Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,345 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/-
Copyright (c) 2020 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.normed_space.hahn_banach.extension
import analysis.normed_space.is_R_or_C
import analysis.locally_convex.polar

/-!
# The topological dual of a normed space

In this file we define the topological dual `normed_space.dual` of a normed space, and the
continuous linear map `normed_space.inclusion_in_double_dual` from a normed space into its double
dual.

For base field `π•œ = ℝ` or `π•œ = β„‚`, this map is actually an isometric embedding; we provide a
version `normed_space.inclusion_in_double_dual_li` of the map which is of type a bundled linear
isometric embedding, `E β†’β‚—α΅’[π•œ] (dual π•œ (dual π•œ E))`.

Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the
theory for `seminormed_add_comm_group` and we specialize to `normed_add_comm_group` when needed.

## Main definitions

* `inclusion_in_double_dual` and `inclusion_in_double_dual_li` are the inclusion of a normed space
  in its double dual, considered as a bounded linear map and as a linear isometry, respectively.
* `polar π•œ s` is the subset of `dual π•œ E` consisting of those functionals `x'` for which
  `βˆ₯x' zβˆ₯ ≀ 1` for every `z ∈ s`.

## Tags

dual
-/

noncomputable theory
open_locale classical topological_space
universes u v

namespace normed_space

section general
variables (π•œ : Type*) [nontrivially_normed_field π•œ]
variables (E : Type*) [seminormed_add_comm_group E] [normed_space π•œ E]
variables (F : Type*) [normed_add_comm_group F] [normed_space π•œ F]

/-- The topological dual of a seminormed space `E`. -/
@[derive [inhabited, seminormed_add_comm_group, normed_space π•œ]] def dual := E β†’L[π•œ] π•œ

instance : continuous_linear_map_class (dual π•œ E) π•œ E π•œ :=
continuous_linear_map.continuous_semilinear_map_class

instance : has_coe_to_fun (dual π•œ E) (Ξ» _, E β†’ π•œ) := continuous_linear_map.to_fun

instance : normed_add_comm_group (dual π•œ F) := continuous_linear_map.to_normed_add_comm_group

instance [finite_dimensional π•œ E] : finite_dimensional π•œ (dual π•œ E) :=
continuous_linear_map.finite_dimensional

/-- The inclusion of a normed space in its double (topological) dual, considered
   as a bounded linear map. -/
def inclusion_in_double_dual : E β†’L[π•œ] (dual π•œ (dual π•œ E)) :=
continuous_linear_map.apply π•œ π•œ

@[simp] lemma dual_def (x : E) (f : dual π•œ E) : inclusion_in_double_dual π•œ E x f = f x := rfl

lemma inclusion_in_double_dual_norm_eq :
  βˆ₯inclusion_in_double_dual π•œ Eβˆ₯ = βˆ₯(continuous_linear_map.id π•œ (dual π•œ E))βˆ₯ :=
continuous_linear_map.op_norm_flip _

lemma inclusion_in_double_dual_norm_le : βˆ₯inclusion_in_double_dual π•œ Eβˆ₯ ≀ 1 :=
by { rw inclusion_in_double_dual_norm_eq, exact continuous_linear_map.norm_id_le }

lemma double_dual_bound (x : E) : βˆ₯(inclusion_in_double_dual π•œ E) xβˆ₯ ≀ βˆ₯xβˆ₯ :=
by simpa using continuous_linear_map.le_of_op_norm_le _ (inclusion_in_double_dual_norm_le π•œ E) x

/-- The dual pairing as a bilinear form. -/
def dual_pairing : (dual π•œ E) β†’β‚—[π•œ] E β†’β‚—[π•œ] π•œ := continuous_linear_map.coe_lm π•œ

@[simp] lemma dual_pairing_apply {v : dual π•œ E} {x : E} : dual_pairing π•œ E v x = v x := rfl

lemma dual_pairing_separating_left : (dual_pairing π•œ E).separating_left :=
begin
  rw [linear_map.separating_left_iff_ker_eq_bot, linear_map.ker_eq_bot],
  exact continuous_linear_map.coe_injective,
end

end general

section bidual_isometry

variables (π•œ : Type v) [is_R_or_C π•œ]
  {E : Type u} [normed_add_comm_group E] [normed_space π•œ E]

/-- If one controls the norm of every `f x`, then one controls the norm of `x`.
    Compare `continuous_linear_map.op_norm_le_bound`. -/
lemma norm_le_dual_bound (x : E) {M : ℝ} (hMp: 0 ≀ M) (hM : βˆ€ (f : dual π•œ E), βˆ₯f xβˆ₯ ≀ M * βˆ₯fβˆ₯) :
  βˆ₯xβˆ₯ ≀ M :=
begin
  classical,
  by_cases h : x = 0,
  { simp only [h, hMp, norm_zero] },
  { obtain ⟨f, hf₁, hfx⟩ : βˆƒ f : E β†’L[π•œ] π•œ, βˆ₯fβˆ₯ = 1 ∧ f x = βˆ₯xβˆ₯ := exists_dual_vector π•œ x h,
    calc βˆ₯xβˆ₯ = βˆ₯(βˆ₯xβˆ₯ : π•œ)βˆ₯ : is_R_or_C.norm_coe_norm.symm
    ... = βˆ₯f xβˆ₯ : by rw hfx
    ... ≀ M * βˆ₯fβˆ₯ : hM f
    ... = M : by rw [hf₁, mul_one] }
end

lemma eq_zero_of_forall_dual_eq_zero {x : E} (h : βˆ€ f : dual π•œ E, f x = (0 : π•œ)) : x = 0 :=
norm_le_zero_iff.mp (norm_le_dual_bound π•œ x le_rfl (Ξ» f, by simp [h f]))

lemma eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 ↔ βˆ€ g : dual π•œ E, g x = 0 :=
⟨λ hx, by simp [hx], Ξ» h, eq_zero_of_forall_dual_eq_zero π•œ h⟩

/-- See also `geometric_hahn_banach_point_point`. -/
lemma eq_iff_forall_dual_eq {x y : E} :
  x = y ↔ βˆ€ g : dual π•œ E, g x = g y :=
begin
  rw [← sub_eq_zero, eq_zero_iff_forall_dual_eq_zero π•œ (x - y)],
  simp [sub_eq_zero],
end

/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/
def inclusion_in_double_dual_li : E β†’β‚—α΅’[π•œ] (dual π•œ (dual π•œ E)) :=
{ norm_map' := begin
    intros x,
    apply le_antisymm,
    { exact double_dual_bound π•œ E x },
    rw continuous_linear_map.norm_def,
    refine le_cInf continuous_linear_map.bounds_nonempty _,
    rintros c ⟨hc1, hc2⟩,
    exact norm_le_dual_bound π•œ x hc1 hc2
  end,
  .. inclusion_in_double_dual π•œ E }

end bidual_isometry

section polar_sets

open metric set normed_space

/-- Given a subset `s` in a normed space `E` (over a field `π•œ`), the polar
`polar π•œ s` is the subset of `dual π•œ E` consisting of those functionals which
evaluate to something of norm at most one at all points `z ∈ s`. -/
def polar (π•œ : Type*) [nontrivially_normed_field π•œ]
  {E : Type*} [seminormed_add_comm_group E] [normed_space π•œ E] : set E β†’ set (dual π•œ E) :=
(dual_pairing π•œ E).flip.polar

variables (π•œ : Type*) [nontrivially_normed_field π•œ]
variables {E : Type*} [seminormed_add_comm_group E] [normed_space π•œ E]

lemma mem_polar_iff {x' : dual π•œ E} (s : set E) : x' ∈ polar π•œ s ↔ βˆ€ z ∈ s, βˆ₯x' zβˆ₯ ≀ 1 := iff.rfl

@[simp] lemma polar_univ : polar π•œ (univ : set E) = {(0 : dual π•œ E)} :=
(dual_pairing π•œ E).flip.polar_univ
  (linear_map.flip_separating_right.mpr (dual_pairing_separating_left π•œ E))

lemma is_closed_polar (s : set E) : is_closed (polar π•œ s) :=
begin
  dunfold normed_space.polar,
  simp only [linear_map.polar_eq_Inter, linear_map.flip_apply],
  refine is_closed_bInter (Ξ» z hz, _),
  exact is_closed_Iic.preimage (continuous_linear_map.apply π•œ π•œ z).continuous.norm
end

@[simp] lemma polar_closure (s : set E) : polar π•œ (closure s) = polar π•œ s :=
((dual_pairing π•œ E).flip.polar_antitone subset_closure).antisymm $
  (dual_pairing π•œ E).flip.polar_gc.l_le $
  closure_minimal ((dual_pairing π•œ E).flip.polar_gc.le_u_l s) $
  by simpa [linear_map.flip_flip]
    using (is_closed_polar _ _).preimage (inclusion_in_double_dual π•œ E).continuous

variables {π•œ}

/-- If `x'` is a dual element such that the norms `βˆ₯x' zβˆ₯` are bounded for `z ∈ s`, then a
small scalar multiple of `x'` is in `polar π•œ s`. -/
lemma smul_mem_polar {s : set E} {x' : dual π•œ E} {c : π•œ}
  (hc : βˆ€ z, z ∈ s β†’ βˆ₯ x' z βˆ₯ ≀ βˆ₯cβˆ₯) : c⁻¹ β€’ x' ∈ polar π•œ s :=
begin
  by_cases c_zero : c = 0, { simp only [c_zero, inv_zero, zero_smul],
    exact (dual_pairing π•œ E).flip.zero_mem_polar _ },
  have eq : βˆ€ z, βˆ₯ c⁻¹ β€’ (x' z) βˆ₯ = βˆ₯ c⁻¹ βˆ₯ * βˆ₯ x' z βˆ₯ := Ξ» z, norm_smul c⁻¹ _,
  have le : βˆ€ z, z ∈ s β†’ βˆ₯ c⁻¹ β€’ (x' z) βˆ₯ ≀ βˆ₯ c⁻¹ βˆ₯ * βˆ₯ c βˆ₯,
  { intros z hzs,
    rw eq z,
    apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _), },
  have cancel : βˆ₯ c⁻¹ βˆ₯ * βˆ₯ c βˆ₯ = 1,
  by simp only [c_zero, norm_eq_zero, ne.def, not_false_iff,
                inv_mul_cancel, norm_inv],
  rwa cancel at le,
end

lemma polar_ball_subset_closed_ball_div {c : π•œ} (hc : 1 < βˆ₯cβˆ₯) {r : ℝ} (hr : 0 < r) :
  polar π•œ (ball (0 : E) r) βŠ† closed_ball (0 : dual π•œ E) (βˆ₯cβˆ₯ / r) :=
begin
  intros x' hx',
  rw mem_polar_iff at hx',
  simp only [polar, mem_set_of_eq, mem_closed_ball_zero_iff, mem_ball_zero_iff] at *,
  have hcr : 0 < βˆ₯cβˆ₯ / r, from div_pos (zero_lt_one.trans hc) hr,
  refine continuous_linear_map.op_norm_le_of_shell hr hcr.le hc (Ξ» x h₁ hβ‚‚, _),
  calc βˆ₯x' xβˆ₯ ≀ 1 : hx' _ hβ‚‚
  ... ≀ (βˆ₯cβˆ₯ / r) * βˆ₯xβˆ₯ : (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa inv_div)
end

variables (π•œ)

lemma closed_ball_inv_subset_polar_closed_ball {r : ℝ} :
  closed_ball (0 : dual π•œ E) r⁻¹ βŠ† polar π•œ (closed_ball (0 : E) r) :=
Ξ» x' hx' x hx,
calc βˆ₯x' xβˆ₯ ≀ βˆ₯x'βˆ₯ * βˆ₯xβˆ₯ : x'.le_op_norm x
... ≀ r⁻¹ * r :
  mul_le_mul (mem_closed_ball_zero_iff.1 hx') (mem_closed_ball_zero_iff.1 hx)
    (norm_nonneg _) (dist_nonneg.trans hx')
... = r / r : inv_mul_eq_div _ _
... ≀ 1 : div_self_le_one r

/-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
inverse radius. -/
lemma polar_closed_ball {π•œ E : Type*} [is_R_or_C π•œ] [normed_add_comm_group E] [normed_space π•œ E]
  {r : ℝ} (hr : 0 < r) :
  polar π•œ (closed_ball (0 : E) r) = closed_ball (0 : dual π•œ E) r⁻¹ :=
begin
  refine subset.antisymm _ (closed_ball_inv_subset_polar_closed_ball _),
  intros x' h,
  simp only [mem_closed_ball_zero_iff],
  refine continuous_linear_map.op_norm_le_of_ball hr (inv_nonneg.mpr hr.le) (Ξ» z hz, _),
  simpa only [one_div] using linear_map.bound_of_ball_bound' hr 1 x'.to_linear_map h z
end

/-- Given a neighborhood `s` of the origin in a normed space `E`, the dual norms
of all elements of the polar `polar π•œ s` are bounded by a constant. -/
lemma bounded_polar_of_mem_nhds_zero {s : set E} (s_nhd : s ∈ 𝓝 (0 : E)) :
  bounded (polar π•œ s) :=
begin
  obtain ⟨a, ha⟩ : βˆƒ a : π•œ, 1 < βˆ₯aβˆ₯ := normed_field.exists_one_lt_norm π•œ,
  obtain ⟨r, r_pos, r_ball⟩ : βˆƒ (r : ℝ) (hr : 0 < r), ball 0 r βŠ† s :=
    metric.mem_nhds_iff.1 s_nhd,
  exact bounded_closed_ball.mono (((dual_pairing π•œ E).flip.polar_antitone r_ball).trans $
    polar_ball_subset_closed_ball_div ha r_pos)
end

end polar_sets

end normed_space