Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,962 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/-
Copyright (c) 2020 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.specific_limits.normed

/-!
# The group of units of a complete normed ring

This file contains the basic theory for the group of units (invertible elements) of a complete
normed ring (Banach algebras being a notable special case).

## Main results

The constructions `one_sub`, `add` and `unit_of_nearby` state, in varying forms, that perturbations
of a unit are units.  The latter two are not stated in their optimal form; more precise versions
would use the spectral radius.

The first main result is `is_open`:  the group of units of a complete normed ring is an open subset
of the ring.

The function `inverse` (defined in `algebra.ring`), for a ring `R`, sends `a : R` to `a⁻¹` if `a` is
a unit and 0 if not.  The other major results of this file (notably `inverse_add`,
`inverse_add_norm` and `inverse_add_norm_diff_nth_order`) cover the asymptotic properties of
`inverse (x + t)` as `t → 0`.

-/

noncomputable theory
open_locale topological_space
variables {R : Type*} [normed_ring R] [complete_space R]

namespace units

/-- In a complete normed ring, a perturbation of `1` by an element `t` of distance less than `1`
from `1` is a unit.  Here we construct its `units` structure.  -/
@[simps coe]
def one_sub (t : R) (h : ∥t∥ < 1) : Rˣ :=
{ val := 1 - t,
  inv := ∑' n : ℕ, t ^ n,
  val_inv := mul_neg_geom_series t h,
  inv_val := geom_series_mul_neg t h }

/-- In a complete normed ring, a perturbation of a unit `x` by an element `t` of distance less than
`∥x⁻¹∥⁻¹` from `x` is a unit.  Here we construct its `units` structure. -/
@[simps coe]
def add (x : Rˣ) (t : R) (h : ∥t∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ :=
units.copy  -- to make `coe_add` true definitionally, for convenience
  (x * (units.one_sub (-(↑x⁻¹ * t)) begin
      nontriviality R using [zero_lt_one],
      have hpos : 0 < ∥(↑x⁻¹ : R)∥ := units.norm_pos x⁻¹,
      calc ∥-(↑x⁻¹ * t)∥
          = ∥↑x⁻¹ * t∥                    : by { rw norm_neg }
      ... ≤ ∥(↑x⁻¹ : R)∥ * ∥t∥            : norm_mul_le ↑x⁻¹ _
      ... < ∥(↑x⁻¹ : R)∥ * ∥(↑x⁻¹ : R)∥⁻¹ : by nlinarith only [h, hpos]
      ... = 1                             : mul_inv_cancel (ne_of_gt hpos)
    end))
  (x + t) (by simp [mul_add]) _ rfl

/-- In a complete normed ring, an element `y` of distance less than `∥x⁻¹∥⁻¹` from `x` is a unit.
Here we construct its `units` structure. -/
@[simps coe]
def unit_of_nearby (x : Rˣ) (y : R) (h : ∥y - x∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ :=
units.copy (x.add (y - x : R) h) y (by simp) _ rfl

/-- The group of units of a complete normed ring is an open subset of the ring. -/
protected lemma is_open : is_open {x : R | is_unit x} :=
begin
  nontriviality R,
  apply metric.is_open_iff.mpr,
  rintros x' ⟨x, rfl⟩,
  refine ⟨∥(↑x⁻¹ : R)∥⁻¹, _root_.inv_pos.mpr (units.norm_pos x⁻¹), _⟩,
  intros y hy,
  rw [metric.mem_ball, dist_eq_norm] at hy,
  exact (x.unit_of_nearby y hy).is_unit
end

protected lemma nhds (x : Rˣ) : {x : R | is_unit x} ∈ 𝓝 (x : R) :=
is_open.mem_nhds units.is_open x.is_unit

end units

namespace normed_ring
open_locale classical big_operators
open asymptotics filter metric finset ring

lemma inverse_one_sub (t : R) (h : ∥t∥ < 1) : inverse (1 - t) = ↑(units.one_sub t h)⁻¹ :=
by rw [← inverse_unit (units.one_sub t h), units.coe_one_sub]

/-- The formula `inverse (x + t) = inverse (1 + x⁻¹ * t) * x⁻¹` holds for `t` sufficiently small. -/
lemma inverse_add (x : Rˣ) :
  ∀ᶠ t in (𝓝 0), inverse ((x : R) + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹ :=
begin
  nontriviality R,
  rw [eventually_iff, metric.mem_nhds_iff],
  have hinv : 0 < ∥(↑x⁻¹ : R)∥⁻¹, by cancel_denoms,
  use [∥(↑x⁻¹ : R)∥⁻¹, hinv],
  intros t ht,
  simp only [mem_ball, dist_zero_right] at ht,
  have ht' : ∥-↑x⁻¹ * t∥ < 1,
  { refine lt_of_le_of_lt (norm_mul_le _ _) _,
    rw norm_neg,
    refine lt_of_lt_of_le (mul_lt_mul_of_pos_left ht x⁻¹.norm_pos) _,
    cancel_denoms },
  have hright := inverse_one_sub (-↑x⁻¹ * t) ht',
  have hleft := inverse_unit (x.add t ht),
  simp only [neg_mul, sub_neg_eq_add] at hright,
  simp only [units.coe_add] at hleft,
  simp [hleft, hright, units.add]
end

lemma inverse_one_sub_nth_order (n : ℕ) :
  ∀ᶠ t in (𝓝 0), inverse ((1:R) - t) = (∑ i in range n, t ^ i) + (t ^ n) * inverse (1 - t) :=
begin
  simp only [eventually_iff, metric.mem_nhds_iff],
  use [1, by norm_num],
  intros t ht,
  simp only [mem_ball, dist_zero_right] at ht,
  simp only [inverse_one_sub t ht, set.mem_set_of_eq],
  have h : 1 = ((range n).sum (λ i, t ^ i)) * (units.one_sub t ht) + t ^ n,
  { simp only [units.coe_one_sub],
    rw [geom_sum_mul_neg],
    simp },
  rw [← one_mul ↑(units.one_sub t ht)⁻¹, h, add_mul],
  congr,
  { rw [mul_assoc, (units.one_sub t ht).mul_inv],
    simp },
  { simp only [units.coe_one_sub],
    rw [← add_mul, geom_sum_mul_neg],
    simp }
end

/-- The formula
`inverse (x + t) = (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹ + (- x⁻¹ * t) ^ n * inverse (x + t)`
holds for `t` sufficiently small. -/
lemma inverse_add_nth_order (x : Rˣ) (n : ℕ) :
  ∀ᶠ t in (𝓝 0), inverse ((x : R) + t)
  = (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (- ↑x⁻¹ * t) ^ n * inverse (x + t) :=
begin
  refine (inverse_add x).mp _,
  have hzero : tendsto (λ (t : R), - ↑x⁻¹ * t) (𝓝 0) (𝓝 0),
  { convert ((mul_left_continuous (- (↑x⁻¹ : R))).tendsto 0).comp tendsto_id,
    simp },
  refine (hzero.eventually (inverse_one_sub_nth_order n)).mp (eventually_of_forall _),
  simp only [neg_mul, sub_neg_eq_add],
  intros t h1 h2,
  have h := congr_arg (λ (a : R), a * ↑x⁻¹) h1,
  dsimp at h,
  convert h,
  rw [add_mul, mul_assoc],
  simp [h2.symm]
end

lemma inverse_one_sub_norm : (λ t : R, inverse (1 - t)) =O[𝓝 0] (λ t, 1 : R → ℝ) :=
begin
  simp only [is_O, is_O_with, eventually_iff, metric.mem_nhds_iff],
  refine ⟨∥(1:R)∥ + 1, (2:ℝ)⁻¹, by norm_num, _⟩,
  intros t ht,
  simp only [ball, dist_zero_right, set.mem_set_of_eq] at ht,
  have ht' : ∥t∥ < 1,
  { have : (2:ℝ)⁻¹ < 1 := by cancel_denoms,
    linarith },
  simp only [inverse_one_sub t ht', norm_one, mul_one, set.mem_set_of_eq],
  change ∥∑' n : ℕ, t ^ n∥ ≤ _,
  have := normed_ring.tsum_geometric_of_norm_lt_1 t ht',
  have : (1 - ∥t∥)⁻¹ ≤ 2,
  { rw ← inv_inv (2:ℝ),
    refine inv_le_inv_of_le (by norm_num) _,
    have : (2:ℝ)⁻¹ + (2:ℝ)⁻¹ = 1 := by ring,
    linarith },
  linarith
end

/-- The function `λ t, inverse (x + t)` is O(1) as `t → 0`. -/
lemma inverse_add_norm (x : Rˣ) : (λ t : R, inverse (↑x + t)) =O[𝓝 0] (λ t, (1:ℝ)) :=
begin
  simp only [is_O_iff, norm_one, mul_one],
  cases is_O_iff.mp (@inverse_one_sub_norm R _ _) with C hC,
  use C * ∥((x⁻¹:Rˣ):R)∥,
  have hzero : tendsto (λ t, - (↑x⁻¹ : R) * t) (𝓝 0) (𝓝 0),
  { convert ((mul_left_continuous (-↑x⁻¹ : R)).tendsto 0).comp tendsto_id,
    simp },
  refine (inverse_add x).mp ((hzero.eventually hC).mp (eventually_of_forall _)),
  intros t bound iden,
  rw iden,
  simp at bound,
  have hmul := norm_mul_le (inverse (1 + ↑x⁻¹ * t)) ↑x⁻¹,
  nlinarith [norm_nonneg (↑x⁻¹ : R)]
end

/-- The function
`λ t, inverse (x + t) - (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹`
is `O(t ^ n)` as `t → 0`. -/
lemma inverse_add_norm_diff_nth_order (x : Rˣ) (n : ℕ) :
  (λ t : R, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹) =O[𝓝 (0:R)]
  (λ t, ∥t∥ ^ n) :=
begin
  by_cases h : n = 0,
  { simpa [h] using inverse_add_norm x },
  have hn : 0 < n := nat.pos_of_ne_zero h,
  simp [is_O_iff],
  cases (is_O_iff.mp (inverse_add_norm x)) with C hC,
  use C * ∥(1:ℝ)∥ * ∥(↑x⁻¹ : R)∥ ^ n,
  have h : eventually_eq (𝓝 (0:R))
    (λ t, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹)
    (λ t, ((- ↑x⁻¹ * t) ^ n) * inverse (x + t)),
  { refine (inverse_add_nth_order x n).mp (eventually_of_forall _),
    intros t ht,
    convert congr_arg (λ a, a - (range n).sum (pow (-↑x⁻¹ * t)) * ↑x⁻¹) ht,
    simp },
  refine h.mp (hC.mp (eventually_of_forall _)),
  intros t _ hLHS,
  simp only [neg_mul] at hLHS,
  rw hLHS,
  refine le_trans (norm_mul_le _ _ ) _,
  have h' : ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n,
  { calc ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(-(↑x⁻¹ * t))∥ ^ n : norm_pow_le' _ hn
    ... = ∥↑x⁻¹ * t∥ ^ n : by rw norm_neg
    ... ≤ (∥(↑x⁻¹ : R)∥ * ∥t∥) ^ n : _
    ... =  ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n : mul_pow _ _ n,
    exact pow_le_pow_of_le_left (norm_nonneg _) (norm_mul_le ↑x⁻¹ t) n },
  have h'' : 0 ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n,
  { refine mul_nonneg _ _;
    exact pow_nonneg (norm_nonneg _) n },
  nlinarith [norm_nonneg (inverse (↑x + t))],
end

/-- The function `λ t, inverse (x + t) - x⁻¹` is `O(t)` as `t → 0`. -/
lemma inverse_add_norm_diff_first_order (x : Rˣ) :
  (λ t : R, inverse (↑x + t) - ↑x⁻¹) =O[𝓝 0] (λ t, ∥t∥) :=
by simpa using inverse_add_norm_diff_nth_order x 1

/-- The function
`λ t, inverse (x + t) - x⁻¹ + x⁻¹ * t * x⁻¹`
is `O(t ^ 2)` as `t → 0`. -/
lemma inverse_add_norm_diff_second_order (x : Rˣ) :
  (λ t : R, inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =O[𝓝 0] (λ t, ∥t∥ ^ 2) :=
begin
  convert inverse_add_norm_diff_nth_order x 2,
  ext t,
  simp only [range_succ, range_one, sum_insert, mem_singleton, sum_singleton, not_false_iff,
    one_ne_zero, pow_zero, add_mul, pow_one, one_mul, neg_mul,
    sub_add_eq_sub_sub_swap, sub_neg_eq_add],
end

/-- The function `inverse` is continuous at each unit of `R`. -/
lemma inverse_continuous_at (x : Rˣ) : continuous_at inverse (x : R) :=
begin
  have h_is_o : (λ t : R, inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] (λ _, 1 : R → ℝ) :=
    (inverse_add_norm_diff_first_order x).trans_is_o (is_o.norm_left $ is_o_id_const one_ne_zero),
  have h_lim : tendsto (λ (y:R), y - x) (𝓝 x) (𝓝 0),
  { refine tendsto_zero_iff_norm_tendsto_zero.mpr _,
    exact tendsto_iff_norm_tendsto_zero.mp tendsto_id },
  rw [continuous_at, tendsto_iff_norm_tendsto_zero, inverse_unit],
  simpa [(∘)] using h_is_o.norm_left.tendsto_div_nhds_zero.comp h_lim
end

end normed_ring

namespace units
open mul_opposite filter normed_ring

/-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the
embedding in `R × R`) to `R` is an open map. -/
lemma is_open_map_coe : is_open_map (coe : Rˣ → R) :=
begin
  rw is_open_map_iff_nhds_le,
  intros x s,
  rw [mem_map, mem_nhds_induced],
  rintros ⟨t, ht, hts⟩,
  obtain ⟨u, hu, v, hv, huvt⟩ :
    ∃ (u : set R), u ∈ 𝓝 ↑x ∧ ∃ (v : set Rᵐᵒᵖ), v ∈ 𝓝 (op ↑x⁻¹) ∧ u ×ˢ v ⊆ t,
  { simpa [embed_product, mem_nhds_prod_iff] using ht },
  have : u ∩ (op ∘ ring.inverse) ⁻¹' v ∩ (set.range (coe : Rˣ → R)) ∈ 𝓝 ↑x,
  { refine inter_mem (inter_mem hu _) (units.nhds x),
    refine (continuous_op.continuous_at.comp (inverse_continuous_at x)).preimage_mem_nhds _,
    simpa using hv },
  refine mem_of_superset this _,
  rintros _ ⟨⟨huy, hvy⟩, ⟨y, rfl⟩⟩,
  have : embed_product R y ∈ u ×ˢ v := ⟨huy, by simpa using hvy⟩,
  simpa using hts (huvt this)
end

/-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the
embedding in `R × R`) to `R` is an open embedding. -/
lemma open_embedding_coe : open_embedding (coe : Rˣ → R) :=
open_embedding_of_continuous_injective_open continuous_coe ext is_open_map_coe

end units