File size: 12,348 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/-
Copyright (c) 2020 Oliver Nash. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Oliver Nash, Antoine Labelle
-/
import linear_algebra.dual
import linear_algebra.matrix.to_lin
import linear_algebra.tensor_product_basis
import linear_algebra.free_module.finite.rank

/-!
# Contractions

Given modules $M, N$ over a commutative ring $R$, this file defines the natural linear maps:
$M^* \otimes M \to R$, $M \otimes M^* \to R$, and $M^* \otimes N β†’ Hom(M, N)$, as well as proving
some basic properties of these maps.

## Tags

contraction, dual module, tensor product
-/

variables {ΞΉ : Type*} (R M N P Q : Type*)

local attribute [ext] tensor_product.ext

section contraction

open tensor_product linear_map matrix module
open_locale tensor_product big_operators

section comm_semiring
variables [comm_semiring R]
variables [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P] [add_comm_monoid Q]
variables [module R M] [module R N] [module R P] [module R Q]
variables [decidable_eq ΞΉ] [fintype ΞΉ] (b : basis ΞΉ R M)

/-- The natural left-handed pairing between a module and its dual. -/
def contract_left : (module.dual R M) βŠ— M β†’β‚—[R] R := (uncurry _ _ _ _).to_fun linear_map.id

/-- The natural right-handed pairing between a module and its dual. -/
def contract_right : M βŠ— (module.dual R M) β†’β‚—[R] R :=
(uncurry _ _ _ _).to_fun (linear_map.flip linear_map.id)

/-- The natural map associating a linear map to the tensor product of two modules. -/
def dual_tensor_hom : (module.dual R M) βŠ— N β†’β‚—[R] M β†’β‚—[R] N :=
  let M' := module.dual R M in
  (uncurry R M' N (M β†’β‚—[R] N) : _ β†’ M' βŠ— N β†’β‚—[R] M β†’β‚—[R] N) linear_map.smul_rightβ‚—

variables {R M N P Q}

@[simp] lemma contract_left_apply (f : module.dual R M) (m : M) :
  contract_left R M (f βŠ—β‚œ m) = f m := by apply uncurry_apply

@[simp] lemma contract_right_apply (f : module.dual R M) (m : M) :
  contract_right R M (m βŠ—β‚œ f) = f m := by apply uncurry_apply

@[simp] lemma dual_tensor_hom_apply (f : module.dual R M) (m : M) (n : N) :
  dual_tensor_hom R M N (f βŠ—β‚œ n) m = (f m) β€’ n :=
by { dunfold dual_tensor_hom, rw uncurry_apply, refl, }

@[simp] lemma transpose_dual_tensor_hom (f : module.dual R M) (m : M) :
  dual.transpose (dual_tensor_hom R M M (f βŠ—β‚œ m)) = dual_tensor_hom R _ _ (dual.eval R M m βŠ—β‚œ f) :=
by { ext f' m', simp only [dual.transpose_apply, coe_comp, function.comp_app, dual_tensor_hom_apply,
  linear_map.map_smulβ‚›β‚—, ring_hom.id_apply, algebra.id.smul_eq_mul, dual.eval_apply, smul_apply],
  exact mul_comm _ _ }

@[simp] lemma dual_tensor_hom_prod_map_zero (f : module.dual R M) (p : P) :
  ((dual_tensor_hom R M P) (f βŠ—β‚œ[R] p)).prod_map (0 : N β†’β‚—[R] Q) =
  dual_tensor_hom R (M Γ— N) (P Γ— Q) ((f βˆ˜β‚— fst R M N) βŠ—β‚œ inl R P Q p) :=
by {ext; simp only [coe_comp, coe_inl, function.comp_app, prod_map_apply, dual_tensor_hom_apply,
fst_apply, prod.smul_mk, zero_apply, smul_zero]}

@[simp] lemma zero_prod_map_dual_tensor_hom (g : module.dual R N) (q : Q) :
  (0 : M β†’β‚—[R] P).prod_map ((dual_tensor_hom R N Q) (g βŠ—β‚œ[R] q)) =
  dual_tensor_hom R (M Γ— N) (P Γ— Q) ((g βˆ˜β‚— snd R M N) βŠ—β‚œ inr R P Q q) :=
by {ext; simp only [coe_comp, coe_inr, function.comp_app, prod_map_apply, dual_tensor_hom_apply,
  snd_apply, prod.smul_mk, zero_apply, smul_zero]}

lemma map_dual_tensor_hom (f : module.dual R M) (p : P) (g : module.dual R N) (q : Q) :
  tensor_product.map (dual_tensor_hom R M P (f βŠ—β‚œ[R] p)) (dual_tensor_hom R N Q (g βŠ—β‚œ[R] q)) =
  dual_tensor_hom R (M βŠ—[R] N) (P βŠ—[R] Q) (dual_distrib R M N (f βŠ—β‚œ g) βŠ—β‚œ[R] (p βŠ—β‚œ[R] q)) :=
begin
  ext m n, simp only [comprβ‚‚_apply, mk_apply, map_tmul, dual_tensor_hom_apply,
  dual_distrib_apply, ←smul_tmul_smul],
end

@[simp] lemma comp_dual_tensor_hom (f : module.dual R M) (n : N) (g : module.dual R N) (p : P) :
  (dual_tensor_hom R N P (g βŠ—β‚œ[R] p)) βˆ˜β‚— (dual_tensor_hom R M N (f βŠ—β‚œ[R] n)) =
  g n β€’ dual_tensor_hom R M P (f βŠ—β‚œ p) :=
begin
  ext m, simp only [coe_comp, function.comp_app, dual_tensor_hom_apply, linear_map.map_smul,
                    ring_hom.id_apply, smul_apply], rw smul_comm,
end

/-- As a matrix, `dual_tensor_hom` evaluated on a basis element of `M* βŠ— N` is a matrix with a
single one and zeros elsewhere -/
theorem to_matrix_dual_tensor_hom
  {m : Type*} {n : Type*} [fintype m] [fintype n] [decidable_eq m] [decidable_eq n]
  (bM : basis m R M) (bN : basis n R N) (j : m) (i : n) :
    to_matrix bM bN (dual_tensor_hom R M N (bM.coord j βŠ—β‚œ bN i)) = std_basis_matrix i j 1 :=
begin
  ext i' j',
  by_cases hij : (i = i' ∧ j = j');
  simp [linear_map.to_matrix_apply, finsupp.single_eq_pi_single, hij],
  rw [and_iff_not_or_not, not_not] at hij, cases hij; simp [hij],
end

end comm_semiring

section comm_ring
variables [comm_ring R]
variables [add_comm_group M] [add_comm_group N] [add_comm_group P] [add_comm_group Q]
variables [module R M] [module R N] [module R P] [module R Q]
variables [decidable_eq ΞΉ] [fintype ΞΉ] (b : basis ΞΉ R M)

variables {R M N P Q}

/-- If `M` is free, the natural linear map $M^* βŠ— N β†’ Hom(M, N)$ is an equivalence. This function
provides this equivalence in return for a basis of `M`. -/
@[simps apply]
noncomputable def dual_tensor_hom_equiv_of_basis :
  (module.dual R M) βŠ—[R] N ≃ₗ[R] M β†’β‚—[R] N :=
linear_equiv.of_linear
  (dual_tensor_hom R M N)
  (βˆ‘ i, (tensor_product.mk R _ N (b.dual_basis i)) βˆ˜β‚— linear_map.applyβ‚— (b i))
  (begin
    ext f m,
    simp only [applyβ‚—_apply_apply, coe_fn_sum, dual_tensor_hom_apply, mk_apply, id_coe, id.def,
      fintype.sum_apply, function.comp_app, basis.coe_dual_basis, coe_comp,
      basis.coord_apply, ← f.map_smul, (dual_tensor_hom R M N).map_sum, ← f.map_sum, b.sum_repr],
  end)
  (begin
    ext f m,
    simp only [applyβ‚—_apply_apply, coe_fn_sum, dual_tensor_hom_apply, mk_apply, id_coe, id.def,
      fintype.sum_apply, function.comp_app, basis.coe_dual_basis, coe_comp,
      comprβ‚‚_apply, tmul_smul, smul_tmul', ← sum_tmul, basis.sum_dual_apply_smul_coord],
end)

@[simp] lemma dual_tensor_hom_equiv_of_basis_to_linear_map :
  (dual_tensor_hom_equiv_of_basis b : (module.dual R M) βŠ—[R] N ≃ₗ[R] M β†’β‚—[R] N).to_linear_map =
  dual_tensor_hom R M N :=
rfl

@[simp] lemma dual_tensor_hom_equiv_of_basis_symm_cancel_left (x : (module.dual R M) βŠ—[R] N) :
  (dual_tensor_hom_equiv_of_basis b).symm (dual_tensor_hom R M N x) = x :=
by rw [←dual_tensor_hom_equiv_of_basis_apply b, linear_equiv.symm_apply_apply]

@[simp] lemma dual_tensor_hom_equiv_of_basis_symm_cancel_right (x : M β†’β‚—[R] N) :
  dual_tensor_hom R M N ((dual_tensor_hom_equiv_of_basis b).symm x)  = x :=
by rw [←dual_tensor_hom_equiv_of_basis_apply b, linear_equiv.apply_symm_apply]

variables (R M N P Q)

variables [module.free R M] [module.finite R M] [nontrivial R]

open_locale classical

/-- If `M` is finite free, the natural map $M^* βŠ— N β†’ Hom(M, N)$ is an
equivalence. -/
@[simp] noncomputable def dual_tensor_hom_equiv : (module.dual R M) βŠ—[R] N ≃ₗ[R] M β†’β‚—[R] N :=
dual_tensor_hom_equiv_of_basis (module.free.choose_basis R M)

end comm_ring

end contraction

section hom_tensor_hom

open_locale tensor_product

open module tensor_product linear_map

section comm_ring

variables [comm_ring R]
variables [add_comm_group M] [add_comm_group N] [add_comm_group P] [add_comm_group Q]
variables [module R M] [module R N] [module R P] [module R Q]
variables [free R M] [finite R M] [free R N] [finite R N] [nontrivial R]

/-- When `M` is a finite free module, the map `ltensor_hom_to_hom_ltensor` is an equivalence. Note
that `ltensor_hom_equiv_hom_ltensor` is not defined directly in terms of
`ltensor_hom_to_hom_ltensor`, but the equivalence between the two is given by
`ltensor_hom_equiv_hom_ltensor_to_linear_map` and `ltensor_hom_equiv_hom_ltensor_apply`. -/
noncomputable def ltensor_hom_equiv_hom_ltensor : P βŠ—[R] (M β†’β‚—[R] Q) ≃ₗ[R] (M β†’β‚—[R] P βŠ—[R] Q) :=
congr (linear_equiv.refl R P) (dual_tensor_hom_equiv R M Q).symm β‰ͺ≫ₗ
  tensor_product.left_comm R P _ Q β‰ͺ≫ₗ dual_tensor_hom_equiv R M _

/-- When `M` is a finite free module, the map `rtensor_hom_to_hom_rtensor` is an equivalence. Note
that `rtensor_hom_equiv_hom_rtensor` is not defined directly in terms of
`rtensor_hom_to_hom_rtensor`, but the equivalence between the two is given by
`rtensor_hom_equiv_hom_rtensor_to_linear_map` and `rtensor_hom_equiv_hom_rtensor_apply`. -/
noncomputable def rtensor_hom_equiv_hom_rtensor : (M β†’β‚—[R] P) βŠ—[R] Q ≃ₗ[R] (M β†’β‚—[R] P βŠ—[R] Q) :=
congr (dual_tensor_hom_equiv R M P).symm (linear_equiv.refl R Q) β‰ͺ≫ₗ
  tensor_product.assoc R _ P Q β‰ͺ≫ₗ dual_tensor_hom_equiv R M _

@[simp] lemma ltensor_hom_equiv_hom_ltensor_to_linear_map :
  (ltensor_hom_equiv_hom_ltensor R M P Q).to_linear_map = ltensor_hom_to_hom_ltensor R M P Q :=
begin
  let e := congr (linear_equiv.refl R P) (dual_tensor_hom_equiv R M Q),
  have h : function.surjective e.to_linear_map := e.surjective,
  refine (cancel_right h).1 _,
  ext p f q m,
  simp only [ltensor_hom_equiv_hom_ltensor, dual_tensor_hom_equiv, comprβ‚‚_apply, mk_apply, coe_comp,
  linear_equiv.coe_to_linear_map, function.comp_app, map_tmul, linear_equiv.coe_coe,
  dual_tensor_hom_equiv_of_basis_apply, linear_equiv.trans_apply, congr_tmul,
  linear_equiv.refl_apply, dual_tensor_hom_equiv_of_basis_symm_cancel_left, left_comm_tmul,
  dual_tensor_hom_apply, ltensor_hom_to_hom_ltensor_apply, tmul_smul],
end

@[simp] lemma rtensor_hom_equiv_hom_rtensor_to_linear_map :
  (rtensor_hom_equiv_hom_rtensor R M P Q).to_linear_map = rtensor_hom_to_hom_rtensor R M P Q :=
begin
  let e := congr (dual_tensor_hom_equiv R M P) (linear_equiv.refl R Q),
  have h : function.surjective e.to_linear_map := e.surjective,
  refine (cancel_right h).1 _,
  ext f p q m,
  simp only [rtensor_hom_equiv_hom_rtensor, dual_tensor_hom_equiv, comprβ‚‚_apply, mk_apply, coe_comp,
  linear_equiv.coe_to_linear_map, function.comp_app, map_tmul, linear_equiv.coe_coe,
  dual_tensor_hom_equiv_of_basis_apply, linear_equiv.trans_apply, congr_tmul,
  dual_tensor_hom_equiv_of_basis_symm_cancel_left, linear_equiv.refl_apply, assoc_tmul,
  dual_tensor_hom_apply, rtensor_hom_to_hom_rtensor_apply, smul_tmul'],
end

variables {R M N P Q}

@[simp] lemma ltensor_hom_equiv_hom_ltensor_apply (x : P βŠ—[R] (M β†’β‚—[R] Q)) :
  ltensor_hom_equiv_hom_ltensor R M P Q x = ltensor_hom_to_hom_ltensor R M P Q x :=
by rw [←linear_equiv.coe_to_linear_map, ltensor_hom_equiv_hom_ltensor_to_linear_map]

@[simp] lemma rtensor_hom_equiv_hom_rtensor_apply (x : (M β†’β‚—[R] P) βŠ—[R] Q) :
  rtensor_hom_equiv_hom_rtensor R M P Q x = rtensor_hom_to_hom_rtensor R M P Q x :=
by rw [←linear_equiv.coe_to_linear_map, rtensor_hom_equiv_hom_rtensor_to_linear_map]

variables (R M N P Q)

/--
When `M` and `N` are free `R` modules, the map `hom_tensor_hom_map` is an equivalence. Note that
`hom_tensor_hom_equiv` is not defined directly in terms of `hom_tensor_hom_map`, but the equivalence
between the two is given by `hom_tensor_hom_equiv_to_linear_map` and `hom_tensor_hom_equiv_apply`.
-/
noncomputable
def hom_tensor_hom_equiv : (M β†’β‚—[R] P) βŠ—[R] (N β†’β‚—[R] Q) ≃ₗ[R] (M βŠ—[R] N β†’β‚—[R] P βŠ—[R] Q) :=
rtensor_hom_equiv_hom_rtensor R M P _ β‰ͺ≫ₗ
  (linear_equiv.refl R M).arrow_congr (ltensor_hom_equiv_hom_ltensor R N _ Q) β‰ͺ≫ₗ
  lift.equiv R M N _

@[simp]
lemma hom_tensor_hom_equiv_to_linear_map :
  (hom_tensor_hom_equiv R M N P Q).to_linear_map = hom_tensor_hom_map R M N P Q :=
begin
  ext f g m n,
  simp only [hom_tensor_hom_equiv, comprβ‚‚_apply, mk_apply, linear_equiv.coe_to_linear_map,
  linear_equiv.trans_apply, lift.equiv_apply, linear_equiv.arrow_congr_apply,
  linear_equiv.refl_symm, linear_equiv.refl_apply, rtensor_hom_equiv_hom_rtensor_apply,
  ltensor_hom_equiv_hom_ltensor_apply, ltensor_hom_to_hom_ltensor_apply,
  rtensor_hom_to_hom_rtensor_apply, hom_tensor_hom_map_apply, map_tmul],
end

variables {R M N P Q}

@[simp]
lemma hom_tensor_hom_equiv_apply (x : (M β†’β‚—[R] P) βŠ—[R] (N β†’β‚—[R] Q)) :
  hom_tensor_hom_equiv R M N P Q x = hom_tensor_hom_map R M N P Q x :=
by rw [←linear_equiv.coe_to_linear_map, hom_tensor_hom_equiv_to_linear_map]

end comm_ring

end hom_tensor_hom