Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,381 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import measure_theory.measure.ae_measurable
/-!
# Measure preserving maps
We say that `f : α → β` is a measure preserving map w.r.t. measures `μ : measure α` and
`ν : measure β` if `f` is measurable and `map f μ = ν`. In this file we define the predicate
`measure_theory.measure_preserving` and prove its basic properties.
We use the term "measure preserving" because in many applications `α = β` and `μ = ν`.
## References
Partially based on
[this](https://www.isa-afp.org/browser_info/current/AFP/Ergodic_Theory/Measure_Preserving_Transformations.html)
Isabelle formalization.
## Tags
measure preserving map, measure
-/
variables {α β γ δ : Type*} [measurable_space α] [measurable_space β] [measurable_space γ]
[measurable_space δ]
namespace measure_theory
open measure function set
variables {μa : measure α} {μb : measure β} {μc : measure γ} {μd : measure δ}
/-- `f` is a measure preserving map w.r.t. measures `μa` and `μb` if `f` is measurable
and `map f μa = μb`. -/
@[protect_proj]
structure measure_preserving (f : α → β) (μa : measure α . volume_tac)
(μb : measure β . volume_tac) : Prop :=
(measurable : measurable f)
(map_eq : map f μa = μb)
protected lemma _root_.measurable.measure_preserving {f : α → β}
(h : measurable f) (μa : measure α) :
measure_preserving f μa (map f μa) :=
⟨h, rfl⟩
namespace measure_preserving
protected lemma id (μ : measure α) : measure_preserving id μ μ :=
⟨measurable_id, map_id⟩
protected lemma ae_measurable {f : α → β} (hf : measure_preserving f μa μb) :
ae_measurable f μa :=
hf.1.ae_measurable
lemma symm (e : α ≃ᵐ β) {μa : measure α} {μb : measure β} (h : measure_preserving e μa μb) :
measure_preserving e.symm μb μa :=
⟨e.symm.measurable,
by rw [← h.map_eq, map_map e.symm.measurable e.measurable, e.symm_comp_self, map_id]⟩
lemma restrict_preimage {f : α → β} (hf : measure_preserving f μa μb) {s : set β}
(hs : measurable_set s) : measure_preserving f (μa.restrict (f ⁻¹' s)) (μb.restrict s) :=
⟨hf.measurable, by rw [← hf.map_eq, restrict_map hf.measurable hs]⟩
lemma restrict_preimage_emb {f : α → β} (hf : measure_preserving f μa μb)
(h₂ : measurable_embedding f) (s : set β) :
measure_preserving f (μa.restrict (f ⁻¹' s)) (μb.restrict s) :=
⟨hf.measurable, by rw [← hf.map_eq, h₂.restrict_map]⟩
lemma restrict_image_emb {f : α → β} (hf : measure_preserving f μa μb) (h₂ : measurable_embedding f)
(s : set α) : measure_preserving f (μa.restrict s) (μb.restrict (f '' s)) :=
by simpa only [preimage_image_eq _ h₂.injective] using hf.restrict_preimage_emb h₂ (f '' s)
lemma ae_measurable_comp_iff {f : α → β} (hf : measure_preserving f μa μb)
(h₂ : measurable_embedding f) {g : β → γ} :
ae_measurable (g ∘ f) μa ↔ ae_measurable g μb :=
by rw [← hf.map_eq, h₂.ae_measurable_map_iff]
protected lemma quasi_measure_preserving {f : α → β} (hf : measure_preserving f μa μb) :
quasi_measure_preserving f μa μb :=
⟨hf.1, hf.2.absolutely_continuous⟩
lemma comp {g : β → γ} {f : α → β} (hg : measure_preserving g μb μc)
(hf : measure_preserving f μa μb) :
measure_preserving (g ∘ f) μa μc :=
⟨hg.1.comp hf.1, by rw [← map_map hg.1 hf.1, hf.2, hg.2]⟩
protected lemma sigma_finite {f : α → β} (hf : measure_preserving f μa μb) [sigma_finite μb] :
sigma_finite μa :=
sigma_finite.of_map μa hf.ae_measurable (by rwa hf.map_eq)
lemma measure_preimage {f : α → β} (hf : measure_preserving f μa μb)
{s : set β} (hs : measurable_set s) :
μa (f ⁻¹' s) = μb s :=
by rw [← hf.map_eq, map_apply hf.1 hs]
lemma measure_preimage_emb {f : α → β} (hf : measure_preserving f μa μb)
(hfe : measurable_embedding f) (s : set β) :
μa (f ⁻¹' s) = μb s :=
by rw [← hf.map_eq, hfe.map_apply]
protected lemma iterate {f : α → α} (hf : measure_preserving f μa μa) :
∀ n, measure_preserving (f^[n]) μa μa
| 0 := measure_preserving.id μa
| (n + 1) := (iterate n).comp hf
variables {μ : measure α} {f : α → α} {s : set α}
/-- If `μ univ < n * μ s` and `f` is a map preserving measure `μ`,
then for some `x ∈ s` and `0 < m < n`, `f^[m] x ∈ s`. -/
lemma exists_mem_image_mem_of_volume_lt_mul_volume (hf : measure_preserving f μ μ)
(hs : measurable_set s) {n : ℕ} (hvol : μ (univ : set α) < n * μ s) :
∃ (x ∈ s) (m ∈ Ioo 0 n), f^[m] x ∈ s :=
begin
have A : ∀ m, measurable_set (f^[m] ⁻¹' s) := λ m, (hf.iterate m).measurable hs,
have B : ∀ m, μ (f^[m] ⁻¹' s) = μ s, from λ m, (hf.iterate m).measure_preimage hs,
have : μ (univ : set α) < (finset.range n).sum (λ m, μ (f^[m] ⁻¹' s)),
by simpa only [B, nsmul_eq_mul, finset.sum_const, finset.card_range],
rcases exists_nonempty_inter_of_measure_univ_lt_sum_measure μ (λ m hm, A m) this
with ⟨i, hi, j, hj, hij, x, hxi, hxj⟩,
-- without `tactic.skip` Lean closes the extra goal but it takes a long time; not sure why
wlog hlt : i < j := hij.lt_or_lt using [i j, j i] tactic.skip,
{ simp only [set.mem_preimage, finset.mem_range] at hi hj hxi hxj,
refine ⟨f^[i] x, hxi, j - i, ⟨tsub_pos_of_lt hlt, lt_of_le_of_lt (j.sub_le i) hj⟩, _⟩,
rwa [← iterate_add_apply, tsub_add_cancel_of_le hlt.le] },
{ exact λ hi hj hij hxi hxj, this hj hi hij.symm hxj hxi }
end
/-- A self-map preserving a finite measure is conservative: if `μ s ≠ 0`, then at least one point
`x ∈ s` comes back to `s` under iterations of `f`. Actually, a.e. point of `s` comes back to `s`
infinitely many times, see `measure_theory.measure_preserving.conservative` and theorems about
`measure_theory.conservative`. -/
lemma exists_mem_image_mem [is_finite_measure μ] (hf : measure_preserving f μ μ)
(hs : measurable_set s) (hs' : μ s ≠ 0) :
∃ (x ∈ s) (m ≠ 0), f^[m] x ∈ s :=
begin
rcases ennreal.exists_nat_mul_gt hs' (measure_ne_top μ (univ : set α)) with ⟨N, hN⟩,
rcases hf.exists_mem_image_mem_of_volume_lt_mul_volume hs hN with ⟨x, hx, m, hm, hmx⟩,
exact ⟨x, hx, m, hm.1.ne', hmx⟩
end
end measure_preserving
end measure_theory
|