Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,465 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/-
Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-/
import topology.algebra.module.weak_dual
import analysis.normed.field.basic
import analysis.locally_convex.with_seminorms

/-!
# Weak Dual in Topological Vector Spaces

We prove that the weak topology induced by a bilinear form `B : E β†’β‚—[π•œ] F β†’β‚—[π•œ] π•œ` is locally
convex and we explicit give a neighborhood basis in terms of the family of seminorms `Ξ» x, βˆ₯B x yβˆ₯`
for `y : F`.

## Main definitions

* `linear_map.to_seminorm`: turn a linear form `f : E β†’β‚—[π•œ] π•œ` into a seminorm `Ξ» x, βˆ₯f xβˆ₯`.
* `linear_map.to_seminorm_family`: turn a bilinear form `B : E β†’β‚—[π•œ] F β†’β‚—[π•œ] π•œ` into a map
`F β†’ seminorm π•œ E`.

## Main statements

* `linear_map.has_basis_weak_bilin`: the seminorm balls of `B.to_seminorm_family` form a
neighborhood basis of `0` in the weak topology.
* `linear_map.to_seminorm_family.with_seminorms`: the topology of a weak space is induced by the
family of seminorm `B.to_seminorm_family`.
* `weak_bilin.locally_convex_space`: a spaced endowed with a weak topology is locally convex.

## References

* [Bourbaki, *Topological Vector Spaces*][bourbaki1987]

## Tags

weak dual, seminorm
-/

variables {π•œ E F ΞΉ : Type*}

open_locale topological_space

section bilin_form

namespace linear_map

variables [normed_field π•œ] [add_comm_group E] [module π•œ E] [add_comm_group F] [module π•œ F]

/-- Construct a seminorm from a linear form `f : E β†’β‚—[π•œ] π•œ` over a normed field `π•œ` by
`Ξ» x, βˆ₯f xβˆ₯` -/
def to_seminorm (f : E β†’β‚—[π•œ] π•œ) : seminorm π•œ E :=
(norm_seminorm π•œ π•œ).comp f

lemma coe_to_seminorm {f : E β†’β‚—[π•œ] π•œ} :
  ⇑f.to_seminorm = Ξ» x, βˆ₯f xβˆ₯ := rfl

@[simp] lemma to_seminorm_apply {f : E β†’β‚—[π•œ] π•œ} {x : E} :
  f.to_seminorm x = βˆ₯f xβˆ₯ := rfl

lemma to_seminorm_ball_zero {f : E β†’β‚—[π•œ] π•œ} {r : ℝ} :
  seminorm.ball f.to_seminorm 0 r = { x : E | βˆ₯f xβˆ₯ < r} :=
by simp only [seminorm.ball_zero_eq, to_seminorm_apply]

lemma to_seminorm_comp (f : F β†’β‚—[π•œ] π•œ) (g : E β†’β‚—[π•œ] F) :
  f.to_seminorm.comp g = (f.comp g).to_seminorm :=
by { ext, simp only [seminorm.comp_apply, to_seminorm_apply, coe_comp] }

/-- Construct a family of seminorms from a bilinear form. -/
def to_seminorm_family (B : E β†’β‚—[π•œ] F β†’β‚—[π•œ] π•œ) : seminorm_family π•œ E F :=
Ξ» y, (B.flip y).to_seminorm

@[simp] lemma to_seminorm_family_apply {B : E β†’β‚—[π•œ] F β†’β‚—[π•œ] π•œ} {x y} :
  (B.to_seminorm_family y) x = βˆ₯B x yβˆ₯ := rfl

end linear_map

end bilin_form

section topology

variables [normed_field π•œ] [add_comm_group E] [module π•œ E] [add_comm_group F] [module π•œ F]
variables [nonempty ΞΉ]
variables {B : E β†’β‚—[π•œ] F β†’β‚—[π•œ] π•œ}

lemma linear_map.has_basis_weak_bilin (B : E β†’β‚—[π•œ] F β†’β‚—[π•œ] π•œ) :
  (𝓝 (0 : weak_bilin B)).has_basis B.to_seminorm_family.basis_sets id :=
begin
  let p := B.to_seminorm_family,
  rw [nhds_induced, nhds_pi],
  simp only [map_zero, linear_map.zero_apply],
  have h := @metric.nhds_basis_ball π•œ _ 0,
  have h' := filter.has_basis_pi (Ξ» (i : F), h),
  have h'' := filter.has_basis.comap (Ξ» x y, B x y) h',
  refine h''.to_has_basis _ _,
  { rintros (U : set F Γ— (F β†’ ℝ)) hU,
    cases hU with hU₁ hUβ‚‚,
    simp only [id.def],
    let U' := hU₁.to_finset,
    by_cases hU₃ : U.fst.nonempty,
    { have hU₃' : U'.nonempty := hU₁.nonempty_to_finset.mpr hU₃,
      refine ⟨(U'.sup p).ball 0 $ U'.inf' hU₃' U.snd, p.basis_sets_mem _ $
        (finset.lt_inf'_iff _).2 $ Ξ» y hy, hUβ‚‚ y $ (hU₁.mem_to_finset).mp hy, Ξ» x hx y hy, _⟩,
      simp only [set.mem_preimage, set.mem_pi, mem_ball_zero_iff],
      rw seminorm.mem_ball_zero at hx,
      rw ←linear_map.to_seminorm_family_apply,
      have hyU' : y ∈ U' := (set.finite.mem_to_finset hU₁).mpr hy,
      have hp : p y ≀ U'.sup p := finset.le_sup hyU',
      refine lt_of_le_of_lt (hp x) (lt_of_lt_of_le hx _),
      exact finset.inf'_le _ hyU' },
    rw set.not_nonempty_iff_eq_empty.mp hU₃,
    simp only [set.empty_pi, set.preimage_univ, set.subset_univ, and_true],
    exact Exists.intro ((p 0).ball 0 1) (p.basis_sets_singleton_mem 0 one_pos) },
  rintros U (hU : U ∈ p.basis_sets),
  rw seminorm_family.basis_sets_iff at hU,
  rcases hU with ⟨s, r, hr, hU⟩,
  rw hU,
  refine ⟨(s, λ _, r), ⟨by simp only [s.finite_to_set], λ y hy, hr⟩, λ x hx, _⟩,
  simp only [set.mem_preimage, set.mem_pi, finset.mem_coe, mem_ball_zero_iff] at hx,
  simp only [id.def, seminorm.mem_ball, sub_zero],
  refine seminorm.finset_sup_apply_lt hr (Ξ» y hy, _),
  rw linear_map.to_seminorm_family_apply,
  exact hx y hy,
end

lemma linear_map.weak_bilin_with_seminorms (B : E β†’β‚—[π•œ] F β†’β‚—[π•œ] π•œ) :
  with_seminorms (linear_map.to_seminorm_family B : F β†’ seminorm π•œ (weak_bilin B)) :=
seminorm_family.with_seminorms_of_has_basis _ B.has_basis_weak_bilin

end topology

section locally_convex

variables [normed_field π•œ] [add_comm_group E] [module π•œ E] [add_comm_group F] [module π•œ F]
variables [nonempty ΞΉ] [normed_space ℝ π•œ] [module ℝ E] [is_scalar_tower ℝ π•œ E]

instance {B : E β†’β‚—[π•œ] F β†’β‚—[π•œ] π•œ} : locally_convex_space ℝ (weak_bilin B) :=
seminorm_family.to_locally_convex_space (B.weak_bilin_with_seminorms)

end locally_convex