x β s) (hy : y β s)
(h : x β y) :
open_segment π x y β interior s :=
strict_convex_iff_open_segment_subset.1 hs hx hy h
lemma strict_convex_empty : strict_convex π (β
: set E) := pairwise_empty _
lemma strict_convex_univ : strict_convex π (univ : set E) :=
begin
intros x hx y hy hxy a b ha hb hab,
rw interior_univ,
exact mem_univ _,
end
protected lemma strict_convex.eq (hs : strict_convex π s) (hx : x β s) (hy : y β s) (ha : 0 < a)
(hb : 0 < b) (hab : a + b = 1) (h : a β’ x + b β’ y β interior s) : x = y :=
hs.eq hx hy $ Ξ» H, h $ H ha hb hab
protected lemma strict_convex.inter {t : set E} (hs : strict_convex π s) (ht : strict_convex π t) :
strict_convex π (s β© t) :=
begin
intros x hx y hy hxy a b ha hb hab,
rw interior_inter,
exact β¨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb habβ©,
end
lemma directed.strict_convex_Union {ΞΉ : Sort*} {s : ΞΉ β set E} (hdir : directed (β) s)
(hs : β β¦i : ΞΉβ¦, strict_convex π (s i)) :
strict_convex π (β i, s i) :=
begin
rintro x hx y hy hxy a b ha hb hab,
rw mem_Union at hx hy,
obtain β¨i, hxβ© := hx,
obtain β¨j, hyβ© := hy,
obtain β¨k, hik, hjkβ© := hdir i j,
exact interior_mono (subset_Union s k) (hs (hik hx) (hjk hy) hxy ha hb hab),
end
lemma directed_on.strict_convex_sUnion {S : set (set E)} (hdir : directed_on (β) S)
(hS : β s β S, strict_convex π s) :
strict_convex π (ββ S) :=
begin
rw sUnion_eq_Union,
exact (directed_on_iff_directed.1 hdir).strict_convex_Union (Ξ» s, hS _ s.2),
end
end has_smul
section module
variables [module π E] [module π F] {s : set E}
protected lemma strict_convex.convex (hs : strict_convex π s) : convex π s :=
convex_iff_pairwise_pos.2 $ Ξ» x hx y hy hxy a b ha hb hab, interior_subset $ hs hx hy hxy ha hb hab
/-- An open convex set is strictly convex. -/
protected lemma convex.strict_convex (h : is_open s) (hs : convex π s) : strict_convex π s :=
Ξ» x hx y hy _ a b ha hb hab, h.interior_eq.symm βΈ hs hx hy ha.le hb.le hab
lemma is_open.strict_convex_iff (h : is_open s) : strict_convex π s β convex π s :=
β¨strict_convex.convex, convex.strict_convex hβ©
lemma strict_convex_singleton (c : E) : strict_convex π ({c} : set E) := pairwise_singleton _ _
lemma set.subsingleton.strict_convex (hs : s.subsingleton) : strict_convex π s := hs.pairwise _
lemma strict_convex.linear_image [semiring π] [module π E] [module π F]
[linear_map.compatible_smul E F π π] (hs : strict_convex π s) (f : E ββ[π] F)
(hf : is_open_map f) :
strict_convex π (f '' s) :=
begin
rintro _ β¨x, hx, rflβ© _ β¨y, hy, rflβ© hxy a b ha hb hab,
refine hf.image_interior_subset _ β¨a β’ x + b β’ y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _β©,
rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
end
lemma strict_convex.is_linear_image (hs : strict_convex π s) {f : E β F} (h : is_linear_map π f)
(hf : is_open_map f) :
strict_convex π (f '' s) :=
hs.linear_image (h.mk' f) hf
lemma strict_convex.linear_preimage {s : set F} (hs : strict_convex π s) (f : E ββ[π] F)
(hf : continuous f) (hfinj : injective f) :
strict_convex π (s.preimage f) :=
begin
intros x hx y hy hxy a b ha hb hab,
refine preimage_interior_subset_interior_preimage hf _,
rw [mem_preimage, f.map_add, f.map_smul, f.map_smul],
exact hs hx hy (hfinj.ne hxy) ha hb hab,
end
lemma strict_convex.is_linear_preimage {s : set F} (hs : strict_convex π s) {f : E β F}
(h : is_linear_map π f) (hf : continuous f) (hfinj : injective f) :
strict_convex π (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj
section linear_ordered_cancel_add_comm_monoid
variables [topological_space Ξ²] [linear_ordered_cancel_add_comm_monoid Ξ²] [order_topology Ξ²]
[module π Ξ²] [ordered_smul π Ξ²]
lemma strict_convex_Iic (r : Ξ²) : strict_convex π (Iic r) :=
begin
rintro x (hx : x β€ r) y (hy : y β€ r) hxy a b ha hb hab,
refine (subset_interior_iff_subset_of_open is_open_Iio).2 Iio_subset_Iic_self _,
rw βconvex.combo_self hab r,
obtain rfl | hx := hx.eq_or_lt,
{ exact add_lt_add_left (smul_lt_smul_of_pos (hy.lt_of_ne hxy.symm) hb) _ },
obtain rfl | hy := hy.eq_or_lt,
{ exact add_lt_add_right (smul_lt_smul_of_pos hx ha) _ },
{ exact add_lt_add (smul_lt_smul_of_pos hx ha) (smul_lt_smul_of_pos hy hb) }
end
lemma strict_convex_Ici (r : Ξ²) : strict_convex π (Ici r) := @strict_convex_Iic π Ξ²α΅α΅ _ _ _ _ _ _ r
lemma strict_convex_Icc (r s : Ξ²) : strict_convex π (Icc r s) :=
(strict_convex_Ici r).inter $ strict_convex_Iic s
lemma strict_convex_Iio (r : Ξ²) : strict_convex π (Iio r) :=
(convex_Iio r).strict_convex is_open_Iio
lemma strict_convex_Ioi (r : Ξ²) : strict_convex π (Ioi r) :=
(convex_Ioi r).strict_convex is_open_Ioi
lemma strict_convex_Ioo (r s : Ξ²) : strict_convex π (Ioo r s) :=
(strict_convex_Ioi r).inter $ strict_convex_Iio s
lemma strict_convex_Ico (r s : Ξ²) : strict_convex π (Ico r s) :=
(strict_convex_Ici r).inter $ strict_convex_Iio s
lemma strict_convex_Ioc (r s : Ξ²) : strict_convex π (Ioc r s) :=
(strict_convex_Ioi r).inter $ strict_convex_Iic s
lemma strict_convex_interval (r s : Ξ²) : strict_convex π (interval r s) :=
strict_convex_Icc _ _
end linear_ordered_cancel_add_comm_monoid
end module
end add_comm_monoid
section add_cancel_comm_monoid
variables [add_cancel_comm_monoid E] [has_continuous_add E] [module π E] {s : set E}
/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.preimage_add_right (hs : strict_convex π s) (z : E) :
strict_convex π ((Ξ» x, z + x) β»ΒΉ' s) :=
begin
intros x hx y hy hxy a b ha hb hab,
refine preimage_interior_subset_interior_preimage (continuous_add_left _) _,
have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab,
rwa [smul_add, smul_add, add_add_add_comm, βadd_smul, hab, one_smul] at h,
end
/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.preimage_add_left (hs : strict_convex π s) (z : E) :
strict_convex π ((Ξ» x, x + z) β»ΒΉ' s) :=
by simpa only [add_comm] using hs.preimage_add_right z
end add_cancel_comm_monoid
section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π E] [module π F]
section continuous_add
variables [has_continuous_add E] {s t : set E}
lemma strict_convex.add (hs : strict_convex π s) (ht : strict_convex π t) :
strict_convex π (s + t) :=
begin
rintro _ β¨v, w, hv, hw, rflβ© _ β¨x, y, hx, hy, rflβ© h a b ha hb hab,
rw [smul_add, smul_add, add_add_add_comm],
obtain rfl | hvx := eq_or_ne v x,
{ refine interior_mono (add_subset_add (singleton_subset_iff.2 hv) subset.rfl) _,
rw [convex.combo_self hab, singleton_add],
exact (is_open_map_add_left _).image_interior_subset _
(mem_image_of_mem _ $ ht hw hy (ne_of_apply_ne _ h) ha hb hab) },
exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) $
ht.convex hw hy ha.le hb.le hab)
end
lemma strict_convex.add_left (hs : strict_convex π s) (z : E) :
strict_convex π ((Ξ» x, z + x) '' s) :=
by simpa only [singleton_add] using (strict_convex_singleton z).add hs
lemma strict_convex.add_right (hs : strict_convex π s) (z : E) :
strict_convex π ((Ξ» x, x + z) '' s) :=
by simpa only [add_comm] using hs.add_left z
/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.vadd (hs : strict_convex π s) (x : E) : strict_convex π (x +α΅₯ s) :=
hs.add_left x
end continuous_add
section continuous_smul
variables [linear_ordered_field π] [module π E] [has_continuous_const_smul π E]
[linear_map.compatible_smul E E π π] {s : set E} {x : E}
lemma strict_convex.smul (hs : strict_convex π s) (c : π) : strict_convex π (c β’ s) :=
begin
obtain rfl | hc := eq_or_ne c 0,
{ exact (subsingleton_zero_smul_set _).strict_convex },
{ exact hs.linear_image (linear_map.lsmul _ _ c) (is_open_map_smulβ hc) }
end
lemma strict_convex.affinity [has_continuous_add E] (hs : strict_convex π s) (z : E) (c : π) :
strict_convex π (z +α΅₯ c β’ s) :=
(hs.smul c).vadd z
end continuous_smul
end add_comm_group
end ordered_semiring
section ordered_comm_semiring
variables [ordered_comm_semiring π] [topological_space E]
section add_comm_group
variables [add_comm_group E] [module π E] [no_zero_smul_divisors π E]
[has_continuous_const_smul π E] {s : set E}
lemma strict_convex.preimage_smul (hs : strict_convex π s) (c : π) :
strict_convex π ((Ξ» z, c β’ z) β»ΒΉ' s) :=
begin
classical,
obtain rfl | hc := eq_or_ne c 0,
{ simp_rw [zero_smul, preimage_const],
split_ifs,
{ exact strict_convex_univ },
{ exact strict_convex_empty } },
refine hs.linear_preimage (linear_map.lsmul _ _ c) _ (smul_right_injective E hc),
unfold linear_map.lsmul linear_map.mkβ linear_map.mkβ' linear_map.mkβ'ββ,
exact continuous_const_smul _,
end
end add_comm_group
end ordered_comm_semiring
section ordered_ring
variables [ordered_ring π] [topological_space E] [topological_space F]
section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π E] [module π F] {s t : set E} {x y : E}
lemma strict_convex.eq_of_open_segment_subset_frontier [nontrivial π] [densely_ordered π]
(hs : strict_convex π s) (hx : x β s) (hy : y β s) (h : open_segment π x y β frontier s) :
x = y :=
begin
obtain β¨a, haβ, haββ© := densely_ordered.dense (0 : π) 1 zero_lt_one,
classical,
by_contra hxy,
exact (h β¨a, 1 - a, haβ, sub_pos_of_lt haβ, add_sub_cancel'_right _ _, rflβ©).2
(hs hx hy hxy haβ (sub_pos_of_lt haβ) $ add_sub_cancel'_right _ _),
end
lemma strict_convex.add_smul_mem (hs : strict_convex π s) (hx : x β s) (hxy : x + y β s)
(hy : y β 0) {t : π} (htβ : 0 < t) (htβ : t < 1) :
x + t β’ y β interior s :=
begin
have h : x + t β’ y = (1 - t) β’ x + t β’ (x + y),
{ rw [smul_add, βadd_assoc, βadd_smul, sub_add_cancel, one_smul] },
rw h,
refine hs hx hxy (Ξ» h, hy $ add_left_cancel _) (sub_pos_of_lt htβ) htβ (sub_add_cancel _ _),
exact x,
rw [βh, add_zero],
end
lemma strict_convex.smul_mem_of_zero_mem (hs : strict_convex π s) (zero_mem : (0 : E) β s)
(hx : x β s) (hxβ : x β 0) {t : π} (htβ : 0 < t) (htβ : t < 1) :
t β’ x β interior s :=
by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hxβ htβ htβ
lemma strict_convex.add_smul_sub_mem (h : strict_convex π s) (hx : x β s) (hy : y β s) (hxy : x β y)
{t : π} (htβ : 0 < t) (htβ : t < 1) : x + t β’ (y - x) β interior s :=
begin
apply h.open_segment_subset hx hy hxy,
rw open_segment_eq_image',
exact mem_image_of_mem _ β¨htβ, htββ©,
end
/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
lemma strict_convex.affine_preimage {s : set F} (hs : strict_convex π s) {f : E βα΅[π] F}
(hf : continuous f) (hfinj : injective f) :
strict_convex π (f β»ΒΉ' s) :=
begin
intros x hx y hy hxy a b ha hb hab,
refine preimage_interior_subset_interior_preimage hf _,
rw [mem_preimage, convex.combo_affine_apply hab],
exact hs hx hy (hfinj.ne hxy) ha hb hab,
end
/-- The image of a strictly convex set under an affine map is strictly convex. -/
lemma strict_convex.affine_image (hs : strict_convex π s) {f : E βα΅[π] F} (hf : is_open_map f) :
strict_convex π (f '' s) :=
begin
rintro _ β¨x, hx, rflβ© _ β¨y, hy, rflβ© hxy a b ha hb hab,
exact hf.image_interior_subset _ β¨a β’ x + b β’ y, β¨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab,
convex.combo_affine_apply habβ©β©,
end
variables [topological_add_group E]
lemma strict_convex.neg (hs : strict_convex π s) : strict_convex π (-s) :=
hs.is_linear_preimage is_linear_map.is_linear_map_neg continuous_id.neg neg_injective
lemma strict_convex.sub (hs : strict_convex π s) (ht : strict_convex π t) :
strict_convex π (s - t) :=
(sub_eq_add_neg s t).symm βΈ hs.add ht.neg
end add_comm_group
end ordered_ring
section linear_ordered_field
variables [linear_ordered_field π] [topological_space E]
section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π E] [module π F] {s : set E} {x : E}
/-- Alternative definition of set strict convexity, using division. -/
lemma strict_convex_iff_div :
strict_convex π s β s.pairwise
(Ξ» x y, β β¦a b : πβ¦, 0 < a β 0 < b β (a / (a + b)) β’ x + (b / (a + b)) β’ y β interior s) :=
β¨Ξ» h x hx y hy hxy a b ha hb, begin
apply h hx hy hxy (div_pos ha $ add_pos ha hb) (div_pos hb $ add_pos ha hb),
rw βadd_div,
exact div_self (add_pos ha hb).ne',
end, Ξ» h x hx y hy hxy a b ha hb hab, by convert h hx hy hxy ha hb; rw [hab, div_one] β©
lemma strict_convex.mem_smul_of_zero_mem (hs : strict_convex π s) (zero_mem : (0 : E) β s)
(hx : x β s) (hxβ : x β 0) {t : π} (ht : 1 < t) :
x β t β’ interior s :=
begin
rw mem_smul_set_iff_inv_smul_memβ (zero_lt_one.trans ht).ne',
exact hs.smul_mem_of_zero_mem zero_mem hx hxβ (inv_pos.2 $ zero_lt_one.trans ht) (inv_lt_one ht),
end
end add_comm_group
end linear_ordered_field
/-!
#### Convex sets in an ordered space
Relates `convex` and `set.ord_connected`.
-/
section
variables [topological_space E]
/-- A set in a linear ordered field is strictly convex if and only if it is convex. -/
@[simp] lemma strict_convex_iff_convex [linear_ordered_field π] [topological_space π]
[order_topology π] {s : set π} :
strict_convex π s β convex π s :=
begin
refine β¨strict_convex.convex, Ξ» hs, strict_convex_iff_open_segment_subset.2 (Ξ» x hx y hy hxy, _)β©,
obtain h | h := hxy.lt_or_lt,
{ refine (open_segment_subset_Ioo h).trans _,
rw βinterior_Icc,
exact interior_mono (Icc_subset_segment.trans $ hs.segment_subset hx hy) },
{ rw open_segment_symm,
refine (open_segment_subset_Ioo h).trans _,
rw βinterior_Icc,
exact interior_mono (Icc_subset_segment.trans $ hs.segment_subset hy hx) }
end
lemma strict_convex_iff_ord_connected [linear_ordered_field π] [topological_space π]
[order_topology π] {s : set π} :
strict_convex π s β s.ord_connected :=
strict_convex_iff_convex.trans convex_iff_ord_connected
alias strict_convex_iff_ord_connected β strict_convex.ord_connected _
end
|