Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 3,425 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
/-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import algebra.quaternion
import analysis.inner_product_space.basic

/-!
# Quaternions as a normed algebra

In this file we define the following structures on the space `ℍ := ℍ[ℝ]` of quaternions:

* inner product space;
* normed ring;
* normed space over `ℝ`.

## Notation

The following notation is available with `open_locale quaternion`:

* `ℍ` : quaternions

## Tags

quaternion, normed ring, normed space, normed algebra
-/

localized "notation `ℍ` := quaternion ℝ" in quaternion
open_locale real_inner_product_space

noncomputable theory

namespace quaternion

instance : has_inner ℝ ℍ := ⟨λ a b, (a * b.conj).re⟩

lemma inner_self (a : ℍ) : βŸͺa, a⟫ = norm_sq a := rfl

lemma inner_def (a b : ℍ) : βŸͺa, b⟫ = (a * b.conj).re := rfl

instance : inner_product_space ℝ ℍ :=
inner_product_space.of_core
{ inner := has_inner.inner,
  conj_sym := Ξ» x y, by simp [inner_def, mul_comm],
  nonneg_re := Ξ» x, norm_sq_nonneg,
  definite := Ξ» x, norm_sq_eq_zero.1,
  add_left := Ξ» x y z, by simp only [inner_def, add_mul, add_re],
  smul_left := Ξ» x y r, by simp [inner_def] }

lemma norm_sq_eq_norm_sq (a : ℍ) : norm_sq a = βˆ₯aβˆ₯ * βˆ₯aβˆ₯ :=
by rw [← inner_self, real_inner_self_eq_norm_mul_norm]

instance : norm_one_class ℍ :=
⟨by rw [norm_eq_sqrt_real_inner, inner_self, norm_sq.map_one, real.sqrt_one]⟩

@[simp, norm_cast] lemma norm_coe (a : ℝ) : βˆ₯(a : ℍ)βˆ₯ = βˆ₯aβˆ₯ :=
by rw [norm_eq_sqrt_real_inner, inner_self, norm_sq_coe, real.sqrt_sq_eq_abs, real.norm_eq_abs]

@[simp, norm_cast] lemma nnnorm_coe (a : ℝ) : βˆ₯(a : ℍ)βˆ₯β‚Š = βˆ₯aβˆ₯β‚Š :=
subtype.ext $ norm_coe a

noncomputable instance : normed_division_ring ℍ :=
{ dist_eq := Ξ» _ _, rfl,
  norm_mul' := Ξ» a b, by { simp only [norm_eq_sqrt_real_inner, inner_self, norm_sq.map_mul],
                           exact real.sqrt_mul norm_sq_nonneg _ } }

noncomputable instance : normed_algebra ℝ ℍ :=
{ norm_smul_le := Ξ» a x, (norm_smul a x).le,
  to_algebra := quaternion.algebra }

instance : has_coe β„‚ ℍ := ⟨λ z, ⟨z.re, z.im, 0, 0⟩⟩

@[simp, norm_cast] lemma coe_complex_re (z : β„‚) : (z : ℍ).re = z.re := rfl
@[simp, norm_cast] lemma coe_complex_im_i (z : β„‚) : (z : ℍ).im_i = z.im := rfl
@[simp, norm_cast] lemma coe_complex_im_j (z : β„‚) : (z : ℍ).im_j = 0 := rfl
@[simp, norm_cast] lemma coe_complex_im_k (z : β„‚) : (z : ℍ).im_k = 0 := rfl

@[simp, norm_cast] lemma coe_complex_add (z w : β„‚) : ↑(z + w) = (z + w : ℍ) := by ext; simp
@[simp, norm_cast] lemma coe_complex_mul (z w : β„‚) : ↑(z * w) = (z * w : ℍ) := by ext; simp
@[simp, norm_cast] lemma coe_complex_zero : ((0 : β„‚) : ℍ) = 0 := rfl
@[simp, norm_cast] lemma coe_complex_one : ((1 : β„‚) : ℍ) = 1 := rfl
@[simp, norm_cast] lemma coe_real_complex_mul (r : ℝ) (z : β„‚) : (r β€’ z : ℍ) = ↑r * ↑z :=
by ext; simp
@[simp, norm_cast] lemma coe_complex_coe (r : ℝ) : ((r : β„‚) : ℍ) = r := rfl

/-- Coercion `β„‚ →ₐ[ℝ] ℍ` as an algebra homomorphism. -/
def of_complex : β„‚ →ₐ[ℝ] ℍ :=
{ to_fun := coe,
  map_one' := rfl,
  map_zero' := rfl,
  map_add' := coe_complex_add,
  map_mul' := coe_complex_mul,
  commutes' := Ξ» x, rfl }

@[simp] lemma coe_of_complex : ⇑of_complex = coe := rfl

end quaternion