Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 2,139 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/-
Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import analysis.normed.group.completion
import analysis.normed_space.operator_norm
import topology.algebra.uniform_mul_action

/-!
# Normed space structure on the completion of a normed space

If `E` is a normed space over `π•œ`, then so is `uniform_space.completion E`. In this file we provide
necessary instances and define `uniform_space.completion.to_complβ‚—α΅’` - coercion
`E β†’ uniform_space.completion E` as a bundled linear isometry.
-/

noncomputable theory

namespace uniform_space
namespace completion

variables (π•œ E : Type*) [normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E]

@[priority 100]
instance normed_space.to_has_uniform_continuous_const_smul :
  has_uniform_continuous_const_smul π•œ E :=
⟨λ c, (lipschitz_with_smul c).uniform_continuous⟩

instance : normed_space π•œ (completion E) :=
{ smul := (β€’),
  norm_smul_le := Ξ» c x, induction_on x
    (is_closed_le (continuous_const_smul _).norm (continuous_const.mul continuous_norm)) $
    Ξ» y, by simp only [← coe_smul, norm_coe, norm_smul],
  .. completion.module }

variables {π•œ E}

/-- Embedding of a normed space to its completion as a linear isometry. -/
def to_complβ‚—α΅’ : E β†’β‚—α΅’[π•œ] completion E :=
{ to_fun := coe,
  map_smul' := coe_smul,
  norm_map' := norm_coe,
  .. to_compl }

@[simp] lemma coe_to_complβ‚—α΅’ : ⇑(to_complβ‚—α΅’ : E β†’β‚—α΅’[π•œ] completion E) = coe := rfl

/-- Embedding of a normed space to its completion as a continuous linear map. -/
def to_complL : E β†’L[π•œ] completion E :=
to_complβ‚—α΅’.to_continuous_linear_map

@[simp] lemma coe_to_complL : ⇑(to_complL : E β†’L[π•œ] completion E) = coe := rfl

@[simp] lemma norm_to_complL {π•œ E : Type*} [nontrivially_normed_field π•œ] [normed_add_comm_group E]
  [normed_space π•œ E] [nontrivial E] : βˆ₯(to_complL : E β†’L[π•œ] completion E)βˆ₯ = 1 :=
(to_complβ‚—α΅’ : E β†’β‚—α΅’[π•œ] completion E).norm_to_continuous_linear_map

end completion
end uniform_space