Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,381 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import measure_theory.measure.ae_measurable

/-!
# Measure preserving maps

We say that `f : α → β` is a measure preserving map w.r.t. measures `μ : measure α` and
`ν : measure β` if `f` is measurable and `map f μ = ν`. In this file we define the predicate
`measure_theory.measure_preserving` and prove its basic properties.

We use the term "measure preserving" because in many applications `α = β` and `μ = ν`.

## References

Partially based on
[this](https://www.isa-afp.org/browser_info/current/AFP/Ergodic_Theory/Measure_Preserving_Transformations.html)
Isabelle formalization.

## Tags

measure preserving map, measure
-/

variables {α β γ δ : Type*} [measurable_space α] [measurable_space β] [measurable_space γ]
  [measurable_space δ]

namespace measure_theory

open measure function set

variables {μa : measure α} {μb : measure β} {μc : measure γ} {μd : measure δ}

/-- `f` is a measure preserving map w.r.t. measures `μa` and `μb` if `f` is measurable
and `map f μa = μb`. -/
@[protect_proj]
structure measure_preserving (f : α → β) (μa : measure α . volume_tac)
  (μb : measure β . volume_tac) : Prop :=
(measurable : measurable f)
(map_eq : map f μa = μb)

protected lemma _root_.measurable.measure_preserving {f : α → β}
  (h : measurable f) (μa : measure α) :
  measure_preserving f μa (map f μa) :=
⟨h, rfl⟩

namespace measure_preserving

protected lemma id (μ : measure α) : measure_preserving id μ μ :=
⟨measurable_id, map_id⟩

protected lemma ae_measurable {f : α → β} (hf : measure_preserving f μa μb) :
  ae_measurable f μa :=
hf.1.ae_measurable

lemma symm (e : α ≃ᵐ β) {μa : measure α} {μb : measure β} (h : measure_preserving e μa μb) :
  measure_preserving e.symm μb μa :=
⟨e.symm.measurable,
  by rw [← h.map_eq, map_map e.symm.measurable e.measurable, e.symm_comp_self, map_id]⟩

lemma restrict_preimage {f : α → β} (hf : measure_preserving f μa μb) {s : set β}
  (hs : measurable_set s) : measure_preserving f (μa.restrict (f ⁻¹' s)) (μb.restrict s) :=
⟨hf.measurable, by rw [← hf.map_eq, restrict_map hf.measurable hs]⟩

lemma restrict_preimage_emb {f : α → β} (hf : measure_preserving f μa μb)
  (h₂ : measurable_embedding f) (s : set β) :
  measure_preserving f (μa.restrict (f ⁻¹' s)) (μb.restrict s) :=
⟨hf.measurable, by rw [← hf.map_eq, h₂.restrict_map]⟩

lemma restrict_image_emb {f : α → β} (hf : measure_preserving f μa μb) (h₂ : measurable_embedding f)
  (s : set α) : measure_preserving f (μa.restrict s) (μb.restrict (f '' s)) :=
by simpa only [preimage_image_eq _ h₂.injective] using hf.restrict_preimage_emb h₂ (f '' s)

lemma ae_measurable_comp_iff {f : α → β} (hf : measure_preserving f μa μb)
  (h₂ : measurable_embedding f) {g : β → γ} :
  ae_measurable (g ∘ f) μa ↔ ae_measurable g μb :=
by rw [← hf.map_eq, h₂.ae_measurable_map_iff]

protected lemma quasi_measure_preserving {f : α → β} (hf : measure_preserving f μa μb) :
  quasi_measure_preserving f μa μb :=
⟨hf.1, hf.2.absolutely_continuous⟩

lemma comp {g : β → γ} {f : α → β} (hg : measure_preserving g μb μc)
  (hf : measure_preserving f μa μb) :
  measure_preserving (g ∘ f) μa μc :=
⟨hg.1.comp hf.1, by rw [← map_map hg.1 hf.1, hf.2, hg.2]⟩

protected lemma sigma_finite {f : α → β} (hf : measure_preserving f μa μb) [sigma_finite μb] :
  sigma_finite μa :=
sigma_finite.of_map μa hf.ae_measurable (by rwa hf.map_eq)

lemma measure_preimage {f : α → β} (hf : measure_preserving f μa μb)
  {s : set β} (hs : measurable_set s) :
  μa (f ⁻¹' s) = μb s :=
by rw [← hf.map_eq, map_apply hf.1 hs]

lemma measure_preimage_emb {f : α → β} (hf : measure_preserving f μa μb)
  (hfe : measurable_embedding f) (s : set β) :
  μa (f ⁻¹' s) = μb s :=
by rw [← hf.map_eq, hfe.map_apply]

protected lemma iterate {f : α → α} (hf : measure_preserving f μa μa) :
  ∀ n, measure_preserving (f^[n]) μa μa
| 0 := measure_preserving.id μa
| (n + 1) := (iterate n).comp hf

variables {μ : measure α} {f : α → α} {s : set α}

/-- If `μ univ < n * μ s` and `f` is a map preserving measure `μ`,
then for some `x ∈ s` and `0 < m < n`, `f^[m] x ∈ s`. -/
lemma exists_mem_image_mem_of_volume_lt_mul_volume (hf : measure_preserving f μ μ)
  (hs : measurable_set s) {n : ℕ} (hvol : μ (univ : set α) < n * μ s) :
  ∃ (x ∈ s) (m ∈ Ioo 0 n), f^[m] x ∈ s :=
begin
  have A : ∀ m, measurable_set (f^[m] ⁻¹' s) := λ m, (hf.iterate m).measurable hs,
  have B : ∀ m, μ (f^[m] ⁻¹' s) = μ s, from λ m, (hf.iterate m).measure_preimage hs,
  have : μ (univ : set α) < (finset.range n).sum (λ m, μ (f^[m] ⁻¹' s)),
    by simpa only [B, nsmul_eq_mul, finset.sum_const, finset.card_range],
  rcases exists_nonempty_inter_of_measure_univ_lt_sum_measure μ (λ m hm, A m) this
    with ⟨i, hi, j, hj, hij, x, hxi, hxj⟩,
  -- without `tactic.skip` Lean closes the extra goal but it takes a long time; not sure why
  wlog hlt : i < j := hij.lt_or_lt using [i j, j i] tactic.skip,
  { simp only [set.mem_preimage, finset.mem_range] at hi hj hxi hxj,
    refine ⟨f^[i] x, hxi, j - i, ⟨tsub_pos_of_lt hlt, lt_of_le_of_lt (j.sub_le i) hj⟩, _⟩,
    rwa [← iterate_add_apply, tsub_add_cancel_of_le hlt.le] },
  { exact λ hi hj hij hxi hxj, this hj hi hij.symm hxj hxi }
end

/-- A self-map preserving a finite measure is conservative: if `μ s ≠ 0`, then at least one point
`x ∈ s` comes back to `s` under iterations of `f`. Actually, a.e. point of `s` comes back to `s`
infinitely many times, see `measure_theory.measure_preserving.conservative` and theorems about
`measure_theory.conservative`. -/
lemma exists_mem_image_mem [is_finite_measure μ] (hf : measure_preserving f μ μ)
  (hs : measurable_set s) (hs' : μ s0) :
  ∃ (x ∈ s) (m ≠ 0), f^[m] x ∈ s :=
begin
  rcases ennreal.exists_nat_mul_gt hs' (measure_ne_top μ (univ : set α)) with ⟨N, hN⟩,
  rcases hf.exists_mem_image_mem_of_volume_lt_mul_volume hs hN with ⟨x, hx, m, hm, hmx⟩,
  exact ⟨x, hx, m, hm.1.ne', hmx⟩
end

end measure_preserving

end measure_theory