Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 30,562 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Fabian Glöckle
-/
import linear_algebra.finite_dimensional
import linear_algebra.projection
import linear_algebra.sesquilinear_form
import ring_theory.finiteness
import linear_algebra.free_module.finite.rank

/-!
# Dual vector spaces

The dual space of an R-module M is the R-module of linear maps `M → R`.

## Main definitions

* `dual R M` defines the dual space of M over R.
* Given a basis for an `R`-module `M`, `basis.to_dual` produces a map from `M` to `dual R M`.
* Given families of vectors `e` and `ε`, `dual_pair e ε` states that these families have the
  characteristic properties of a basis and a dual.
* `dual_annihilator W` is the submodule of `dual R M` where every element annihilates `W`.

## Main results

* `to_dual_equiv` : the linear equivalence between the dual module and primal module,
  given a finite basis.
* `dual_pair.basis` and `dual_pair.eq_dual`: if `e` and `ε` form a dual pair, `e` is a basis and
  `ε` is its dual basis.
* `quot_equiv_annihilator`: the quotient by a subspace is isomorphic to its dual annihilator.

## Notation

We sometimes use `V'` as local notation for `dual K V`.

## TODO

Erdös-Kaplansky theorem about the dimension of a dual vector space in case of infinite dimension.
-/

noncomputable theory

namespace module

variables (R : Type*) (M : Type*)
variables [comm_semiring R] [add_comm_monoid M] [module R M]

/-- The dual space of an R-module M is the R-module of linear maps `M → R`. -/
@[derive [add_comm_monoid, module R]] def dual := M →ₗ[R] R

instance {S : Type*} [comm_ring S] {N : Type*} [add_comm_group N] [module S N] :
  add_comm_group (dual S N) := linear_map.add_comm_group

instance : linear_map_class (dual R M) R M R :=
linear_map.semilinear_map_class

/-- The canonical pairing of a vector space and its algebraic dual. -/
def dual_pairing (R M) [comm_semiring R] [add_comm_monoid M] [module R M] :
  module.dual R M →ₗ[R] M →ₗ[R] R := linear_map.id

@[simp] lemma dual_pairing_apply (v x) : dual_pairing R M v x = v x := rfl

namespace dual

instance : inhabited (dual R M) := linear_map.inhabited

instance : has_coe_to_fun (dual R M) (λ _, M → R) := ⟨linear_map.to_fun⟩

/-- Maps a module M to the dual of the dual of M. See `module.erange_coe` and
`module.eval_equiv`. -/
def eval : M →ₗ[R] (dual R (dual R M)) := linear_map.flip linear_map.id

@[simp] lemma eval_apply (v : M) (a : dual R M) : eval R M v a = a v :=
begin
  dunfold eval,
  rw [linear_map.flip_apply, linear_map.id_apply]
end

variables {R M} {M' : Type*} [add_comm_monoid M'] [module R M']

/-- The transposition of linear maps, as a linear map from `M →ₗ[R] M'` to
`dual R M' →ₗ[R] dual R M`. -/
def transpose : (M →ₗ[R] M') →ₗ[R] (dual R M' →ₗ[R] dual R M) :=
(linear_map.llcomp R M M' R).flip

lemma transpose_apply (u : M →ₗ[R] M') (l : dual R M') : transpose u l = l.comp u := rfl

variables {M'' : Type*} [add_comm_monoid M''] [module R M'']

lemma transpose_comp (u : M' →ₗ[R] M'') (v : M →ₗ[R] M') :
  transpose (u.comp v) = (transpose v).comp (transpose u) := rfl

end dual

end module

namespace basis

universes u v w

open module module.dual submodule linear_map cardinal function
open_locale big_operators

variables {R M K V ι : Type*}

section comm_semiring

variables [comm_semiring R] [add_comm_monoid M] [module R M] [decidable_eq ι]
variables (b : basis ι R M)

/-- The linear map from a vector space equipped with basis to its dual vector space,
taking basis elements to corresponding dual basis elements. -/
def to_dual : M →ₗ[R] module.dual R M :=
b.constr ℕ $ λ v, b.constr ℕ $ λ w, if w = v then (1 : R) else 0

lemma to_dual_apply (i j : ι) :
  b.to_dual (b i) (b j) = if i = j then 1 else 0 :=
by { erw [constr_basis b, constr_basis b], ac_refl }

@[simp] lemma to_dual_total_left (f : ι →₀ R) (i : ι) :
  b.to_dual (finsupp.total ι M R b f) (b i) = f i :=
begin
  rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum, linear_map.sum_apply],
  simp_rw [linear_map.map_smul, linear_map.smul_apply, to_dual_apply, smul_eq_mul,
           mul_boole, finset.sum_ite_eq'],
  split_ifs with h,
  { refl },
  { rw finsupp.not_mem_support_iff.mp h }
end

@[simp] lemma to_dual_total_right (f : ι →₀ R) (i : ι) :
  b.to_dual (b i) (finsupp.total ι M R b f) = f i :=
begin
  rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum],
  simp_rw [linear_map.map_smul, to_dual_apply, smul_eq_mul, mul_boole, finset.sum_ite_eq],
  split_ifs with h,
  { refl },
  { rw finsupp.not_mem_support_iff.mp h }
end

lemma to_dual_apply_left (m : M) (i : ι) : b.to_dual m (b i) = b.repr m i :=
by rw [← b.to_dual_total_left, b.total_repr]

lemma to_dual_apply_right (i : ι) (m : M) : b.to_dual (b i) m = b.repr m i :=
by rw [← b.to_dual_total_right, b.total_repr]

lemma coe_to_dual_self (i : ι) : b.to_dual (b i) = b.coord i :=
by { ext, apply to_dual_apply_right }

/-- `h.to_dual_flip v` is the linear map sending `w` to `h.to_dual w v`. -/
def to_dual_flip (m : M) : (M →ₗ[R] R) := b.to_dual.flip m

lemma to_dual_flip_apply (m₁ m₂ : M) : b.to_dual_flip m₁ m₂ = b.to_dual m₂ m₁ := rfl

lemma to_dual_eq_repr (m : M) (i : ι) : b.to_dual m (b i) = b.repr m i :=
b.to_dual_apply_left m i

lemma to_dual_eq_equiv_fun [fintype ι] (m : M) (i : ι) : b.to_dual m (b i) = b.equiv_fun m i :=
by rw [b.equiv_fun_apply, to_dual_eq_repr]

lemma to_dual_inj (m : M) (a : b.to_dual m = 0) : m = 0 :=
begin
  rw [← mem_bot R, ← b.repr.ker, mem_ker, linear_equiv.coe_coe],
  apply finsupp.ext,
  intro b,
  rw [← to_dual_eq_repr, a],
  refl
end

theorem to_dual_ker : b.to_dual.ker = ⊥ :=
ker_eq_bot'.mpr b.to_dual_inj

theorem to_dual_range [fin : fintype ι] : b.to_dual.range = ⊤ :=
begin
  rw eq_top_iff',
  intro f,
  rw linear_map.mem_range,
  let lin_comb : ι →₀ R := finsupp.on_finset fin.elems (λ i, f.to_fun (b i)) _,
  { use finsupp.total ι M R b lin_comb,
    apply b.ext,
    { intros i,
      rw [b.to_dual_eq_repr _ i, repr_total b],
      { refl } } },
  { intros a _,
    apply fin.complete }
end

end comm_semiring

section

variables [comm_semiring R] [add_comm_monoid M] [module R M] [fintype ι]
variables (b : basis ι R M)

@[simp] lemma sum_dual_apply_smul_coord (f : module.dual R M) : ∑ x, f (b x) • b.coord x = f :=
begin
  ext m,
  simp_rw [linear_map.sum_apply, linear_map.smul_apply, smul_eq_mul, mul_comm (f _), ←smul_eq_mul,
    ←f.map_smul, ←f.map_sum, basis.coord_apply, basis.sum_repr],
end

end

section comm_ring

variables [comm_ring R] [add_comm_group M] [module R M] [decidable_eq ι]
variables (b : basis ι R M)

/-- A vector space is linearly equivalent to its dual space. -/
@[simps]
def to_dual_equiv [fintype ι] : M ≃ₗ[R] (dual R M) :=
linear_equiv.of_bijective b.to_dual
  (ker_eq_bot.mp b.to_dual_ker) (range_eq_top.mp b.to_dual_range)

/-- Maps a basis for `V` to a basis for the dual space. -/
def dual_basis [fintype ι] : basis ι R (dual R M) :=
b.map b.to_dual_equiv

-- We use `j = i` to match `basis.repr_self`
lemma dual_basis_apply_self [fintype ι] (i j : ι) :
  b.dual_basis i (b j) = if j = i then 1 else 0 :=
by { convert b.to_dual_apply i j using 2, rw @eq_comm _ j i }

lemma total_dual_basis [fintype ι] (f : ι →₀ R) (i : ι) :
  finsupp.total ι (dual R M) R b.dual_basis f (b i) = f i :=
begin
  rw [finsupp.total_apply, finsupp.sum_fintype, linear_map.sum_apply],
  { simp_rw [linear_map.smul_apply, smul_eq_mul, dual_basis_apply_self, mul_boole,
      finset.sum_ite_eq, if_pos (finset.mem_univ i)] },
  { intro, rw zero_smul },
end

lemma dual_basis_repr [fintype ι] (l : dual R M) (i : ι) :
  b.dual_basis.repr l i = l (b i) :=
by rw [← total_dual_basis b, basis.total_repr b.dual_basis l]

lemma dual_basis_equiv_fun [fintype ι] (l : dual R M) (i : ι) :
  b.dual_basis.equiv_fun l i = l (b i) :=
by rw [basis.equiv_fun_apply, dual_basis_repr]

lemma dual_basis_apply [fintype ι] (i : ι) (m : M) : b.dual_basis i m = b.repr m i :=
b.to_dual_apply_right i m

@[simp] lemma coe_dual_basis [fintype ι] :
  ⇑b.dual_basis = b.coord :=
by { ext i x, apply dual_basis_apply }

@[simp] lemma to_dual_to_dual [fintype ι] :
  b.dual_basis.to_dual.comp b.to_dual = dual.eval R M :=
begin
  refine b.ext (λ i, b.dual_basis.ext (λ j, _)),
  rw [linear_map.comp_apply, to_dual_apply_left, coe_to_dual_self, ← coe_dual_basis,
      dual.eval_apply, basis.repr_self, finsupp.single_apply, dual_basis_apply_self]
end

theorem eval_ker {ι : Type*} (b : basis ι R M) :
  (dual.eval R M).ker = ⊥ :=
begin
  rw ker_eq_bot',
  intros m hm,
  simp_rw [linear_map.ext_iff, dual.eval_apply, zero_apply] at hm,
  exact (basis.forall_coord_eq_zero_iff _).mp (λ i, hm (b.coord i))
end

lemma eval_range {ι : Type*} [fintype ι] (b : basis ι R M) :
  (eval R M).range = ⊤ :=
begin
  classical,
  rw [← b.to_dual_to_dual, range_comp, b.to_dual_range, map_top, to_dual_range _],
  apply_instance
end

/-- A module with a basis is linearly equivalent to the dual of its dual space. -/
def eval_equiv  {ι : Type*} [fintype ι] (b : basis ι R M) : M ≃ₗ[R] dual R (dual R M) :=
linear_equiv.of_bijective (eval R M)
  (ker_eq_bot.mp b.eval_ker) (range_eq_top.mp b.eval_range)

@[simp] lemma eval_equiv_to_linear_map {ι : Type*} [fintype ι] (b : basis ι R M) :
  (b.eval_equiv).to_linear_map = dual.eval R M := rfl

section

open_locale classical

variables [finite R M] [free R M] [nontrivial R]

instance dual_free : free R (dual R M) := free.of_basis (free.choose_basis R M).dual_basis

instance dual_finite : finite R (dual R M) := finite.of_basis (free.choose_basis R M).dual_basis

end

end comm_ring

/-- `simp` normal form version of `total_dual_basis` -/
@[simp] lemma total_coord [comm_ring R] [add_comm_group M] [module R M] [fintype ι]
  (b : basis ι R M) (f : ι →₀ R) (i : ι) :
  finsupp.total ι (dual R M) R b.coord f (b i) = f i :=
by { haveI := classical.dec_eq ι, rw [← coe_dual_basis, total_dual_basis] }

-- TODO(jmc): generalize to rings, once `module.rank` is generalized
theorem dual_dim_eq [field K] [add_comm_group V] [module K V] [fintype ι] (b : basis ι K V) :
  cardinal.lift (module.rank K V) = module.rank K (dual K V) :=
begin
  classical,
  have := linear_equiv.lift_dim_eq b.to_dual_equiv,
  simp only [cardinal.lift_umax] at this,
  rw [this, ← cardinal.lift_umax],
  apply cardinal.lift_id,
end

end basis

namespace module

variables {K V : Type*}
variables [field K] [add_comm_group V] [module K V]
open module module.dual submodule linear_map cardinal basis finite_dimensional

theorem eval_ker : (eval K V).ker = ⊥ :=
by { classical, exact (basis.of_vector_space K V).eval_ker }

-- TODO(jmc): generalize to rings, once `module.rank` is generalized
theorem dual_dim_eq [finite_dimensional K V] :
  cardinal.lift (module.rank K V) = module.rank K (dual K V) :=
(basis.of_vector_space K V).dual_dim_eq

lemma erange_coe [finite_dimensional K V] : (eval K V).range = ⊤ :=
begin
  letI : is_noetherian K V := is_noetherian.iff_fg.2 infer_instance,
  exact (basis.of_vector_space K V).eval_range
end

variables (K V)

/-- A vector space is linearly equivalent to the dual of its dual space. -/
def eval_equiv [finite_dimensional K V] : V ≃ₗ[K] dual K (dual K V) :=
linear_equiv.of_bijective (eval K V)
  (ker_eq_bot.mp eval_ker) (range_eq_top.mp erange_coe)

variables {K V}

@[simp] lemma eval_equiv_to_linear_map [finite_dimensional K V] :
  (eval_equiv K V).to_linear_map = dual.eval K V := rfl

end module

section dual_pair

open module

variables {R M ι : Type*}
variables [comm_semiring R] [add_comm_monoid M] [module R M] [decidable_eq ι]

/-- `e` and `ε` have characteristic properties of a basis and its dual -/
@[nolint has_inhabited_instance]
structure dual_pair (e : ι → M) (ε : ι → (dual R M)) :=
(eval : ∀ i j : ι, ε i (e j) = if i = j then 1 else 0)
(total : ∀ {m : M}, (∀ i, ε i m = 0) → m = 0)
[finite : ∀ m : M, fintype {i | ε i m ≠ 0}]

end dual_pair

namespace dual_pair

open module module.dual linear_map function

variables {R M ι : Type*}
variables [comm_ring R] [add_comm_group M] [module R M]
variables {e : ι → M} {ε : ι → dual R M}

/-- The coefficients of `v` on the basis `e` -/
def coeffs [decidable_eq ι] (h : dual_pair e ε) (m : M) : ι →₀ R :=
{ to_fun := λ i, ε i m,
  support := by { haveI := h.finite m, exact {i : ι | ε i m ≠ 0}.to_finset },
  mem_support_to_fun := by {intro i, rw set.mem_to_finset, exact iff.rfl } }

@[simp] lemma coeffs_apply [decidable_eq ι] (h : dual_pair e ε) (m : M) (i : ι) :
  h.coeffs m i = ε i m := rfl

/-- linear combinations of elements of `e`.
This is a convenient abbreviation for `finsupp.total _ M R e l` -/
def lc {ι} (e : ι → M) (l : ι →₀ R) : M := l.sum (λ (i : ι) (a : R), a • (e i))

lemma lc_def (e : ι → M) (l : ι →₀ R) : lc e l = finsupp.total _ _ _ e l := rfl

variables [decidable_eq ι] (h : dual_pair e ε)
include h

lemma dual_lc (l : ι →₀ R) (i : ι) : ε i (dual_pair.lc e l) = l i :=
begin
  erw linear_map.map_sum,
  simp only [h.eval, map_smul, smul_eq_mul],
  rw finset.sum_eq_single i,
  { simp },
  { intros q q_in q_ne,
    simp [q_ne.symm] },
  { intro p_not_in,
    simp [finsupp.not_mem_support_iff.1 p_not_in] },
end

@[simp]
lemma coeffs_lc (l : ι →₀ R) : h.coeffs (dual_pair.lc e l) = l :=
by { ext i, rw [h.coeffs_apply, h.dual_lc] }

/-- For any m : M n, \sum_{p ∈ Q n} (ε p m) • e p = m -/
@[simp]
lemma lc_coeffs (m : M) : dual_pair.lc e (h.coeffs m) = m :=
begin
  refine eq_of_sub_eq_zero (h.total _),
  intros i,
  simp [-sub_eq_add_neg, linear_map.map_sub, h.dual_lc, sub_eq_zero]
end

/-- `(h : dual_pair e ε).basis` shows the family of vectors `e` forms a basis. -/
@[simps]
def basis : basis ι R M :=
basis.of_repr
{ to_fun := coeffs h,
  inv_fun := lc e,
  left_inv := lc_coeffs h,
  right_inv := coeffs_lc h,
  map_add' := λ v w, by { ext i, exact (ε i).map_add v w },
  map_smul' := λ c v, by { ext i, exact (ε i).map_smul c v } }

@[simp] lemma coe_basis : ⇑h.basis = e :=
by { ext i, rw basis.apply_eq_iff, ext j,
     rw [h.basis_repr_apply, coeffs_apply, h.eval, finsupp.single_apply],
     convert if_congr eq_comm rfl rfl } -- `convert` to get rid of a `decidable_eq` mismatch

lemma mem_of_mem_span {H : set ι} {x : M} (hmem : x ∈ submodule.span R (e '' H)) :
  ∀ i : ι, ε i x ≠ 0 → i ∈ H :=
begin
  intros i hi,
  rcases (finsupp.mem_span_image_iff_total _).mp hmem with ⟨l, supp_l, rfl⟩,
  apply not_imp_comm.mp ((finsupp.mem_supported' _ _).mp supp_l i),
  rwa [← lc_def, h.dual_lc] at hi
end

lemma coe_dual_basis [fintype ι] : ⇑h.basis.dual_basis = ε :=
funext (λ i, h.basis.ext (λ j, by rw [h.basis.dual_basis_apply_self, h.coe_basis, h.eval,
                                      if_congr eq_comm rfl rfl]))

end dual_pair

namespace submodule

universes u v w

variables {R : Type u} {M : Type v} [comm_semiring R] [add_comm_monoid M] [module R M]
variable {W : submodule R M}

/-- The `dual_restrict` of a submodule `W` of `M` is the linear map from the
  dual of `M` to the dual of `W` such that the domain of each linear map is
  restricted to `W`. -/
def dual_restrict (W : submodule R M) :
  module.dual R M →ₗ[R] module.dual R W :=
linear_map.dom_restrict' W

@[simp] lemma dual_restrict_apply
  (W : submodule R M) (φ : module.dual R M) (x : W) :
  W.dual_restrict φ x = φ (x : M) := rfl

/-- The `dual_annihilator` of a submodule `W` is the set of linear maps `φ` such
  that `φ w = 0` for all `w ∈ W`. -/
def dual_annihilator {R : Type u} {M : Type v} [comm_semiring R] [add_comm_monoid M]
  [module R M] (W : submodule R M) : submodule R $ module.dual R M :=
W.dual_restrict.ker

@[simp] lemma mem_dual_annihilator (φ : module.dual R M) :
  φ ∈ W.dual_annihilator ↔ ∀ w ∈ W, φ w = 0 :=
begin
  refine linear_map.mem_ker.trans _,
  simp_rw [linear_map.ext_iff, dual_restrict_apply],
  exact ⟨λ h w hw, h ⟨w, hw⟩, λ h w, h w.1 w.2end

lemma dual_restrict_ker_eq_dual_annihilator (W : submodule R M) :
  W.dual_restrict.ker = W.dual_annihilator :=
rfl

lemma dual_annihilator_sup_eq_inf_dual_annihilator (U V : submodule R M) :
  (U ⊔ V).dual_annihilator = U.dual_annihilator ⊓ V.dual_annihilator :=
begin
  ext φ,
  rw [mem_inf, mem_dual_annihilator, mem_dual_annihilator, mem_dual_annihilator],
  split; intro h,
  { refine ⟨_, _⟩;
    intros x hx,
    exact h x (mem_sup.2 ⟨x, hx, 0, zero_mem _, add_zero _⟩),
    exact h x (mem_sup.20, zero_mem _, x, hx, zero_add _⟩) },
  { simp_rw mem_sup,
    rintro _ ⟨x, hx, y, hy, rfl⟩,
    rw [linear_map.map_add, h.1 _ hx, h.2 _ hy, add_zero] }
end

/-- The pullback of a submodule in the dual space along the evaluation map. -/
def dual_annihilator_comap (Φ : submodule R (module.dual R M)) : submodule R M :=
Φ.dual_annihilator.comap (module.dual.eval R M)

lemma mem_dual_annihilator_comap_iff {Φ : submodule R (module.dual R M)} (x : M) :
  x ∈ Φ.dual_annihilator_comap ↔ ∀ φ ∈ Φ, (φ x : R) = 0 :=
by simp_rw [dual_annihilator_comap, mem_comap, mem_dual_annihilator, module.dual.eval_apply]

end submodule

namespace subspace

open submodule linear_map

universes u v w

-- We work in vector spaces because `exists_is_compl` only hold for vector spaces
variables {K : Type u} {V : Type v} [field K] [add_comm_group V] [module K V]

/-- Given a subspace `W` of `V` and an element of its dual `φ`, `dual_lift W φ` is
the natural extension of `φ` to an element of the dual of `V`.
That is, `dual_lift W φ` sends `w ∈ W` to `φ x` and `x` in the complement of `W` to `0`. -/
noncomputable def dual_lift (W : subspace K V) :
  module.dual K W →ₗ[K] module.dual K V :=
let h := classical.indefinite_description _ W.exists_is_compl in
  (linear_map.of_is_compl_prod h.2).comp (linear_map.inl _ _ _)

variable {W : subspace K V}

@[simp] lemma dual_lift_of_subtype {φ : module.dual K W} (w : W) :
  W.dual_lift φ (w : V) = φ w :=
by { erw of_is_compl_left_apply _ w, refl }

lemma dual_lift_of_mem {φ : module.dual K W} {w : V} (hw : w ∈ W) :
  W.dual_lift φ w = φ ⟨w, hw⟩ :=
by convert dual_lift_of_subtype ⟨w, hw⟩

@[simp] lemma dual_restrict_comp_dual_lift (W : subspace K V) :
  W.dual_restrict.comp W.dual_lift = 1 :=
by { ext φ x, simp }

lemma dual_restrict_left_inverse (W : subspace K V) :
  function.left_inverse W.dual_restrict W.dual_lift :=
λ x, show W.dual_restrict.comp W.dual_lift x = x,
  by { rw [dual_restrict_comp_dual_lift], refl }

lemma dual_lift_right_inverse (W : subspace K V) :
  function.right_inverse W.dual_lift W.dual_restrict :=
W.dual_restrict_left_inverse

lemma dual_restrict_surjective :
  function.surjective W.dual_restrict :=
W.dual_lift_right_inverse.surjective

lemma dual_lift_injective : function.injective W.dual_lift :=
W.dual_restrict_left_inverse.injective

/-- The quotient by the `dual_annihilator` of a subspace is isomorphic to the
  dual of that subspace. -/
noncomputable def quot_annihilator_equiv (W : subspace K V) :
  (module.dual K V ⧸ W.dual_annihilator) ≃ₗ[K] module.dual K W :=
(quot_equiv_of_eq _ _ W.dual_restrict_ker_eq_dual_annihilator).symm.trans $
  W.dual_restrict.quot_ker_equiv_of_surjective dual_restrict_surjective

/-- The natural isomorphism forom the dual of a subspace `W` to `W.dual_lift.range`. -/
noncomputable def dual_equiv_dual (W : subspace K V) :
  module.dual K W ≃ₗ[K] W.dual_lift.range :=
linear_equiv.of_injective _ dual_lift_injective

lemma dual_equiv_dual_def (W : subspace K V) :
  W.dual_equiv_dual.to_linear_map = W.dual_lift.range_restrict := rfl

@[simp] lemma dual_equiv_dual_apply (φ : module.dual K W) :
  W.dual_equiv_dual φ = ⟨W.dual_lift φ, mem_range.2 ⟨φ, rfl⟩⟩ := rfl

section

open_locale classical

open finite_dimensional

variables {V₁ : Type*} [add_comm_group V₁] [module K V₁]

instance [H : finite_dimensional K V] : finite_dimensional K (module.dual K V) :=
by apply_instance

variables [finite_dimensional K V] [finite_dimensional K V₁]

@[simp] lemma dual_finrank_eq :
  finrank K (module.dual K V) = finrank K V :=
linear_equiv.finrank_eq (basis.of_vector_space K V).to_dual_equiv.symm

/-- The quotient by the dual is isomorphic to its dual annihilator.  -/
noncomputable def quot_dual_equiv_annihilator (W : subspace K V) :
  (module.dual K V ⧸ W.dual_lift.range) ≃ₗ[K] W.dual_annihilator :=
linear_equiv.quot_equiv_of_quot_equiv $
  linear_equiv.trans W.quot_annihilator_equiv W.dual_equiv_dual

/-- The quotient by a subspace is isomorphic to its dual annihilator. -/
noncomputable def quot_equiv_annihilator (W : subspace K V) :
  (V ⧸ W) ≃ₗ[K] W.dual_annihilator :=
begin
  refine _ ≪≫ₗ W.quot_dual_equiv_annihilator,
  refine linear_equiv.quot_equiv_of_equiv _ (basis.of_vector_space K V).to_dual_equiv,
  exact (basis.of_vector_space K W).to_dual_equiv.trans W.dual_equiv_dual
end

open finite_dimensional

@[simp]
lemma finrank_dual_annihilator_comap_eq {Φ : subspace K (module.dual K V)} :
  finrank K Φ.dual_annihilator_comap = finrank K Φ.dual_annihilator :=
begin
  rw [submodule.dual_annihilator_comap, ← module.eval_equiv_to_linear_map],
  exact linear_equiv.finrank_eq (linear_equiv.of_submodule' _ _),
end

lemma finrank_add_finrank_dual_annihilator_comap_eq
  (W : subspace K (module.dual K V)) :
  finrank K W + finrank K W.dual_annihilator_comap = finrank K V :=
begin
  rw [finrank_dual_annihilator_comap_eq, W.quot_equiv_annihilator.finrank_eq.symm, add_comm,
      submodule.finrank_quotient_add_finrank, subspace.dual_finrank_eq],
end

end

end subspace

open module

section dual_map
variables {R : Type*} [comm_semiring R] {M₁ : Type*} {M₂ : Type*}
variables [add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂]

/-- Given a linear map `f : M₁ →ₗ[R] M₂`, `f.dual_map` is the linear map between the dual of
`M₂` and `M₁` such that it maps the functional `φ` to `φ ∘ f`. -/
def linear_map.dual_map (f : M₁ →ₗ[R] M₂) : dual R M₂ →ₗ[R] dual R M₁ :=
linear_map.lcomp R R f

@[simp] lemma linear_map.dual_map_apply (f : M₁ →ₗ[R] M₂) (g : dual R M₂) (x : M₁) :
  f.dual_map g x = g (f x) :=
linear_map.lcomp_apply f g x

@[simp] lemma linear_map.dual_map_id :
  (linear_map.id : M₁ →ₗ[R] M₁).dual_map = linear_map.id :=
by { ext, refl }

lemma linear_map.dual_map_comp_dual_map {M₃ : Type*} [add_comm_group M₃] [module R M₃]
  (f : M₁ →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) :
  f.dual_map.comp g.dual_map = (g.comp f).dual_map :=
rfl

/-- The `linear_equiv` version of `linear_map.dual_map`. -/
def linear_equiv.dual_map (f : M₁ ≃ₗ[R] M₂) : dual R M₂ ≃ₗ[R] dual R M₁ :=
{ inv_fun := f.symm.to_linear_map.dual_map,
  left_inv :=
    begin
      intro φ, ext x,
      simp only [linear_map.dual_map_apply, linear_equiv.coe_to_linear_map,
                 linear_map.to_fun_eq_coe, linear_equiv.apply_symm_apply]
    end,
  right_inv :=
    begin
      intro φ, ext x,
      simp only [linear_map.dual_map_apply, linear_equiv.coe_to_linear_map,
                 linear_map.to_fun_eq_coe, linear_equiv.symm_apply_apply]
    end,
  .. f.to_linear_map.dual_map }

@[simp] lemma linear_equiv.dual_map_apply (f : M₁ ≃ₗ[R] M₂) (g : dual R M₂) (x : M₁) :
  f.dual_map g x = g (f x) :=
linear_map.lcomp_apply f g x

@[simp] lemma linear_equiv.dual_map_refl :
  (linear_equiv.refl R M₁).dual_map = linear_equiv.refl R (dual R M₁) :=
by { ext, refl }

@[simp] lemma linear_equiv.dual_map_symm {f : M₁ ≃ₗ[R] M₂} :
  (linear_equiv.dual_map f).symm = linear_equiv.dual_map f.symm := rfl

lemma linear_equiv.dual_map_trans {M₃ : Type*} [add_comm_group M₃] [module R M₃]
  (f : M₁ ≃ₗ[R] M₂) (g : M₂ ≃ₗ[R] M₃) :
  g.dual_map.trans f.dual_map = (f.trans g).dual_map :=
rfl

end dual_map

namespace linear_map
variables {R : Type*} [comm_semiring R] {M₁ : Type*} {M₂ : Type*}
variables [add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂]

variable (f : M₁ →ₗ[R] M₂)

lemma ker_dual_map_eq_dual_annihilator_range :
  f.dual_map.ker = f.range.dual_annihilator :=
begin
  ext φ, split; intro hφ,
  { rw mem_ker at hφ,
    rw submodule.mem_dual_annihilator,
    rintro y ⟨x, rfl⟩,
    rw [← dual_map_apply, hφ, zero_apply] },
  { ext x,
    rw dual_map_apply,
    rw submodule.mem_dual_annihilator at hφ,
    exact hφ (f x) ⟨x, rfl⟩ }
end

lemma range_dual_map_le_dual_annihilator_ker :
  f.dual_map.range ≤ f.ker.dual_annihilator :=
begin
  rintro _ ⟨ψ, rfl⟩,
  simp_rw [submodule.mem_dual_annihilator, mem_ker],
  rintro x hx,
  rw [dual_map_apply, hx, map_zero]
end

section finite_dimensional

variables {K : Type*} [field K] {V₁ : Type*} {V₂ : Type*}
variables [add_comm_group V₁] [module K V₁] [add_comm_group V₂] [module K V₂]

open finite_dimensional

variable [finite_dimensional K V₂]

@[simp] lemma finrank_range_dual_map_eq_finrank_range (f : V₁ →ₗ[K] V₂) :
  finrank K f.dual_map.range = finrank K f.range :=
begin
  have := submodule.finrank_quotient_add_finrank f.range,
  rw [(subspace.quot_equiv_annihilator f.range).finrank_eq,
      ← ker_dual_map_eq_dual_annihilator_range] at this,
  conv_rhs at this { rw ← subspace.dual_finrank_eq },
  refine add_left_injective (finrank K f.dual_map.ker) _,
  change _ + _ = _ + _,
  rw [finrank_range_add_finrank_ker f.dual_map, add_comm, this],
end

lemma range_dual_map_eq_dual_annihilator_ker [finite_dimensional K V₁] (f : V₁ →ₗ[K] V₂) :
  f.dual_map.range = f.ker.dual_annihilator :=
begin
  refine eq_of_le_of_finrank_eq f.range_dual_map_le_dual_annihilator_ker _,
  have := submodule.finrank_quotient_add_finrank f.ker,
  rw (subspace.quot_equiv_annihilator f.ker).finrank_eq at this,
  refine add_left_injective (finrank K f.ker) _,
  simp_rw [this, finrank_range_dual_map_eq_finrank_range],
  exact finrank_range_add_finrank_ker f,
end

end finite_dimensional

section field

variables {K V : Type*}
variables [field K] [add_comm_group V] [module K V]

lemma dual_pairing_nondegenerate : (dual_pairing K V).nondegenerate :=
begin
  refine ⟨separating_left_iff_ker_eq_bot.mpr ker_id, _⟩,
  intros x,
  contrapose,
  rintros hx : x ≠ 0,
  rw [not_forall],
  let f : V →ₗ[K] K := classical.some (linear_pmap.mk_span_singleton x 1 hx).to_fun.exists_extend,
  use [f],
  refine ne_zero_of_eq_one _,
  have h : f.comp (K ∙ x).subtype = (linear_pmap.mk_span_singleton x 1 hx).to_fun :=
    classical.some_spec (linear_pmap.mk_span_singleton x (1 : K) hx).to_fun.exists_extend,
  exact (fun_like.congr_fun h _).trans (linear_pmap.mk_span_singleton_apply _ hx _),
end

end field

end linear_map

namespace tensor_product

variables (R : Type*) (M : Type*) (N : Type*)

variables {ι κ : Type*}
variables [decidable_eq ι] [decidable_eq κ]
variables [fintype ι] [fintype κ]

open_locale big_operators
open_locale tensor_product

local attribute [ext] tensor_product.ext

open tensor_product
open linear_map

section
variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid N]
variables [module R M] [module R N]

/--
The canonical linear map from `dual M ⊗ dual N` to `dual (M ⊗ N)`,
sending `f ⊗ g` to the composition of `tensor_product.map f g` with
the natural isomorphism `R ⊗ R ≃ R`.
-/
def dual_distrib : (dual R M) ⊗[R] (dual R N) →ₗ[R] dual R (M ⊗[R] N) :=
(comp_right ↑(tensor_product.lid R R)) ∘ₗ hom_tensor_hom_map R M N R R

variables {R M N}

@[simp]
lemma dual_distrib_apply (f : dual R M) (g : dual R N) (m : M) (n : N) :
  dual_distrib R M N (f ⊗ₜ g) (m ⊗ₜ n) = f m * g n :=
by simp only [dual_distrib, coe_comp, function.comp_app, hom_tensor_hom_map_apply,
  comp_right_apply, linear_equiv.coe_coe, map_tmul, lid_tmul, algebra.id.smul_eq_mul]

end

variables {R M N}
variables [comm_ring R] [add_comm_group M] [add_comm_group N]
variables [module R M] [module R N]

/--
An inverse to `dual_tensor_dual_map` given bases.
-/
noncomputable
def dual_distrib_inv_of_basis (b : basis ι R M) (c : basis κ R N) :
  dual R (M ⊗[R] N) →ₗ[R] (dual R M) ⊗[R] (dual R N) :=
∑ i j, (ring_lmap_equiv_self R ℕ _).symm (b.dual_basis i ⊗ₜ c.dual_basis j)
    ∘ₗ applyₗ (c j) ∘ₗ applyₗ (b i) ∘ₗ (lcurry R M N R)

@[simp]
lemma dual_distrib_inv_of_basis_apply (b : basis ι R M) (c : basis κ R N)
  (f : dual R (M ⊗[R] N)) : dual_distrib_inv_of_basis b c f =
  ∑ i j, (f (b i ⊗ₜ c j)) • (b.dual_basis i ⊗ₜ c.dual_basis j) :=
by simp [dual_distrib_inv_of_basis]

/--
A linear equivalence between `dual M ⊗ dual N` and `dual (M ⊗ N)` given bases for `M` and `N`.
It sends `f ⊗ g` to the composition of `tensor_product.map f g` with the natural
isomorphism `R ⊗ R ≃ R`.
-/
@[simps]
noncomputable def dual_distrib_equiv_of_basis (b : basis ι R M) (c : basis κ R N) :
  (dual R M) ⊗[R] (dual R N) ≃ₗ[R] dual R (M ⊗[R] N) :=
begin
  refine linear_equiv.of_linear
    (dual_distrib R M N) (dual_distrib_inv_of_basis b c) _ _,
  { ext f m n,
    have h : ∀ (r s : R), r • s = s • r := is_commutative.comm,
    simp only [compr₂_apply, mk_apply, comp_apply, id_apply, dual_distrib_inv_of_basis_apply,
      linear_map.map_sum, map_smul, sum_apply, smul_apply, dual_distrib_apply, h (f _) _,
      ← f.map_smul, ←f.map_sum, ←smul_tmul_smul, ←tmul_sum, ←sum_tmul, basis.coe_dual_basis,
      basis.coord_apply, basis.sum_repr] },
  { ext f g,
    simp only [compr₂_apply, mk_apply, comp_apply, id_apply, dual_distrib_inv_of_basis_apply,
      dual_distrib_apply, ←smul_tmul_smul, ←tmul_sum, ←sum_tmul, basis.coe_dual_basis,
      basis.sum_dual_apply_smul_coord] }
end

variables (R M N)
variables [module.finite R M] [module.finite R N] [module.free R M] [module.free R N]
variables [nontrivial R]

open_locale classical

/--
A linear equivalence between `dual M ⊗ dual N` and `dual (M ⊗ N)` when `M` and `N` are finite free
modules. It sends `f ⊗ g` to the composition of `tensor_product.map f g` with the natural
isomorphism `R ⊗ R ≃ R`.
-/
@[simp]
noncomputable
def dual_distrib_equiv : (dual R M) ⊗[R] (dual R N) ≃ₗ[R] dual R (M ⊗[R] N) :=
dual_distrib_equiv_of_basis (module.free.choose_basis R M) (module.free.choose_basis R N)

end tensor_product