Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,700 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
/-
Copyright (c) 2021 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.complex.circle
import analysis.inner_product_space.l2_space
import measure_theory.function.continuous_map_dense
import measure_theory.function.l2_space
import measure_theory.measure.haar
import measure_theory.group.integration
import topology.metric_space.emetric_paracompact
import topology.continuous_function.stone_weierstrass
/-!
# Fourier analysis on the circle
This file contains basic results on Fourier series.
## Main definitions
* `haar_circle`, Haar measure on the circle, normalized to have total measure `1`
* instances `measure_space`, `is_probability_measure` for the circle with respect to this measure
* for `n : ℤ`, `fourier n` is the monomial `λ z, z ^ n`, bundled as a continuous map from `circle`
to `ℂ`
* for `n : ℤ` and `p : ℝ≥0∞`, `fourier_Lp p n` is an abbreviation for the monomial `fourier n`
considered as an element of the Lᵖ-space `Lp ℂ p haar_circle`, via the embedding
`continuous_map.to_Lp`
* `fourier_series` is the canonical isometric isomorphism from `Lp ℂ 2 haar_circle` to `ℓ²(ℤ, ℂ)`
induced by taking Fourier series
## Main statements
The theorem `span_fourier_closure_eq_top` states that the span of the monomials `fourier n` is
dense in `C(circle, ℂ)`, i.e. that its `submodule.topological_closure` is `⊤`. This follows from
the Stone-Weierstrass theorem after checking that it is a subalgebra, closed under conjugation, and
separates points.
The theorem `span_fourier_Lp_closure_eq_top` states that for `1 ≤ p < ∞` the span of the monomials
`fourier_Lp` is dense in `Lp ℂ p haar_circle`, i.e. that its `submodule.topological_closure` is
`⊤`. This follows from the previous theorem using general theory on approximation of Lᵖ functions
by continuous functions.
The theorem `orthonormal_fourier` states that the monomials `fourier_Lp 2 n` form an orthonormal
set (in the L² space of the circle).
The last two results together provide that the functions `fourier_Lp 2 n` form a Hilbert basis for
L²; this is named as `fourier_series`.
Parseval's identity, `tsum_sq_fourier_series_repr`, is a direct consequence of the construction of
this Hilbert basis.
-/
noncomputable theory
open_locale ennreal complex_conjugate classical
open topological_space continuous_map measure_theory measure_theory.measure algebra submodule set
/-! ### Choice of measure on the circle -/
section haar_circle
/-! We make the circle into a measure space, using the Haar measure normalized to have total
measure 1. -/
instance : measurable_space circle := borel circle
instance : borel_space circle := ⟨rfl⟩
/-- Haar measure on the circle, normalized to have total measure 1. -/
@[derive is_haar_measure]
def haar_circle : measure circle := haar_measure ⊤
instance : is_probability_measure haar_circle := ⟨haar_measure_self⟩
instance : measure_space circle :=
{ volume := haar_circle,
.. circle.measurable_space }
end haar_circle
/-! ### Monomials on the circle -/
section monomials
/-- The family of monomials `λ z, z ^ n`, parametrized by `n : ℤ` and considered as bundled
continuous maps from `circle` to `ℂ`. -/
@[simps] def fourier (n : ℤ) : C(circle, ℂ) :=
{ to_fun := λ z, z ^ n,
continuous_to_fun := continuous_subtype_coe.zpow₀ n $ λ z, or.inl (ne_zero_of_mem_circle z) }
@[simp] lemma fourier_zero {z : circle} : fourier 0 z = 1 := rfl
@[simp] lemma fourier_neg {n : ℤ} {z : circle} : fourier (-n) z = conj (fourier n z) :=
by simp [← coe_inv_circle_eq_conj z]
@[simp] lemma fourier_add {m n : ℤ} {z : circle} :
fourier (m + n) z = (fourier m z) * (fourier n z) :=
by simp [zpow_add₀ (ne_zero_of_mem_circle z)]
/-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ`; equivalently, polynomials in
`z` and `conj z`. -/
def fourier_subalgebra : subalgebra ℂ C(circle, ℂ) := algebra.adjoin ℂ (range fourier)
/-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ` is in fact the linear span of
these functions. -/
lemma fourier_subalgebra_coe : fourier_subalgebra.to_submodule = span ℂ (range fourier) :=
begin
apply adjoin_eq_span_of_subset,
refine subset.trans _ submodule.subset_span,
intros x hx,
apply submonoid.closure_induction hx (λ _, id) ⟨0, rfl⟩,
rintros _ _ ⟨m, rfl⟩ ⟨n, rfl⟩,
refine ⟨m + n, _⟩,
ext1 z,
exact fourier_add,
end
/-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ` separates points. -/
lemma fourier_subalgebra_separates_points : fourier_subalgebra.separates_points :=
begin
intros x y hxy,
refine ⟨_, ⟨fourier 1, _, rfl⟩, _⟩,
{ exact subset_adjoin ⟨1, rfl⟩ },
{ simp [hxy] }
end
/-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ` is invariant under complex
conjugation. -/
lemma fourier_subalgebra_conj_invariant :
conj_invariant_subalgebra (fourier_subalgebra.restrict_scalars ℝ) :=
begin
rintros _ ⟨f, hf, rfl⟩,
change _ ∈ fourier_subalgebra,
change _ ∈ fourier_subalgebra at hf,
apply adjoin_induction hf,
{ rintros _ ⟨n, rfl⟩,
suffices : fourier (-n) ∈ fourier_subalgebra,
{ convert this,
ext1,
simp },
exact subset_adjoin ⟨-n, rfl⟩ },
{ intros c,
exact fourier_subalgebra.algebra_map_mem (conj c) },
{ intros f g hf hg,
convert fourier_subalgebra.add_mem hf hg,
exact alg_hom.map_add _ f g, },
{ intros f g hf hg,
convert fourier_subalgebra.mul_mem hf hg,
exact alg_hom.map_mul _ f g, }
end
/-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ` is dense. -/
lemma fourier_subalgebra_closure_eq_top : fourier_subalgebra.topological_closure = ⊤ :=
continuous_map.subalgebra_is_R_or_C_topological_closure_eq_top_of_separates_points
fourier_subalgebra
fourier_subalgebra_separates_points
fourier_subalgebra_conj_invariant
/-- The linear span of the monomials `z ^ n` is dense in `C(circle, ℂ)`. -/
lemma span_fourier_closure_eq_top : (span ℂ (range fourier)).topological_closure = ⊤ :=
begin
rw ← fourier_subalgebra_coe,
exact congr_arg subalgebra.to_submodule fourier_subalgebra_closure_eq_top,
end
/-- The family of monomials `λ z, z ^ n`, parametrized by `n : ℤ` and considered as elements of
the `Lp` space of functions on `circle` taking values in `ℂ`. -/
abbreviation fourier_Lp (p : ℝ≥0∞) [fact (1 ≤ p)] (n : ℤ) : Lp ℂ p haar_circle :=
to_Lp p haar_circle ℂ (fourier n)
lemma coe_fn_fourier_Lp (p : ℝ≥0∞) [fact (1 ≤ p)] (n : ℤ) :
⇑(fourier_Lp p n) =ᵐ[haar_circle] fourier n :=
coe_fn_to_Lp haar_circle (fourier n)
/-- For each `1 ≤ p < ∞`, the linear span of the monomials `z ^ n` is dense in
`Lp ℂ p haar_circle`. -/
lemma span_fourier_Lp_closure_eq_top {p : ℝ≥0∞} [fact (1 ≤ p)] (hp : p ≠ ∞) :
(span ℂ (range (fourier_Lp p))).topological_closure = ⊤ :=
begin
convert (continuous_map.to_Lp_dense_range ℂ hp haar_circle ℂ).topological_closure_map_submodule
span_fourier_closure_eq_top,
rw [map_span, range_comp],
simp
end
/-- For `n ≠ 0`, a rotation by `n⁻¹ * real.pi` negates the monomial `z ^ n`. -/
lemma fourier_add_half_inv_index {n : ℤ} (hn : n ≠ 0) (z : circle) :
fourier n ((exp_map_circle (n⁻¹ * real.pi) * z)) = - fourier n z :=
begin
have : ↑n * ((↑n)⁻¹ * ↑real.pi * complex.I) = ↑real.pi * complex.I,
{ have : (n:ℂ) ≠ 0 := by exact_mod_cast hn,
field_simp,
ring },
simp [mul_zpow, ← complex.exp_int_mul, complex.exp_pi_mul_I, this]
end
/-- The monomials `z ^ n` are an orthonormal set with respect to Haar measure on the circle. -/
lemma orthonormal_fourier : orthonormal ℂ (fourier_Lp 2) :=
begin
rw orthonormal_iff_ite,
intros i j,
rw continuous_map.inner_to_Lp haar_circle (fourier i) (fourier j),
split_ifs,
{ simp [h, is_probability_measure.measure_univ, ← fourier_neg, ← fourier_add, -fourier_apply] },
simp only [← fourier_add, ← fourier_neg],
have hij : -i + j ≠ 0,
{ rw add_comm,
exact sub_ne_zero.mpr (ne.symm h) },
exact integral_eq_zero_of_mul_left_eq_neg (fourier_add_half_inv_index hij)
end
end monomials
section fourier
/-- We define `fourier_series` to be a `ℤ`-indexed Hilbert basis for `Lp ℂ 2 haar_circle`, which by
definition is an isometric isomorphism from `Lp ℂ 2 haar_circle` to `ℓ²(ℤ, ℂ)`. -/
def fourier_series : hilbert_basis ℤ ℂ (Lp ℂ 2 haar_circle) :=
hilbert_basis.mk orthonormal_fourier (span_fourier_Lp_closure_eq_top (by norm_num)).ge
/-- The elements of the Hilbert basis `fourier_series` for `Lp ℂ 2 haar_circle` are the functions
`fourier_Lp 2`, the monomials `λ z, z ^ n` on the circle considered as elements of `L2`. -/
@[simp] lemma coe_fourier_series : ⇑fourier_series = fourier_Lp 2 := hilbert_basis.coe_mk _ _
/-- Under the isometric isomorphism `fourier_series` from `Lp ℂ 2 haar_circle` to `ℓ²(ℤ, ℂ)`, the
`i`-th coefficient is the integral over the circle of `λ t, t ^ (-i) * f t`. -/
lemma fourier_series_repr (f : Lp ℂ 2 haar_circle) (i : ℤ) :
fourier_series.repr f i = ∫ t : circle, t ^ (-i) * f t ∂ haar_circle :=
begin
transitivity ∫ t : circle, conj ((fourier_Lp 2 i : circle → ℂ) t) * f t ∂ haar_circle,
{ simp [fourier_series.repr_apply_apply f i, measure_theory.L2.inner_def] },
apply integral_congr_ae,
filter_upwards [coe_fn_fourier_Lp 2 i] with _ ht,
rw [ht, ← fourier_neg],
simp [-fourier_neg]
end
/-- The Fourier series of an `L2` function `f` sums to `f`, in the `L2` topology on the circle. -/
lemma has_sum_fourier_series (f : Lp ℂ 2 haar_circle) :
has_sum (λ i, fourier_series.repr f i • fourier_Lp 2 i) f :=
by simpa using hilbert_basis.has_sum_repr fourier_series f
/-- **Parseval's identity**: the sum of the squared norms of the Fourier coefficients equals the
`L2` norm of the function. -/
lemma tsum_sq_fourier_series_repr (f : Lp ℂ 2 haar_circle) :
∑' i : ℤ, ∥fourier_series.repr f i∥ ^ 2 = ∫ t : circle, ∥f t∥ ^ 2 ∂ haar_circle :=
begin
have H₁ : ∥fourier_series.repr f∥ ^ 2 = ∑' i, ∥fourier_series.repr f i∥ ^ 2,
{ exact_mod_cast lp.norm_rpow_eq_tsum _ (fourier_series.repr f),
norm_num },
have H₂ : ∥fourier_series.repr f∥ ^ 2 = ∥f∥ ^2 := by simp,
have H₃ := congr_arg is_R_or_C.re (@L2.inner_def circle ℂ ℂ _ _ _ _ f f),
rw ← integral_re at H₃,
{ simp only [← norm_sq_eq_inner] at H₃,
rw [← H₁, H₂],
exact H₃ },
{ exact L2.integrable_inner f f },
end
end fourier
|