Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,345 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
/-
Copyright (c) 2020 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.normed_space.hahn_banach.extension
import analysis.normed_space.is_R_or_C
import analysis.locally_convex.polar
/-!
# The topological dual of a normed space
In this file we define the topological dual `normed_space.dual` of a normed space, and the
continuous linear map `normed_space.inclusion_in_double_dual` from a normed space into its double
dual.
For base field `π = β` or `π = β`, this map is actually an isometric embedding; we provide a
version `normed_space.inclusion_in_double_dual_li` of the map which is of type a bundled linear
isometric embedding, `E ββα΅’[π] (dual π (dual π E))`.
Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the
theory for `seminormed_add_comm_group` and we specialize to `normed_add_comm_group` when needed.
## Main definitions
* `inclusion_in_double_dual` and `inclusion_in_double_dual_li` are the inclusion of a normed space
in its double dual, considered as a bounded linear map and as a linear isometry, respectively.
* `polar π s` is the subset of `dual π E` consisting of those functionals `x'` for which
`β₯x' zβ₯ β€ 1` for every `z β s`.
## Tags
dual
-/
noncomputable theory
open_locale classical topological_space
universes u v
namespace normed_space
section general
variables (π : Type*) [nontrivially_normed_field π]
variables (E : Type*) [seminormed_add_comm_group E] [normed_space π E]
variables (F : Type*) [normed_add_comm_group F] [normed_space π F]
/-- The topological dual of a seminormed space `E`. -/
@[derive [inhabited, seminormed_add_comm_group, normed_space π]] def dual := E βL[π] π
instance : continuous_linear_map_class (dual π E) π E π :=
continuous_linear_map.continuous_semilinear_map_class
instance : has_coe_to_fun (dual π E) (Ξ» _, E β π) := continuous_linear_map.to_fun
instance : normed_add_comm_group (dual π F) := continuous_linear_map.to_normed_add_comm_group
instance [finite_dimensional π E] : finite_dimensional π (dual π E) :=
continuous_linear_map.finite_dimensional
/-- The inclusion of a normed space in its double (topological) dual, considered
as a bounded linear map. -/
def inclusion_in_double_dual : E βL[π] (dual π (dual π E)) :=
continuous_linear_map.apply π π
@[simp] lemma dual_def (x : E) (f : dual π E) : inclusion_in_double_dual π E x f = f x := rfl
lemma inclusion_in_double_dual_norm_eq :
β₯inclusion_in_double_dual π Eβ₯ = β₯(continuous_linear_map.id π (dual π E))β₯ :=
continuous_linear_map.op_norm_flip _
lemma inclusion_in_double_dual_norm_le : β₯inclusion_in_double_dual π Eβ₯ β€ 1 :=
by { rw inclusion_in_double_dual_norm_eq, exact continuous_linear_map.norm_id_le }
lemma double_dual_bound (x : E) : β₯(inclusion_in_double_dual π E) xβ₯ β€ β₯xβ₯ :=
by simpa using continuous_linear_map.le_of_op_norm_le _ (inclusion_in_double_dual_norm_le π E) x
/-- The dual pairing as a bilinear form. -/
def dual_pairing : (dual π E) ββ[π] E ββ[π] π := continuous_linear_map.coe_lm π
@[simp] lemma dual_pairing_apply {v : dual π E} {x : E} : dual_pairing π E v x = v x := rfl
lemma dual_pairing_separating_left : (dual_pairing π E).separating_left :=
begin
rw [linear_map.separating_left_iff_ker_eq_bot, linear_map.ker_eq_bot],
exact continuous_linear_map.coe_injective,
end
end general
section bidual_isometry
variables (π : Type v) [is_R_or_C π]
{E : Type u} [normed_add_comm_group E] [normed_space π E]
/-- If one controls the norm of every `f x`, then one controls the norm of `x`.
Compare `continuous_linear_map.op_norm_le_bound`. -/
lemma norm_le_dual_bound (x : E) {M : β} (hMp: 0 β€ M) (hM : β (f : dual π E), β₯f xβ₯ β€ M * β₯fβ₯) :
β₯xβ₯ β€ M :=
begin
classical,
by_cases h : x = 0,
{ simp only [h, hMp, norm_zero] },
{ obtain β¨f, hfβ, hfxβ© : β f : E βL[π] π, β₯fβ₯ = 1 β§ f x = β₯xβ₯ := exists_dual_vector π x h,
calc β₯xβ₯ = β₯(β₯xβ₯ : π)β₯ : is_R_or_C.norm_coe_norm.symm
... = β₯f xβ₯ : by rw hfx
... β€ M * β₯fβ₯ : hM f
... = M : by rw [hfβ, mul_one] }
end
lemma eq_zero_of_forall_dual_eq_zero {x : E} (h : β f : dual π E, f x = (0 : π)) : x = 0 :=
norm_le_zero_iff.mp (norm_le_dual_bound π x le_rfl (Ξ» f, by simp [h f]))
lemma eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 β β g : dual π E, g x = 0 :=
β¨Ξ» hx, by simp [hx], Ξ» h, eq_zero_of_forall_dual_eq_zero π hβ©
/-- See also `geometric_hahn_banach_point_point`. -/
lemma eq_iff_forall_dual_eq {x y : E} :
x = y β β g : dual π E, g x = g y :=
begin
rw [β sub_eq_zero, eq_zero_iff_forall_dual_eq_zero π (x - y)],
simp [sub_eq_zero],
end
/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/
def inclusion_in_double_dual_li : E ββα΅’[π] (dual π (dual π E)) :=
{ norm_map' := begin
intros x,
apply le_antisymm,
{ exact double_dual_bound π E x },
rw continuous_linear_map.norm_def,
refine le_cInf continuous_linear_map.bounds_nonempty _,
rintros c β¨hc1, hc2β©,
exact norm_le_dual_bound π x hc1 hc2
end,
.. inclusion_in_double_dual π E }
end bidual_isometry
section polar_sets
open metric set normed_space
/-- Given a subset `s` in a normed space `E` (over a field `π`), the polar
`polar π s` is the subset of `dual π E` consisting of those functionals which
evaluate to something of norm at most one at all points `z β s`. -/
def polar (π : Type*) [nontrivially_normed_field π]
{E : Type*} [seminormed_add_comm_group E] [normed_space π E] : set E β set (dual π E) :=
(dual_pairing π E).flip.polar
variables (π : Type*) [nontrivially_normed_field π]
variables {E : Type*} [seminormed_add_comm_group E] [normed_space π E]
lemma mem_polar_iff {x' : dual π E} (s : set E) : x' β polar π s β β z β s, β₯x' zβ₯ β€ 1 := iff.rfl
@[simp] lemma polar_univ : polar π (univ : set E) = {(0 : dual π E)} :=
(dual_pairing π E).flip.polar_univ
(linear_map.flip_separating_right.mpr (dual_pairing_separating_left π E))
lemma is_closed_polar (s : set E) : is_closed (polar π s) :=
begin
dunfold normed_space.polar,
simp only [linear_map.polar_eq_Inter, linear_map.flip_apply],
refine is_closed_bInter (Ξ» z hz, _),
exact is_closed_Iic.preimage (continuous_linear_map.apply π π z).continuous.norm
end
@[simp] lemma polar_closure (s : set E) : polar π (closure s) = polar π s :=
((dual_pairing π E).flip.polar_antitone subset_closure).antisymm $
(dual_pairing π E).flip.polar_gc.l_le $
closure_minimal ((dual_pairing π E).flip.polar_gc.le_u_l s) $
by simpa [linear_map.flip_flip]
using (is_closed_polar _ _).preimage (inclusion_in_double_dual π E).continuous
variables {π}
/-- If `x'` is a dual element such that the norms `β₯x' zβ₯` are bounded for `z β s`, then a
small scalar multiple of `x'` is in `polar π s`. -/
lemma smul_mem_polar {s : set E} {x' : dual π E} {c : π}
(hc : β z, z β s β β₯ x' z β₯ β€ β₯cβ₯) : cβ»ΒΉ β’ x' β polar π s :=
begin
by_cases c_zero : c = 0, { simp only [c_zero, inv_zero, zero_smul],
exact (dual_pairing π E).flip.zero_mem_polar _ },
have eq : β z, β₯ cβ»ΒΉ β’ (x' z) β₯ = β₯ cβ»ΒΉ β₯ * β₯ x' z β₯ := Ξ» z, norm_smul cβ»ΒΉ _,
have le : β z, z β s β β₯ cβ»ΒΉ β’ (x' z) β₯ β€ β₯ cβ»ΒΉ β₯ * β₯ c β₯,
{ intros z hzs,
rw eq z,
apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _), },
have cancel : β₯ cβ»ΒΉ β₯ * β₯ c β₯ = 1,
by simp only [c_zero, norm_eq_zero, ne.def, not_false_iff,
inv_mul_cancel, norm_inv],
rwa cancel at le,
end
lemma polar_ball_subset_closed_ball_div {c : π} (hc : 1 < β₯cβ₯) {r : β} (hr : 0 < r) :
polar π (ball (0 : E) r) β closed_ball (0 : dual π E) (β₯cβ₯ / r) :=
begin
intros x' hx',
rw mem_polar_iff at hx',
simp only [polar, mem_set_of_eq, mem_closed_ball_zero_iff, mem_ball_zero_iff] at *,
have hcr : 0 < β₯cβ₯ / r, from div_pos (zero_lt_one.trans hc) hr,
refine continuous_linear_map.op_norm_le_of_shell hr hcr.le hc (Ξ» x hβ hβ, _),
calc β₯x' xβ₯ β€ 1 : hx' _ hβ
... β€ (β₯cβ₯ / r) * β₯xβ₯ : (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa inv_div)
end
variables (π)
lemma closed_ball_inv_subset_polar_closed_ball {r : β} :
closed_ball (0 : dual π E) rβ»ΒΉ β polar π (closed_ball (0 : E) r) :=
Ξ» x' hx' x hx,
calc β₯x' xβ₯ β€ β₯x'β₯ * β₯xβ₯ : x'.le_op_norm x
... β€ rβ»ΒΉ * r :
mul_le_mul (mem_closed_ball_zero_iff.1 hx') (mem_closed_ball_zero_iff.1 hx)
(norm_nonneg _) (dist_nonneg.trans hx')
... = r / r : inv_mul_eq_div _ _
... β€ 1 : div_self_le_one r
/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
inverse radius. -/
lemma polar_closed_ball {π E : Type*} [is_R_or_C π] [normed_add_comm_group E] [normed_space π E]
{r : β} (hr : 0 < r) :
polar π (closed_ball (0 : E) r) = closed_ball (0 : dual π E) rβ»ΒΉ :=
begin
refine subset.antisymm _ (closed_ball_inv_subset_polar_closed_ball _),
intros x' h,
simp only [mem_closed_ball_zero_iff],
refine continuous_linear_map.op_norm_le_of_ball hr (inv_nonneg.mpr hr.le) (Ξ» z hz, _),
simpa only [one_div] using linear_map.bound_of_ball_bound' hr 1 x'.to_linear_map h z
end
/-- Given a neighborhood `s` of the origin in a normed space `E`, the dual norms
of all elements of the polar `polar π s` are bounded by a constant. -/
lemma bounded_polar_of_mem_nhds_zero {s : set E} (s_nhd : s β π (0 : E)) :
bounded (polar π s) :=
begin
obtain β¨a, haβ© : β a : π, 1 < β₯aβ₯ := normed_field.exists_one_lt_norm π,
obtain β¨r, r_pos, r_ballβ© : β (r : β) (hr : 0 < r), ball 0 r β s :=
metric.mem_nhds_iff.1 s_nhd,
exact bounded_closed_ball.mono (((dual_pairing π E).flip.polar_antitone r_ball).trans $
polar_ball_subset_closed_ball_div ha r_pos)
end
end polar_sets
end normed_space
|