Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 2,139 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
/-
Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import analysis.normed.group.completion
import analysis.normed_space.operator_norm
import topology.algebra.uniform_mul_action
/-!
# Normed space structure on the completion of a normed space
If `E` is a normed space over `π`, then so is `uniform_space.completion E`. In this file we provide
necessary instances and define `uniform_space.completion.to_complβα΅’` - coercion
`E β uniform_space.completion E` as a bundled linear isometry.
-/
noncomputable theory
namespace uniform_space
namespace completion
variables (π E : Type*) [normed_field π] [normed_add_comm_group E] [normed_space π E]
@[priority 100]
instance normed_space.to_has_uniform_continuous_const_smul :
has_uniform_continuous_const_smul π E :=
β¨Ξ» c, (lipschitz_with_smul c).uniform_continuousβ©
instance : normed_space π (completion E) :=
{ smul := (β’),
norm_smul_le := Ξ» c x, induction_on x
(is_closed_le (continuous_const_smul _).norm (continuous_const.mul continuous_norm)) $
Ξ» y, by simp only [β coe_smul, norm_coe, norm_smul],
.. completion.module }
variables {π E}
/-- Embedding of a normed space to its completion as a linear isometry. -/
def to_complβα΅’ : E ββα΅’[π] completion E :=
{ to_fun := coe,
map_smul' := coe_smul,
norm_map' := norm_coe,
.. to_compl }
@[simp] lemma coe_to_complβα΅’ : β(to_complβα΅’ : E ββα΅’[π] completion E) = coe := rfl
/-- Embedding of a normed space to its completion as a continuous linear map. -/
def to_complL : E βL[π] completion E :=
to_complβα΅’.to_continuous_linear_map
@[simp] lemma coe_to_complL : β(to_complL : E βL[π] completion E) = coe := rfl
@[simp] lemma norm_to_complL {π E : Type*} [nontrivially_normed_field π] [normed_add_comm_group E]
[normed_space π E] [nontrivial E] : β₯(to_complL : E βL[π] completion E)β₯ = 1 :=
(to_complβα΅’ : E ββα΅’[π] completion E).norm_to_continuous_linear_map
end completion
end uniform_space
|