Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,962 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
/-
Copyright (c) 2020 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.specific_limits.normed
/-!
# The group of units of a complete normed ring
This file contains the basic theory for the group of units (invertible elements) of a complete
normed ring (Banach algebras being a notable special case).
## Main results
The constructions `one_sub`, `add` and `unit_of_nearby` state, in varying forms, that perturbations
of a unit are units. The latter two are not stated in their optimal form; more precise versions
would use the spectral radius.
The first main result is `is_open`: the group of units of a complete normed ring is an open subset
of the ring.
The function `inverse` (defined in `algebra.ring`), for a ring `R`, sends `a : R` to `a⁻¹` if `a` is
a unit and 0 if not. The other major results of this file (notably `inverse_add`,
`inverse_add_norm` and `inverse_add_norm_diff_nth_order`) cover the asymptotic properties of
`inverse (x + t)` as `t → 0`.
-/
noncomputable theory
open_locale topological_space
variables {R : Type*} [normed_ring R] [complete_space R]
namespace units
/-- In a complete normed ring, a perturbation of `1` by an element `t` of distance less than `1`
from `1` is a unit. Here we construct its `units` structure. -/
@[simps coe]
def one_sub (t : R) (h : ∥t∥ < 1) : Rˣ :=
{ val := 1 - t,
inv := ∑' n : ℕ, t ^ n,
val_inv := mul_neg_geom_series t h,
inv_val := geom_series_mul_neg t h }
/-- In a complete normed ring, a perturbation of a unit `x` by an element `t` of distance less than
`∥x⁻¹∥⁻¹` from `x` is a unit. Here we construct its `units` structure. -/
@[simps coe]
def add (x : Rˣ) (t : R) (h : ∥t∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ :=
units.copy -- to make `coe_add` true definitionally, for convenience
(x * (units.one_sub (-(↑x⁻¹ * t)) begin
nontriviality R using [zero_lt_one],
have hpos : 0 < ∥(↑x⁻¹ : R)∥ := units.norm_pos x⁻¹,
calc ∥-(↑x⁻¹ * t)∥
= ∥↑x⁻¹ * t∥ : by { rw norm_neg }
... ≤ ∥(↑x⁻¹ : R)∥ * ∥t∥ : norm_mul_le ↑x⁻¹ _
... < ∥(↑x⁻¹ : R)∥ * ∥(↑x⁻¹ : R)∥⁻¹ : by nlinarith only [h, hpos]
... = 1 : mul_inv_cancel (ne_of_gt hpos)
end))
(x + t) (by simp [mul_add]) _ rfl
/-- In a complete normed ring, an element `y` of distance less than `∥x⁻¹∥⁻¹` from `x` is a unit.
Here we construct its `units` structure. -/
@[simps coe]
def unit_of_nearby (x : Rˣ) (y : R) (h : ∥y - x∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ :=
units.copy (x.add (y - x : R) h) y (by simp) _ rfl
/-- The group of units of a complete normed ring is an open subset of the ring. -/
protected lemma is_open : is_open {x : R | is_unit x} :=
begin
nontriviality R,
apply metric.is_open_iff.mpr,
rintros x' ⟨x, rfl⟩,
refine ⟨∥(↑x⁻¹ : R)∥⁻¹, _root_.inv_pos.mpr (units.norm_pos x⁻¹), _⟩,
intros y hy,
rw [metric.mem_ball, dist_eq_norm] at hy,
exact (x.unit_of_nearby y hy).is_unit
end
protected lemma nhds (x : Rˣ) : {x : R | is_unit x} ∈ 𝓝 (x : R) :=
is_open.mem_nhds units.is_open x.is_unit
end units
namespace normed_ring
open_locale classical big_operators
open asymptotics filter metric finset ring
lemma inverse_one_sub (t : R) (h : ∥t∥ < 1) : inverse (1 - t) = ↑(units.one_sub t h)⁻¹ :=
by rw [← inverse_unit (units.one_sub t h), units.coe_one_sub]
/-- The formula `inverse (x + t) = inverse (1 + x⁻¹ * t) * x⁻¹` holds for `t` sufficiently small. -/
lemma inverse_add (x : Rˣ) :
∀ᶠ t in (𝓝 0), inverse ((x : R) + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹ :=
begin
nontriviality R,
rw [eventually_iff, metric.mem_nhds_iff],
have hinv : 0 < ∥(↑x⁻¹ : R)∥⁻¹, by cancel_denoms,
use [∥(↑x⁻¹ : R)∥⁻¹, hinv],
intros t ht,
simp only [mem_ball, dist_zero_right] at ht,
have ht' : ∥-↑x⁻¹ * t∥ < 1,
{ refine lt_of_le_of_lt (norm_mul_le _ _) _,
rw norm_neg,
refine lt_of_lt_of_le (mul_lt_mul_of_pos_left ht x⁻¹.norm_pos) _,
cancel_denoms },
have hright := inverse_one_sub (-↑x⁻¹ * t) ht',
have hleft := inverse_unit (x.add t ht),
simp only [neg_mul, sub_neg_eq_add] at hright,
simp only [units.coe_add] at hleft,
simp [hleft, hright, units.add]
end
lemma inverse_one_sub_nth_order (n : ℕ) :
∀ᶠ t in (𝓝 0), inverse ((1:R) - t) = (∑ i in range n, t ^ i) + (t ^ n) * inverse (1 - t) :=
begin
simp only [eventually_iff, metric.mem_nhds_iff],
use [1, by norm_num],
intros t ht,
simp only [mem_ball, dist_zero_right] at ht,
simp only [inverse_one_sub t ht, set.mem_set_of_eq],
have h : 1 = ((range n).sum (λ i, t ^ i)) * (units.one_sub t ht) + t ^ n,
{ simp only [units.coe_one_sub],
rw [geom_sum_mul_neg],
simp },
rw [← one_mul ↑(units.one_sub t ht)⁻¹, h, add_mul],
congr,
{ rw [mul_assoc, (units.one_sub t ht).mul_inv],
simp },
{ simp only [units.coe_one_sub],
rw [← add_mul, geom_sum_mul_neg],
simp }
end
/-- The formula
`inverse (x + t) = (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹ + (- x⁻¹ * t) ^ n * inverse (x + t)`
holds for `t` sufficiently small. -/
lemma inverse_add_nth_order (x : Rˣ) (n : ℕ) :
∀ᶠ t in (𝓝 0), inverse ((x : R) + t)
= (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (- ↑x⁻¹ * t) ^ n * inverse (x + t) :=
begin
refine (inverse_add x).mp _,
have hzero : tendsto (λ (t : R), - ↑x⁻¹ * t) (𝓝 0) (𝓝 0),
{ convert ((mul_left_continuous (- (↑x⁻¹ : R))).tendsto 0).comp tendsto_id,
simp },
refine (hzero.eventually (inverse_one_sub_nth_order n)).mp (eventually_of_forall _),
simp only [neg_mul, sub_neg_eq_add],
intros t h1 h2,
have h := congr_arg (λ (a : R), a * ↑x⁻¹) h1,
dsimp at h,
convert h,
rw [add_mul, mul_assoc],
simp [h2.symm]
end
lemma inverse_one_sub_norm : (λ t : R, inverse (1 - t)) =O[𝓝 0] (λ t, 1 : R → ℝ) :=
begin
simp only [is_O, is_O_with, eventually_iff, metric.mem_nhds_iff],
refine ⟨∥(1:R)∥ + 1, (2:ℝ)⁻¹, by norm_num, _⟩,
intros t ht,
simp only [ball, dist_zero_right, set.mem_set_of_eq] at ht,
have ht' : ∥t∥ < 1,
{ have : (2:ℝ)⁻¹ < 1 := by cancel_denoms,
linarith },
simp only [inverse_one_sub t ht', norm_one, mul_one, set.mem_set_of_eq],
change ∥∑' n : ℕ, t ^ n∥ ≤ _,
have := normed_ring.tsum_geometric_of_norm_lt_1 t ht',
have : (1 - ∥t∥)⁻¹ ≤ 2,
{ rw ← inv_inv (2:ℝ),
refine inv_le_inv_of_le (by norm_num) _,
have : (2:ℝ)⁻¹ + (2:ℝ)⁻¹ = 1 := by ring,
linarith },
linarith
end
/-- The function `λ t, inverse (x + t)` is O(1) as `t → 0`. -/
lemma inverse_add_norm (x : Rˣ) : (λ t : R, inverse (↑x + t)) =O[𝓝 0] (λ t, (1:ℝ)) :=
begin
simp only [is_O_iff, norm_one, mul_one],
cases is_O_iff.mp (@inverse_one_sub_norm R _ _) with C hC,
use C * ∥((x⁻¹:Rˣ):R)∥,
have hzero : tendsto (λ t, - (↑x⁻¹ : R) * t) (𝓝 0) (𝓝 0),
{ convert ((mul_left_continuous (-↑x⁻¹ : R)).tendsto 0).comp tendsto_id,
simp },
refine (inverse_add x).mp ((hzero.eventually hC).mp (eventually_of_forall _)),
intros t bound iden,
rw iden,
simp at bound,
have hmul := norm_mul_le (inverse (1 + ↑x⁻¹ * t)) ↑x⁻¹,
nlinarith [norm_nonneg (↑x⁻¹ : R)]
end
/-- The function
`λ t, inverse (x + t) - (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹`
is `O(t ^ n)` as `t → 0`. -/
lemma inverse_add_norm_diff_nth_order (x : Rˣ) (n : ℕ) :
(λ t : R, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹) =O[𝓝 (0:R)]
(λ t, ∥t∥ ^ n) :=
begin
by_cases h : n = 0,
{ simpa [h] using inverse_add_norm x },
have hn : 0 < n := nat.pos_of_ne_zero h,
simp [is_O_iff],
cases (is_O_iff.mp (inverse_add_norm x)) with C hC,
use C * ∥(1:ℝ)∥ * ∥(↑x⁻¹ : R)∥ ^ n,
have h : eventually_eq (𝓝 (0:R))
(λ t, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹)
(λ t, ((- ↑x⁻¹ * t) ^ n) * inverse (x + t)),
{ refine (inverse_add_nth_order x n).mp (eventually_of_forall _),
intros t ht,
convert congr_arg (λ a, a - (range n).sum (pow (-↑x⁻¹ * t)) * ↑x⁻¹) ht,
simp },
refine h.mp (hC.mp (eventually_of_forall _)),
intros t _ hLHS,
simp only [neg_mul] at hLHS,
rw hLHS,
refine le_trans (norm_mul_le _ _ ) _,
have h' : ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n,
{ calc ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(-(↑x⁻¹ * t))∥ ^ n : norm_pow_le' _ hn
... = ∥↑x⁻¹ * t∥ ^ n : by rw norm_neg
... ≤ (∥(↑x⁻¹ : R)∥ * ∥t∥) ^ n : _
... = ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n : mul_pow _ _ n,
exact pow_le_pow_of_le_left (norm_nonneg _) (norm_mul_le ↑x⁻¹ t) n },
have h'' : 0 ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n,
{ refine mul_nonneg _ _;
exact pow_nonneg (norm_nonneg _) n },
nlinarith [norm_nonneg (inverse (↑x + t))],
end
/-- The function `λ t, inverse (x + t) - x⁻¹` is `O(t)` as `t → 0`. -/
lemma inverse_add_norm_diff_first_order (x : Rˣ) :
(λ t : R, inverse (↑x + t) - ↑x⁻¹) =O[𝓝 0] (λ t, ∥t∥) :=
by simpa using inverse_add_norm_diff_nth_order x 1
/-- The function
`λ t, inverse (x + t) - x⁻¹ + x⁻¹ * t * x⁻¹`
is `O(t ^ 2)` as `t → 0`. -/
lemma inverse_add_norm_diff_second_order (x : Rˣ) :
(λ t : R, inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =O[𝓝 0] (λ t, ∥t∥ ^ 2) :=
begin
convert inverse_add_norm_diff_nth_order x 2,
ext t,
simp only [range_succ, range_one, sum_insert, mem_singleton, sum_singleton, not_false_iff,
one_ne_zero, pow_zero, add_mul, pow_one, one_mul, neg_mul,
sub_add_eq_sub_sub_swap, sub_neg_eq_add],
end
/-- The function `inverse` is continuous at each unit of `R`. -/
lemma inverse_continuous_at (x : Rˣ) : continuous_at inverse (x : R) :=
begin
have h_is_o : (λ t : R, inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] (λ _, 1 : R → ℝ) :=
(inverse_add_norm_diff_first_order x).trans_is_o (is_o.norm_left $ is_o_id_const one_ne_zero),
have h_lim : tendsto (λ (y:R), y - x) (𝓝 x) (𝓝 0),
{ refine tendsto_zero_iff_norm_tendsto_zero.mpr _,
exact tendsto_iff_norm_tendsto_zero.mp tendsto_id },
rw [continuous_at, tendsto_iff_norm_tendsto_zero, inverse_unit],
simpa [(∘)] using h_is_o.norm_left.tendsto_div_nhds_zero.comp h_lim
end
end normed_ring
namespace units
open mul_opposite filter normed_ring
/-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the
embedding in `R × R`) to `R` is an open map. -/
lemma is_open_map_coe : is_open_map (coe : Rˣ → R) :=
begin
rw is_open_map_iff_nhds_le,
intros x s,
rw [mem_map, mem_nhds_induced],
rintros ⟨t, ht, hts⟩,
obtain ⟨u, hu, v, hv, huvt⟩ :
∃ (u : set R), u ∈ 𝓝 ↑x ∧ ∃ (v : set Rᵐᵒᵖ), v ∈ 𝓝 (op ↑x⁻¹) ∧ u ×ˢ v ⊆ t,
{ simpa [embed_product, mem_nhds_prod_iff] using ht },
have : u ∩ (op ∘ ring.inverse) ⁻¹' v ∩ (set.range (coe : Rˣ → R)) ∈ 𝓝 ↑x,
{ refine inter_mem (inter_mem hu _) (units.nhds x),
refine (continuous_op.continuous_at.comp (inverse_continuous_at x)).preimage_mem_nhds _,
simpa using hv },
refine mem_of_superset this _,
rintros _ ⟨⟨huy, hvy⟩, ⟨y, rfl⟩⟩,
have : embed_product R y ∈ u ×ˢ v := ⟨huy, by simpa using hvy⟩,
simpa using hts (huvt this)
end
/-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the
embedding in `R × R`) to `R` is an open embedding. -/
lemma open_embedding_coe : open_embedding (coe : Rˣ → R) :=
open_embedding_of_continuous_injective_open continuous_coe ext is_open_map_coe
end units
|