Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,361 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Mario Carneiro
-/
import linear_algebra.basic
import linear_algebra.basis
/-!
# Basics on bilinear maps
This file provides basics on bilinear maps. The most general form considered are maps that are
semilinear in both arguments. They are of type `M βββ[Οββ] N βββ[Οββ] P`, where `M` and `N`
are modules over `R` and `S` respectively, `P` is a module over both `Rβ` and `Sβ` with
commuting actions, and `Οββ : R β+* Rβ` and `Οββ : S β+* Sβ`.
## Main declarations
* `linear_map.mkβ`: a constructor for bilinear maps,
taking an unbundled function together with proof witnesses of bilinearity
* `linear_map.flip`: turns a bilinear map `M Γ N β P` into `N Γ M β P`
* `linear_map.lcomp` and `linear_map.llcomp`: composition of linear maps as a bilinear map
* `linear_map.complβ`: composition of a bilinear map `M Γ N β P` with a linear map `Q β M`
* `linear_map.comprβ`: composition of a bilinear map `M Γ N β P` with a linear map `Q β N`
* `linear_map.lsmul`: scalar multiplication as a bilinear map `R Γ M β M`
## Tags
bilinear
-/
variables {ΞΉβ ΞΉβ : Type*}
namespace linear_map
section semiring
-- the `β` subscript variables are for special cases about linear (as opposed to semilinear) maps
variables {R : Type*} [semiring R] {S : Type*} [semiring S]
variables {Rβ : Type*} [semiring Rβ] {Sβ : Type*} [semiring Sβ]
variables {M : Type*} {N : Type*} {P : Type*}
variables {Mβ : Type*} {Nβ : Type*} {Pβ : Type*}
variables {Nβ : Type*} {Pβ : Type*}
variables {M' : Type*} {N' : Type*} {P' : Type*}
variables [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P]
variables [add_comm_monoid Mβ] [add_comm_monoid Nβ] [add_comm_monoid Pβ]
variables [add_comm_monoid Nβ] [add_comm_monoid Pβ]
variables [add_comm_group M'] [add_comm_group N'] [add_comm_group P']
variables [module R M] [module S N] [module Rβ P] [module Sβ P]
variables [module R Mβ] [module S Nβ] [module R Pβ] [module Sβ Pβ]
variables [module R Pβ] [module S Pβ]
variables [module R M'] [module S N'] [module Rβ P'] [module Sβ P']
variables [smul_comm_class Sβ Rβ P] [smul_comm_class S R Pβ] [smul_comm_class Sβ Rβ P']
variables [smul_comm_class Sβ R Pβ]
variables {Οββ : R β+* Rβ} {Οββ : S β+* Sβ}
variables (Οββ Οββ)
/-- Create a bilinear map from a function that is semilinear in each component.
See `mkβ'` and `mkβ` for the linear case. -/
def mkβ'ββ (f : M β N β P)
(H1 : β mβ mβ n, f (mβ + mβ) n = f mβ n + f mβ n)
(H2 : β (c:R) m n, f (c β’ m) n = (Οββ c) β’ f m n)
(H3 : β m nβ nβ, f m (nβ + nβ) = f m nβ + f m nβ)
(H4 : β (c:S) m n, f m (c β’ n) = (Οββ c) β’ f m n) : M βββ[Οββ] N βββ[Οββ] P :=
{ to_fun := Ξ» m, { to_fun := f m, map_add' := H3 m, map_smul' := Ξ» c, H4 c m},
map_add' := Ξ» mβ mβ, linear_map.ext $ H1 mβ mβ,
map_smul' := Ξ» c m, linear_map.ext $ H2 c m }
variables {Οββ Οββ}
@[simp] theorem mkβ'ββ_apply
(f : M β N β P) {H1 H2 H3 H4} (m : M) (n : N) :
(mkβ'ββ Οββ Οββ f H1 H2 H3 H4 : M βββ[Οββ] N βββ[Οββ] P) m n = f m n := rfl
variables (R S)
/-- Create a bilinear map from a function that is linear in each component.
See `mkβ` for the special case where both arguments come from modules over the same ring. -/
def mkβ' (f : M β N β Pβ)
(H1 : β mβ mβ n, f (mβ + mβ) n = f mβ n + f mβ n)
(H2 : β (c:R) m n, f (c β’ m) n = c β’ f m n)
(H3 : β m nβ nβ, f m (nβ + nβ) = f m nβ + f m nβ)
(H4 : β (c:S) m n, f m (c β’ n) = c β’ f m n) : M ββ[R] N ββ[S] Pβ :=
mkβ'ββ (ring_hom.id R) (ring_hom.id S) f H1 H2 H3 H4
variables {R S}
@[simp] theorem mkβ'_apply
(f : M β N β Pβ) {H1 H2 H3 H4} (m : M) (n : N) :
(mkβ' R S f H1 H2 H3 H4 : M ββ[R] N ββ[S] Pβ) m n = f m n := rfl
theorem extβ {f g : M βββ[Οββ] N βββ[Οββ] P}
(H : β m n, f m n = g m n) : f = g :=
linear_map.ext (Ξ» m, linear_map.ext $ Ξ» n, H m n)
lemma congr_funβ {f g : M βββ[Οββ] N βββ[Οββ] P} (h : f = g) (x y) : f x y = g x y :=
linear_map.congr_fun (linear_map.congr_fun h x) y
section
local attribute [instance] smul_comm_class.symm
/-- Given a linear map from `M` to linear maps from `N` to `P`, i.e., a bilinear map from `M Γ N` to
`P`, change the order of variables and get a linear map from `N` to linear maps from `M` to `P`. -/
def flip (f : M βββ[Οββ] N βββ[Οββ] P) : N βββ[Οββ] M βββ[Οββ] P :=
mkβ'ββ Οββ Οββ (Ξ» n m, f m n)
(Ξ» nβ nβ m, (f m).map_add _ _)
(Ξ» c n m, (f m).map_smulββ _ _)
(Ξ» n mβ mβ, by rw f.map_add; refl)
(Ξ» c n m, by rw f.map_smulββ; refl)
end
@[simp] theorem flip_apply (f : M βββ[Οββ] N βββ[Οββ] P) (m : M) (n : N) : flip f n m = f m n := rfl
@[simp] lemma flip_flip [smul_comm_class Rβ Sβ P] (f : M βββ[Οββ] N βββ[Οββ] P) :
f.flip.flip = f := linear_map.extβ (Ξ» x y, ((f.flip).flip_apply _ _).trans (f.flip_apply _ _))
open_locale big_operators
variables {R}
theorem flip_inj {f g : M βββ[Οββ] N βββ[Οββ] P} (H : flip f = flip g) : f = g :=
extβ $ Ξ» m n, show flip f n m = flip g n m, by rw H
theorem map_zeroβ (f : M βββ[Οββ] N βββ[Οββ] P) (y) : f 0 y = 0 :=
(flip f y).map_zero
theorem map_negβ (f : M' βββ[Οββ] N βββ[Οββ] P') (x y) : f (-x) y = -f x y :=
(flip f y).map_neg _
theorem map_subβ (f : M' βββ[Οββ] N βββ[Οββ] P') (x y z) : f (x - y) z = f x z - f y z :=
(flip f z).map_sub _ _
theorem map_addβ (f : M βββ[Οββ] N βββ[Οββ] P) (xβ xβ y) : f (xβ + xβ) y = f xβ y + f xβ y :=
(flip f y).map_add _ _
theorem map_smulβ (f : Mβ ββ[R] Nβ βββ[Οββ] Pβ) (r : R) (x y) : f (r β’ x) y = r β’ f x y :=
(flip f y).map_smul _ _
theorem map_smulβββ (f : M βββ[Οββ] N βββ[Οββ] P) (r : R) (x y) : f (r β’ x) y = (Οββ r) β’ f x y :=
(flip f y).map_smulββ _ _
theorem map_sumβ {ΞΉ : Type*} (f : M βββ[Οββ] N βββ[Οββ] P) (t : finset ΞΉ) (x : ΞΉ β M) (y) :
f (β i in t, x i) y = β i in t, f (x i) y :=
(flip f y).map_sum
/-- Restricting a bilinear map in the second entry -/
def dom_restrictβ (f : M βββ[Οββ] N βββ[Οββ] P) (q : submodule S N) :
M βββ[Οββ] q βββ[Οββ] P :=
{ to_fun := Ξ» m, (f m).dom_restrict q,
map_add' := Ξ» mβ mβ, linear_map.ext $ Ξ» _, by simp only [map_add, dom_restrict_apply, add_apply],
map_smul' := Ξ» c m, linear_map.ext $ Ξ» _, by simp only [f.map_smulββ, dom_restrict_apply,
smul_apply]}
lemma dom_restrictβ_apply (f : M βββ[Οββ] N βββ[Οββ] P) (q : submodule S N) (x : M) (y : q) :
f.dom_restrictβ q x y = f x y := rfl
/-- Restricting a bilinear map in both components -/
def dom_restrictββ (f : M βββ[Οββ] N βββ[Οββ] P) (p : submodule R M) (q : submodule S N) :
p βββ[Οββ] q βββ[Οββ] P := (f.dom_restrict p).dom_restrictβ q
lemma dom_restrictββ_apply (f : M βββ[Οββ] N βββ[Οββ] P) (p : submodule R M) (q : submodule S N)
(x : p) (y : q) : f.dom_restrictββ p q x y = f x y := rfl
end semiring
section comm_semiring
variables {R : Type*} [comm_semiring R] {Rβ : Type*} [comm_semiring Rβ]
variables {Rβ : Type*} [comm_semiring Rβ] {Rβ : Type*} [comm_semiring Rβ]
variables {M : Type*} {N : Type*} {P : Type*} {Q : Type*}
variables {Mβ : Type*} {Nβ : Type*} {Pβ : Type*} {Qβ Qβ': Type*}
variables [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P] [add_comm_monoid Q]
variables [add_comm_monoid Mβ] [add_comm_monoid Nβ] [add_comm_monoid Pβ]
variables [add_comm_monoid Qβ] [add_comm_monoid Qβ']
variables [module R M] [module Rβ N] [module Rβ P] [module Rβ Q]
variables [module R Mβ] [module R Nβ] [module R Pβ] [module R Qβ] [module R Qβ']
variables {Οββ : R β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : R β+* Rβ}
variables {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ}
variables [ring_hom_comp_triple Οββ Οββ Οββ] [ring_hom_comp_triple Οββ Οββ Οββ]
variables (R)
/-- Create a bilinear map from a function that is linear in each component.
This is a shorthand for `mkβ'` for the common case when `R = S`. -/
def mkβ (f : M β Nβ β Pβ)
(H1 : β mβ mβ n, f (mβ + mβ) n = f mβ n + f mβ n)
(H2 : β (c:R) m n, f (c β’ m) n = c β’ f m n)
(H3 : β m nβ nβ, f m (nβ + nβ) = f m nβ + f m nβ)
(H4 : β (c:R) m n, f m (c β’ n) = c β’ f m n) : M ββ[R] Nβ ββ[R] Pβ :=
mkβ' R R f H1 H2 H3 H4
@[simp] theorem mkβ_apply
(f : M β Nβ β Pβ) {H1 H2 H3 H4} (m : M) (n : Nβ) :
(mkβ R f H1 H2 H3 H4 : M ββ[R] Nβ ββ[R] Pβ) m n = f m n := rfl
variables (R M N P)
/-- Given a linear map from `M` to linear maps from `N` to `P`, i.e., a bilinear map `M β N β P`,
change the order of variables and get a linear map from `N` to linear maps from `M` to `P`. -/
def lflip : (M βββ[Οββ] N βββ[Οββ] P) ββ[Rβ] N βββ[Οββ] M βββ[Οββ] P :=
{ to_fun := flip, map_add' := Ξ» _ _, rfl, map_smul' := Ξ» _ _, rfl }
variables {R M N P}
variables (f : M βββ[Οββ] N βββ[Οββ] P)
@[simp] theorem lflip_apply (m : M) (n : N) : lflip R M N P f n m = f m n := rfl
variables (R Pβ)
/-- Composing a linear map `M β N` and a linear map `N β P` to form a linear map `M β P`. -/
def lcomp (f : M ββ[R] Nβ) : (Nβ ββ[R] Pβ) ββ[R] M ββ[R] Pβ :=
flip $ linear_map.comp (flip id) f
variables {R Pβ}
@[simp] theorem lcomp_apply (f : M ββ[R] Nβ) (g : Nβ ββ[R] Pβ) (x : M) :
lcomp R Pβ f g x = g (f x) := rfl
theorem lcomp_apply' (f : M ββ[R] Nβ) (g : Nβ ββ[R] Pβ) :
lcomp R Pβ f g = g ββ f := rfl
variables (P Οββ)
/-- Composing a semilinear map `M β N` and a semilinear map `N β P` to form a semilinear map
`M β P` is itself a linear map. -/
def lcompββ (f : M βββ[Οββ] N) : (N βββ[Οββ] P) ββ[Rβ] M βββ[Οββ] P :=
flip $ linear_map.comp (flip id) f
variables {P Οββ}
include Οββ
@[simp] theorem lcompββ_apply (f : M βββ[Οββ] N) (g : N βββ[Οββ] P) (x : M) :
lcompββ P Οββ f g x = g (f x) := rfl
omit Οββ
variables (R M Nβ Pβ)
/-- Composing a linear map `M β N` and a linear map `N β P` to form a linear map `M β P`. -/
def llcomp : (Nβ ββ[R] Pβ) ββ[R] (M ββ[R] Nβ) ββ[R] M ββ[R] Pβ :=
flip { to_fun := lcomp R Pβ,
map_add' := Ξ» f f', extβ $ Ξ» g x, g.map_add _ _,
map_smul' := Ξ» (c : R) f, extβ $ Ξ» g x, g.map_smul _ _ }
variables {R M Nβ Pβ}
section
@[simp] theorem llcomp_apply (f : Nβ ββ[R] Pβ) (g : M ββ[R] Nβ) (x : M) :
llcomp R M Nβ Pβ f g x = f (g x) := rfl
theorem llcomp_apply' (f : Nβ ββ[R] Pβ) (g : M ββ[R] Nβ) :
llcomp R M Nβ Pβ f g = f ββ g := rfl
end
/-- Composing a linear map `Q β N` and a bilinear map `M β N β P` to
form a bilinear map `M β Q β P`. -/
def complβ (g : Q βββ[Οββ] N) : M βββ[Οββ] Q βββ[Οββ] P := (lcompββ _ _ g).comp f
include Οββ
@[simp] theorem complβ_apply (g : Q βββ[Οββ] N) (m : M) (q : Q) :
f.complβ g m q = f m (g q) := rfl
omit Οββ
/-- Composing linear maps `Q β M` and `Q' β N` with a bilinear map `M β N β P` to
form a bilinear map `Q β Q' β P`. -/
def complββ (f : Mβ ββ[R] Nβ ββ[R] Pβ) (g : Qβ ββ[R] Mβ) (g' : Qβ' ββ[R] Nβ) :
Qβ ββ[R] Qβ' ββ[R] Pβ :=
(f.comp g).complβ g'
@[simp] theorem complββ_apply (f : Mβ ββ[R] Nβ ββ[R] Pβ) (g : Qβ ββ[R] Mβ) (g' : Qβ' ββ[R] Nβ)
(x : Qβ) (y : Qβ') : f.complββ g g' x y = f (g x) (g' y) := rfl
lemma complββ_inj {fβ fβ : Mβ ββ[R] Nβ ββ[R] Pβ} {g : Qβ ββ[R] Mβ} {g' : Qβ' ββ[R] Nβ}
(hβ : function.surjective g) (hα΅£ : function.surjective g') :
fβ.complββ g g' = fβ.complββ g g' β fβ = fβ :=
begin
split; intros h,
{ -- Bβ.comp l r = Bβ.comp l r β Bβ = Bβ
ext x y,
cases hβ x with x' hx, subst hx,
cases hα΅£ y with y' hy, subst hy,
convert linear_map.congr_funβ h x' y' },
{ -- Bβ = Bβ β Bβ.comp l r = Bβ.comp l r
subst h },
end
/-- Composing a linear map `P β Q` and a bilinear map `M β N β P` to
form a bilinear map `M β N β Q`. -/
def comprβ (f : M ββ[R] Nβ ββ[R] Pβ) (g : Pβ ββ[R] Qβ) : M ββ[R] Nβ ββ[R] Qβ :=
(llcomp R Nβ Pβ Qβ g) ββ f
@[simp] theorem comprβ_apply (f : M ββ[R] Nβ ββ[R] Pβ) (g : Pβ ββ[R] Qβ) (m : M) (n : Nβ) :
f.comprβ g m n = g (f m n) := rfl
variables (R M)
/-- Scalar multiplication as a bilinear map `R β M β M`. -/
def lsmul : R ββ[R] M ββ[R] M :=
mkβ R (β’) add_smul (Ξ» _ _ _, mul_smul _ _ _) smul_add
(Ξ» r s m, by simp only [smul_smul, smul_eq_mul, mul_comm])
variables {R M}
@[simp] theorem lsmul_apply (r : R) (m : M) : lsmul R M r m = r β’ m := rfl
end comm_semiring
section comm_ring
variables {R Rβ S Sβ M N P : Type*}
variables [comm_ring R] [comm_ring S] [comm_ring Rβ] [comm_ring Sβ]
variables [add_comm_group M] [add_comm_group N] [add_comm_group P]
variables [module R M] [module S N] [module Rβ P] [module Sβ P]
variables [smul_comm_class Sβ Rβ P]
variables {Οββ : R β+* Rβ} {Οββ : S β+* Sβ}
variables (bβ : basis ΞΉβ R M) (bβ : basis ΞΉβ S N)
lemma lsmul_injective [no_zero_smul_divisors R M] {x : R} (hx : x β 0) :
function.injective (lsmul R M x) :=
smul_right_injective _ hx
lemma ker_lsmul [no_zero_smul_divisors R M] {a : R} (ha : a β 0) :
(linear_map.lsmul R M a).ker = β₯ :=
linear_map.ker_eq_bot_of_injective (linear_map.lsmul_injective ha)
/-- Two bilinear maps are equal when they are equal on all basis vectors. -/
lemma ext_basis {B B' : M βββ[Οββ] N βββ[Οββ] P}
(h : β i j, B (bβ i) (bβ j) = B' (bβ i) (bβ j)) : B = B' :=
bβ.ext $ Ξ» i, bβ.ext $ Ξ» j, h i j
/-- Write out `B x y` as a sum over `B (b i) (b j)` if `b` is a basis. -/
lemma sum_repr_mul_repr_mul {B : M βββ[Οββ] N βββ[Οββ] P} (x y) :
(bβ.repr x).sum (Ξ» i xi, (bβ.repr y).sum (Ξ» j yj, (Οββ xi) β’ (Οββ yj) β’ B (bβ i) (bβ j))) =
B x y :=
begin
conv_rhs { rw [β bβ.total_repr x, β bβ.total_repr y] },
simp_rw [finsupp.total_apply, finsupp.sum, map_sumβ, map_sum,
linear_map.map_smulβββ, linear_map.map_smulββ],
end
end comm_ring
end linear_map
|