Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,017 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/-
Copyright (c) 2021 YaΓ«l Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: YaΓ«l Dillies
-/
import analysis.convex.basic
import topology.algebra.order.basic

/-!
# Strictly convex sets

This file defines strictly convex sets.

A set is strictly convex if the open segment between any two distinct points lies in its interior.
-/

open set
open_locale convex pointwise

variables {π•œ 𝕝 E F Ξ² : Type*}

open function set
open_locale convex

section ordered_semiring
variables [ordered_semiring π•œ] [topological_space E] [topological_space F]

section add_comm_monoid
variables [add_comm_monoid E] [add_comm_monoid F]

section has_smul
variables (π•œ) [has_smul π•œ E] [has_smul π•œ F] (s : set E)

/-- A set is strictly convex if the open segment between any two distinct points lies is in its
interior. This basically means "convex and not flat on the boundary". -/
def strict_convex : Prop :=
s.pairwise $ Ξ» x y, βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ a + b = 1 β†’ a β€’ x + b β€’ y ∈ interior s

variables {π•œ s} {x y : E} {a b : π•œ}

lemma strict_convex_iff_open_segment_subset :
  strict_convex π•œ s ↔ s.pairwise (Ξ» x y, open_segment π•œ x y βŠ† interior s) :=
forallβ‚…_congr $ Ξ» x hx y hy hxy, (open_segment_subset_iff π•œ).symm

lemma strict_convex.open_segment_subset (hs : strict_convex π•œ s) (hx : x ∈ s) (hy : y ∈ s)
  (h : x β‰  y) :
  open_segment π•œ x y βŠ† interior s :=
strict_convex_iff_open_segment_subset.1 hs hx hy h

lemma strict_convex_empty : strict_convex π•œ (βˆ… : set E) := pairwise_empty _

lemma strict_convex_univ : strict_convex π•œ (univ : set E) :=
begin
  intros x hx y hy hxy a b ha hb hab,
  rw interior_univ,
  exact mem_univ _,
end

protected lemma strict_convex.eq (hs : strict_convex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (ha : 0 < a)
  (hb : 0 < b) (hab : a + b = 1) (h : a β€’ x + b β€’ y βˆ‰ interior s) : x = y :=
hs.eq hx hy $ Ξ» H, h $ H ha hb hab

protected lemma strict_convex.inter {t : set E} (hs : strict_convex π•œ s) (ht : strict_convex π•œ t) :
  strict_convex π•œ (s ∩ t) :=
begin
  intros x hx y hy hxy a b ha hb hab,
  rw interior_inter,
  exact ⟨hs hx.1 hy.1 hxy ha hb hab, ht hx.2 hy.2 hxy ha hb hab⟩,
end

lemma directed.strict_convex_Union {ΞΉ : Sort*} {s : ΞΉ β†’ set E} (hdir : directed (βŠ†) s)
  (hs : βˆ€ ⦃i : ι⦄, strict_convex π•œ (s i)) :
  strict_convex π•œ (⋃ i, s i) :=
begin
  rintro x hx y hy hxy a b ha hb hab,
  rw mem_Union at hx hy,
  obtain ⟨i, hx⟩ := hx,
  obtain ⟨j, hy⟩ := hy,
  obtain ⟨k, hik, hjk⟩ := hdir i j,
  exact interior_mono (subset_Union s k) (hs (hik hx) (hjk hy) hxy ha hb hab),
end

lemma directed_on.strict_convex_sUnion {S : set (set E)} (hdir : directed_on (βŠ†) S)
  (hS : βˆ€ s ∈ S, strict_convex π•œ s) :
  strict_convex π•œ (⋃₀ S) :=
begin
  rw sUnion_eq_Union,
  exact (directed_on_iff_directed.1 hdir).strict_convex_Union (Ξ» s, hS _ s.2),
end

end has_smul

section module
variables [module π•œ E] [module π•œ F] {s : set E}

protected lemma strict_convex.convex (hs : strict_convex π•œ s) : convex π•œ s :=
convex_iff_pairwise_pos.2 $ Ξ» x hx y hy hxy a b ha hb hab, interior_subset $ hs hx hy hxy ha hb hab

/-- An open convex set is strictly convex. -/
protected lemma convex.strict_convex (h : is_open s) (hs : convex π•œ s) : strict_convex π•œ s :=
Ξ» x hx y hy _ a b ha hb hab, h.interior_eq.symm β–Έ hs hx hy ha.le hb.le hab

lemma is_open.strict_convex_iff (h : is_open s) : strict_convex π•œ s ↔ convex π•œ s :=
⟨strict_convex.convex, convex.strict_convex h⟩

lemma strict_convex_singleton (c : E) : strict_convex π•œ ({c} : set E) := pairwise_singleton _ _

lemma set.subsingleton.strict_convex (hs : s.subsingleton) : strict_convex π•œ s := hs.pairwise _

lemma strict_convex.linear_image [semiring 𝕝] [module 𝕝 E] [module 𝕝 F]
  [linear_map.compatible_smul E F π•œ 𝕝] (hs : strict_convex π•œ s) (f : E β†’β‚—[𝕝] F)
  (hf : is_open_map f) :
  strict_convex π•œ (f '' s) :=
begin
  rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab,
  refine hf.image_interior_subset _ ⟨a β€’ x + b β€’ y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩,
  rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]
end

lemma strict_convex.is_linear_image (hs : strict_convex π•œ s) {f : E β†’ F} (h : is_linear_map π•œ f)
  (hf : is_open_map f) :
  strict_convex π•œ (f '' s) :=
hs.linear_image (h.mk' f) hf

lemma strict_convex.linear_preimage {s : set F} (hs : strict_convex π•œ s) (f : E β†’β‚—[π•œ] F)
  (hf : continuous f) (hfinj : injective f) :
  strict_convex π•œ (s.preimage f) :=
begin
  intros x hx y hy hxy a b ha hb hab,
  refine preimage_interior_subset_interior_preimage hf _,
  rw [mem_preimage, f.map_add, f.map_smul, f.map_smul],
  exact hs hx hy (hfinj.ne hxy) ha hb hab,
end

lemma strict_convex.is_linear_preimage {s : set F} (hs : strict_convex π•œ s) {f : E β†’ F}
  (h : is_linear_map π•œ f) (hf : continuous f) (hfinj : injective f) :
  strict_convex π•œ (s.preimage f) :=
hs.linear_preimage (h.mk' f) hf hfinj

section linear_ordered_cancel_add_comm_monoid
variables [topological_space Ξ²] [linear_ordered_cancel_add_comm_monoid Ξ²] [order_topology Ξ²]
  [module π•œ Ξ²] [ordered_smul π•œ Ξ²]

lemma strict_convex_Iic (r : Ξ²) : strict_convex π•œ (Iic r) :=
begin
  rintro x (hx : x ≀ r) y (hy : y ≀ r) hxy a b ha hb hab,
  refine (subset_interior_iff_subset_of_open is_open_Iio).2 Iio_subset_Iic_self _,
  rw ←convex.combo_self hab r,
  obtain rfl | hx := hx.eq_or_lt,
  { exact add_lt_add_left (smul_lt_smul_of_pos (hy.lt_of_ne hxy.symm) hb) _ },
  obtain rfl | hy := hy.eq_or_lt,
  { exact add_lt_add_right (smul_lt_smul_of_pos hx ha) _ },
  { exact add_lt_add (smul_lt_smul_of_pos hx ha) (smul_lt_smul_of_pos hy hb) }
end

lemma strict_convex_Ici (r : Ξ²) : strict_convex π•œ (Ici r) := @strict_convex_Iic π•œ Ξ²α΅’α΅ˆ _ _ _ _ _ _ r

lemma strict_convex_Icc (r s : Ξ²) : strict_convex π•œ (Icc r s) :=
(strict_convex_Ici r).inter $ strict_convex_Iic s

lemma strict_convex_Iio (r : Ξ²) : strict_convex π•œ (Iio r) :=
(convex_Iio r).strict_convex is_open_Iio

lemma strict_convex_Ioi (r : Ξ²) : strict_convex π•œ (Ioi r) :=
(convex_Ioi r).strict_convex is_open_Ioi

lemma strict_convex_Ioo (r s : Ξ²) : strict_convex π•œ (Ioo r s) :=
(strict_convex_Ioi r).inter $ strict_convex_Iio s

lemma strict_convex_Ico (r s : Ξ²) : strict_convex π•œ (Ico r s) :=
(strict_convex_Ici r).inter $ strict_convex_Iio s

lemma strict_convex_Ioc (r s : Ξ²) : strict_convex π•œ (Ioc r s) :=
(strict_convex_Ioi r).inter $ strict_convex_Iic s

lemma strict_convex_interval (r s : Ξ²) : strict_convex π•œ (interval r s) :=
strict_convex_Icc _ _

end linear_ordered_cancel_add_comm_monoid
end module
end add_comm_monoid

section add_cancel_comm_monoid
variables [add_cancel_comm_monoid E] [has_continuous_add E] [module π•œ E] {s : set E}

/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.preimage_add_right (hs : strict_convex π•œ s) (z : E) :
  strict_convex π•œ ((Ξ» x, z + x) ⁻¹' s) :=
begin
  intros x hx y hy hxy a b ha hb hab,
  refine preimage_interior_subset_interior_preimage (continuous_add_left _) _,
  have h := hs hx hy ((add_right_injective _).ne hxy) ha hb hab,
  rwa [smul_add, smul_add, add_add_add_comm, ←add_smul, hab, one_smul] at h,
end

/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.preimage_add_left (hs : strict_convex π•œ s) (z : E) :
  strict_convex π•œ ((Ξ» x, x + z) ⁻¹' s) :=
by simpa only [add_comm] using hs.preimage_add_right z

end add_cancel_comm_monoid

section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F]

section continuous_add
variables [has_continuous_add E] {s t : set E}

lemma strict_convex.add (hs : strict_convex π•œ s) (ht : strict_convex π•œ t) :
  strict_convex π•œ (s + t) :=
begin
  rintro _ ⟨v, w, hv, hw, rfl⟩ _ ⟨x, y, hx, hy, rfl⟩ h a b ha hb hab,
  rw [smul_add, smul_add, add_add_add_comm],
  obtain rfl | hvx := eq_or_ne v x,
  { refine interior_mono (add_subset_add (singleton_subset_iff.2 hv) subset.rfl) _,
    rw [convex.combo_self hab, singleton_add],
    exact (is_open_map_add_left _).image_interior_subset _
      (mem_image_of_mem _ $ ht hw hy (ne_of_apply_ne _ h) ha hb hab) },
  exact subset_interior_add_left (add_mem_add (hs hv hx hvx ha hb hab) $
    ht.convex hw hy ha.le hb.le hab)
end

lemma strict_convex.add_left (hs : strict_convex π•œ s) (z : E) :
  strict_convex π•œ ((Ξ» x, z + x) '' s) :=
by simpa only [singleton_add] using (strict_convex_singleton z).add hs

lemma strict_convex.add_right (hs : strict_convex π•œ s) (z : E) :
  strict_convex π•œ ((Ξ» x, x + z) '' s) :=
by simpa only [add_comm] using hs.add_left z

/-- The translation of a strictly convex set is also strictly convex. -/
lemma strict_convex.vadd (hs : strict_convex π•œ s) (x : E) : strict_convex π•œ (x +α΅₯ s) :=
hs.add_left x

end continuous_add

section continuous_smul
variables [linear_ordered_field 𝕝] [module 𝕝 E] [has_continuous_const_smul 𝕝 E]
  [linear_map.compatible_smul E E π•œ 𝕝] {s : set E} {x : E}

lemma strict_convex.smul (hs : strict_convex π•œ s) (c : 𝕝) : strict_convex π•œ (c β€’ s) :=
begin
  obtain rfl | hc := eq_or_ne c 0,
  { exact (subsingleton_zero_smul_set _).strict_convex },
  { exact hs.linear_image (linear_map.lsmul _ _ c) (is_open_map_smulβ‚€ hc) }
end

lemma strict_convex.affinity [has_continuous_add E] (hs : strict_convex π•œ s) (z : E) (c : 𝕝) :
  strict_convex π•œ (z +α΅₯ c β€’ s) :=
(hs.smul c).vadd z

end continuous_smul
end add_comm_group
end ordered_semiring

section ordered_comm_semiring
variables [ordered_comm_semiring π•œ] [topological_space E]

section add_comm_group
variables [add_comm_group E] [module π•œ E] [no_zero_smul_divisors π•œ E]
  [has_continuous_const_smul π•œ E] {s : set E}

lemma strict_convex.preimage_smul (hs : strict_convex π•œ s) (c : π•œ) :
  strict_convex π•œ ((Ξ» z, c β€’ z) ⁻¹' s) :=
begin
  classical,
  obtain rfl | hc := eq_or_ne c 0,
  { simp_rw [zero_smul, preimage_const],
    split_ifs,
    { exact strict_convex_univ },
    { exact strict_convex_empty } },
  refine hs.linear_preimage (linear_map.lsmul _ _ c) _ (smul_right_injective E hc),
  unfold linear_map.lsmul linear_map.mkβ‚‚ linear_map.mkβ‚‚' linear_map.mkβ‚‚'β‚›β‚—,
  exact continuous_const_smul _,
end

end add_comm_group
end ordered_comm_semiring

section ordered_ring
variables [ordered_ring π•œ] [topological_space E] [topological_space F]

section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F] {s t : set E} {x y : E}

lemma strict_convex.eq_of_open_segment_subset_frontier [nontrivial π•œ] [densely_ordered π•œ]
  (hs : strict_convex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (h : open_segment π•œ x y βŠ† frontier s) :
  x = y :=
begin
  obtain ⟨a, haβ‚€, haβ‚βŸ© := densely_ordered.dense (0 : π•œ) 1 zero_lt_one,
  classical,
  by_contra hxy,
  exact (h ⟨a, 1 - a, haβ‚€, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, rfl⟩).2
    (hs hx hy hxy haβ‚€ (sub_pos_of_lt ha₁) $ add_sub_cancel'_right _ _),
end

lemma strict_convex.add_smul_mem (hs : strict_convex π•œ s) (hx : x ∈ s) (hxy : x + y ∈ s)
  (hy : y β‰  0) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) :
  x + t β€’ y ∈ interior s :=
begin
  have h : x + t β€’ y = (1 - t) β€’ x + t β€’ (x + y),
  { rw [smul_add, ←add_assoc, ←add_smul, sub_add_cancel, one_smul] },
  rw h,
  refine hs hx hxy (Ξ» h, hy $ add_left_cancel _) (sub_pos_of_lt ht₁) htβ‚€ (sub_add_cancel _ _),
  exact x,
  rw [←h, add_zero],
end

lemma strict_convex.smul_mem_of_zero_mem (hs : strict_convex π•œ s) (zero_mem : (0 : E) ∈ s)
  (hx : x ∈ s) (hxβ‚€ : x β‰  0) {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) :
  t β€’ x ∈ interior s :=
by simpa using hs.add_smul_mem zero_mem (by simpa using hx) hxβ‚€ htβ‚€ ht₁

lemma strict_convex.add_smul_sub_mem (h : strict_convex π•œ s) (hx : x ∈ s) (hy : y ∈ s) (hxy : x β‰  y)
  {t : π•œ} (htβ‚€ : 0 < t) (ht₁ : t < 1) : x + t β€’ (y - x) ∈ interior s :=
begin
  apply h.open_segment_subset hx hy hxy,
  rw open_segment_eq_image',
  exact mem_image_of_mem _ ⟨htβ‚€, htβ‚βŸ©,
end

/-- The preimage of a strictly convex set under an affine map is strictly convex. -/
lemma strict_convex.affine_preimage {s : set F} (hs : strict_convex π•œ s) {f : E →ᡃ[π•œ] F}
  (hf : continuous f) (hfinj : injective f) :
  strict_convex π•œ (f ⁻¹' s) :=
begin
  intros x hx y hy hxy a b ha hb hab,
  refine preimage_interior_subset_interior_preimage hf _,
  rw [mem_preimage, convex.combo_affine_apply hab],
  exact hs hx hy (hfinj.ne hxy) ha hb hab,
end

/-- The image of a strictly convex set under an affine map is strictly convex. -/
lemma strict_convex.affine_image (hs : strict_convex π•œ s) {f : E →ᡃ[π•œ] F} (hf : is_open_map f) :
  strict_convex π•œ (f '' s) :=
begin
  rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab,
  exact hf.image_interior_subset _ ⟨a β€’ x + b β€’ y, ⟨hs hx hy (ne_of_apply_ne _ hxy) ha hb hab,
    convex.combo_affine_apply hab⟩⟩,
end

variables [topological_add_group E]

lemma strict_convex.neg (hs : strict_convex π•œ s) : strict_convex π•œ (-s) :=
hs.is_linear_preimage is_linear_map.is_linear_map_neg continuous_id.neg neg_injective

lemma strict_convex.sub (hs : strict_convex π•œ s) (ht : strict_convex π•œ t) :
  strict_convex π•œ (s - t) :=
(sub_eq_add_neg s t).symm β–Έ hs.add ht.neg

end add_comm_group
end ordered_ring

section linear_ordered_field
variables [linear_ordered_field π•œ] [topological_space E]

section add_comm_group
variables [add_comm_group E] [add_comm_group F] [module π•œ E] [module π•œ F] {s : set E} {x : E}

/-- Alternative definition of set strict convexity, using division. -/
lemma strict_convex_iff_div :
  strict_convex π•œ s ↔ s.pairwise
    (Ξ» x y, βˆ€ ⦃a b : π•œβ¦„, 0 < a β†’ 0 < b β†’ (a / (a + b)) β€’ x + (b / (a + b)) β€’ y ∈ interior s) :=
⟨λ h x hx y hy hxy a b ha hb, begin
  apply h hx hy hxy (div_pos ha $ add_pos ha hb) (div_pos hb $ add_pos ha hb),
  rw ←add_div,
  exact div_self (add_pos ha hb).ne',
end, λ h x hx y hy hxy a b ha hb hab, by convert h hx hy hxy ha hb; rw [hab, div_one] ⟩

lemma strict_convex.mem_smul_of_zero_mem (hs : strict_convex π•œ s) (zero_mem : (0 : E) ∈ s)
  (hx : x ∈ s) (hxβ‚€ : x β‰  0) {t : π•œ} (ht : 1 < t) :
  x ∈ t β€’ interior s :=
begin
  rw mem_smul_set_iff_inv_smul_memβ‚€ (zero_lt_one.trans ht).ne',
  exact hs.smul_mem_of_zero_mem zero_mem hx hxβ‚€ (inv_pos.2 $ zero_lt_one.trans ht)  (inv_lt_one ht),
end

end add_comm_group
end linear_ordered_field

/-!
#### Convex sets in an ordered space

Relates `convex` and `set.ord_connected`.
-/

section
variables [topological_space E]

/-- A set in a linear ordered field is strictly convex if and only if it is convex. -/
@[simp] lemma strict_convex_iff_convex [linear_ordered_field π•œ] [topological_space π•œ]
  [order_topology π•œ] {s : set π•œ} :
  strict_convex π•œ s ↔ convex π•œ s :=
begin
  refine ⟨strict_convex.convex, λ hs, strict_convex_iff_open_segment_subset.2 (λ x hx y hy hxy, _)⟩,
  obtain h | h := hxy.lt_or_lt,
  { refine (open_segment_subset_Ioo h).trans _,
    rw ←interior_Icc,
    exact interior_mono (Icc_subset_segment.trans $ hs.segment_subset hx hy) },
  { rw open_segment_symm,
    refine (open_segment_subset_Ioo h).trans _,
    rw ←interior_Icc,
    exact interior_mono (Icc_subset_segment.trans $ hs.segment_subset hy hx) }
end

lemma strict_convex_iff_ord_connected [linear_ordered_field π•œ] [topological_space π•œ]
  [order_topology π•œ] {s : set π•œ} :
  strict_convex π•œ s ↔ s.ord_connected :=
strict_convex_iff_convex.trans convex_iff_ord_connected

alias strict_convex_iff_ord_connected ↔ strict_convex.ord_connected _

end