Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 30,562 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Fabian Glöckle
-/
import linear_algebra.finite_dimensional
import linear_algebra.projection
import linear_algebra.sesquilinear_form
import ring_theory.finiteness
import linear_algebra.free_module.finite.rank
/-!
# Dual vector spaces
The dual space of an R-module M is the R-module of linear maps `M → R`.
## Main definitions
* `dual R M` defines the dual space of M over R.
* Given a basis for an `R`-module `M`, `basis.to_dual` produces a map from `M` to `dual R M`.
* Given families of vectors `e` and `ε`, `dual_pair e ε` states that these families have the
characteristic properties of a basis and a dual.
* `dual_annihilator W` is the submodule of `dual R M` where every element annihilates `W`.
## Main results
* `to_dual_equiv` : the linear equivalence between the dual module and primal module,
given a finite basis.
* `dual_pair.basis` and `dual_pair.eq_dual`: if `e` and `ε` form a dual pair, `e` is a basis and
`ε` is its dual basis.
* `quot_equiv_annihilator`: the quotient by a subspace is isomorphic to its dual annihilator.
## Notation
We sometimes use `V'` as local notation for `dual K V`.
## TODO
Erdös-Kaplansky theorem about the dimension of a dual vector space in case of infinite dimension.
-/
noncomputable theory
namespace module
variables (R : Type*) (M : Type*)
variables [comm_semiring R] [add_comm_monoid M] [module R M]
/-- The dual space of an R-module M is the R-module of linear maps `M → R`. -/
@[derive [add_comm_monoid, module R]] def dual := M →ₗ[R] R
instance {S : Type*} [comm_ring S] {N : Type*} [add_comm_group N] [module S N] :
add_comm_group (dual S N) := linear_map.add_comm_group
instance : linear_map_class (dual R M) R M R :=
linear_map.semilinear_map_class
/-- The canonical pairing of a vector space and its algebraic dual. -/
def dual_pairing (R M) [comm_semiring R] [add_comm_monoid M] [module R M] :
module.dual R M →ₗ[R] M →ₗ[R] R := linear_map.id
@[simp] lemma dual_pairing_apply (v x) : dual_pairing R M v x = v x := rfl
namespace dual
instance : inhabited (dual R M) := linear_map.inhabited
instance : has_coe_to_fun (dual R M) (λ _, M → R) := ⟨linear_map.to_fun⟩
/-- Maps a module M to the dual of the dual of M. See `module.erange_coe` and
`module.eval_equiv`. -/
def eval : M →ₗ[R] (dual R (dual R M)) := linear_map.flip linear_map.id
@[simp] lemma eval_apply (v : M) (a : dual R M) : eval R M v a = a v :=
begin
dunfold eval,
rw [linear_map.flip_apply, linear_map.id_apply]
end
variables {R M} {M' : Type*} [add_comm_monoid M'] [module R M']
/-- The transposition of linear maps, as a linear map from `M →ₗ[R] M'` to
`dual R M' →ₗ[R] dual R M`. -/
def transpose : (M →ₗ[R] M') →ₗ[R] (dual R M' →ₗ[R] dual R M) :=
(linear_map.llcomp R M M' R).flip
lemma transpose_apply (u : M →ₗ[R] M') (l : dual R M') : transpose u l = l.comp u := rfl
variables {M'' : Type*} [add_comm_monoid M''] [module R M'']
lemma transpose_comp (u : M' →ₗ[R] M'') (v : M →ₗ[R] M') :
transpose (u.comp v) = (transpose v).comp (transpose u) := rfl
end dual
end module
namespace basis
universes u v w
open module module.dual submodule linear_map cardinal function
open_locale big_operators
variables {R M K V ι : Type*}
section comm_semiring
variables [comm_semiring R] [add_comm_monoid M] [module R M] [decidable_eq ι]
variables (b : basis ι R M)
/-- The linear map from a vector space equipped with basis to its dual vector space,
taking basis elements to corresponding dual basis elements. -/
def to_dual : M →ₗ[R] module.dual R M :=
b.constr ℕ $ λ v, b.constr ℕ $ λ w, if w = v then (1 : R) else 0
lemma to_dual_apply (i j : ι) :
b.to_dual (b i) (b j) = if i = j then 1 else 0 :=
by { erw [constr_basis b, constr_basis b], ac_refl }
@[simp] lemma to_dual_total_left (f : ι →₀ R) (i : ι) :
b.to_dual (finsupp.total ι M R b f) (b i) = f i :=
begin
rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum, linear_map.sum_apply],
simp_rw [linear_map.map_smul, linear_map.smul_apply, to_dual_apply, smul_eq_mul,
mul_boole, finset.sum_ite_eq'],
split_ifs with h,
{ refl },
{ rw finsupp.not_mem_support_iff.mp h }
end
@[simp] lemma to_dual_total_right (f : ι →₀ R) (i : ι) :
b.to_dual (b i) (finsupp.total ι M R b f) = f i :=
begin
rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum],
simp_rw [linear_map.map_smul, to_dual_apply, smul_eq_mul, mul_boole, finset.sum_ite_eq],
split_ifs with h,
{ refl },
{ rw finsupp.not_mem_support_iff.mp h }
end
lemma to_dual_apply_left (m : M) (i : ι) : b.to_dual m (b i) = b.repr m i :=
by rw [← b.to_dual_total_left, b.total_repr]
lemma to_dual_apply_right (i : ι) (m : M) : b.to_dual (b i) m = b.repr m i :=
by rw [← b.to_dual_total_right, b.total_repr]
lemma coe_to_dual_self (i : ι) : b.to_dual (b i) = b.coord i :=
by { ext, apply to_dual_apply_right }
/-- `h.to_dual_flip v` is the linear map sending `w` to `h.to_dual w v`. -/
def to_dual_flip (m : M) : (M →ₗ[R] R) := b.to_dual.flip m
lemma to_dual_flip_apply (m₁ m₂ : M) : b.to_dual_flip m₁ m₂ = b.to_dual m₂ m₁ := rfl
lemma to_dual_eq_repr (m : M) (i : ι) : b.to_dual m (b i) = b.repr m i :=
b.to_dual_apply_left m i
lemma to_dual_eq_equiv_fun [fintype ι] (m : M) (i : ι) : b.to_dual m (b i) = b.equiv_fun m i :=
by rw [b.equiv_fun_apply, to_dual_eq_repr]
lemma to_dual_inj (m : M) (a : b.to_dual m = 0) : m = 0 :=
begin
rw [← mem_bot R, ← b.repr.ker, mem_ker, linear_equiv.coe_coe],
apply finsupp.ext,
intro b,
rw [← to_dual_eq_repr, a],
refl
end
theorem to_dual_ker : b.to_dual.ker = ⊥ :=
ker_eq_bot'.mpr b.to_dual_inj
theorem to_dual_range [fin : fintype ι] : b.to_dual.range = ⊤ :=
begin
rw eq_top_iff',
intro f,
rw linear_map.mem_range,
let lin_comb : ι →₀ R := finsupp.on_finset fin.elems (λ i, f.to_fun (b i)) _,
{ use finsupp.total ι M R b lin_comb,
apply b.ext,
{ intros i,
rw [b.to_dual_eq_repr _ i, repr_total b],
{ refl } } },
{ intros a _,
apply fin.complete }
end
end comm_semiring
section
variables [comm_semiring R] [add_comm_monoid M] [module R M] [fintype ι]
variables (b : basis ι R M)
@[simp] lemma sum_dual_apply_smul_coord (f : module.dual R M) : ∑ x, f (b x) • b.coord x = f :=
begin
ext m,
simp_rw [linear_map.sum_apply, linear_map.smul_apply, smul_eq_mul, mul_comm (f _), ←smul_eq_mul,
←f.map_smul, ←f.map_sum, basis.coord_apply, basis.sum_repr],
end
end
section comm_ring
variables [comm_ring R] [add_comm_group M] [module R M] [decidable_eq ι]
variables (b : basis ι R M)
/-- A vector space is linearly equivalent to its dual space. -/
@[simps]
def to_dual_equiv [fintype ι] : M ≃ₗ[R] (dual R M) :=
linear_equiv.of_bijective b.to_dual
(ker_eq_bot.mp b.to_dual_ker) (range_eq_top.mp b.to_dual_range)
/-- Maps a basis for `V` to a basis for the dual space. -/
def dual_basis [fintype ι] : basis ι R (dual R M) :=
b.map b.to_dual_equiv
-- We use `j = i` to match `basis.repr_self`
lemma dual_basis_apply_self [fintype ι] (i j : ι) :
b.dual_basis i (b j) = if j = i then 1 else 0 :=
by { convert b.to_dual_apply i j using 2, rw @eq_comm _ j i }
lemma total_dual_basis [fintype ι] (f : ι →₀ R) (i : ι) :
finsupp.total ι (dual R M) R b.dual_basis f (b i) = f i :=
begin
rw [finsupp.total_apply, finsupp.sum_fintype, linear_map.sum_apply],
{ simp_rw [linear_map.smul_apply, smul_eq_mul, dual_basis_apply_self, mul_boole,
finset.sum_ite_eq, if_pos (finset.mem_univ i)] },
{ intro, rw zero_smul },
end
lemma dual_basis_repr [fintype ι] (l : dual R M) (i : ι) :
b.dual_basis.repr l i = l (b i) :=
by rw [← total_dual_basis b, basis.total_repr b.dual_basis l]
lemma dual_basis_equiv_fun [fintype ι] (l : dual R M) (i : ι) :
b.dual_basis.equiv_fun l i = l (b i) :=
by rw [basis.equiv_fun_apply, dual_basis_repr]
lemma dual_basis_apply [fintype ι] (i : ι) (m : M) : b.dual_basis i m = b.repr m i :=
b.to_dual_apply_right i m
@[simp] lemma coe_dual_basis [fintype ι] :
⇑b.dual_basis = b.coord :=
by { ext i x, apply dual_basis_apply }
@[simp] lemma to_dual_to_dual [fintype ι] :
b.dual_basis.to_dual.comp b.to_dual = dual.eval R M :=
begin
refine b.ext (λ i, b.dual_basis.ext (λ j, _)),
rw [linear_map.comp_apply, to_dual_apply_left, coe_to_dual_self, ← coe_dual_basis,
dual.eval_apply, basis.repr_self, finsupp.single_apply, dual_basis_apply_self]
end
theorem eval_ker {ι : Type*} (b : basis ι R M) :
(dual.eval R M).ker = ⊥ :=
begin
rw ker_eq_bot',
intros m hm,
simp_rw [linear_map.ext_iff, dual.eval_apply, zero_apply] at hm,
exact (basis.forall_coord_eq_zero_iff _).mp (λ i, hm (b.coord i))
end
lemma eval_range {ι : Type*} [fintype ι] (b : basis ι R M) :
(eval R M).range = ⊤ :=
begin
classical,
rw [← b.to_dual_to_dual, range_comp, b.to_dual_range, map_top, to_dual_range _],
apply_instance
end
/-- A module with a basis is linearly equivalent to the dual of its dual space. -/
def eval_equiv {ι : Type*} [fintype ι] (b : basis ι R M) : M ≃ₗ[R] dual R (dual R M) :=
linear_equiv.of_bijective (eval R M)
(ker_eq_bot.mp b.eval_ker) (range_eq_top.mp b.eval_range)
@[simp] lemma eval_equiv_to_linear_map {ι : Type*} [fintype ι] (b : basis ι R M) :
(b.eval_equiv).to_linear_map = dual.eval R M := rfl
section
open_locale classical
variables [finite R M] [free R M] [nontrivial R]
instance dual_free : free R (dual R M) := free.of_basis (free.choose_basis R M).dual_basis
instance dual_finite : finite R (dual R M) := finite.of_basis (free.choose_basis R M).dual_basis
end
end comm_ring
/-- `simp` normal form version of `total_dual_basis` -/
@[simp] lemma total_coord [comm_ring R] [add_comm_group M] [module R M] [fintype ι]
(b : basis ι R M) (f : ι →₀ R) (i : ι) :
finsupp.total ι (dual R M) R b.coord f (b i) = f i :=
by { haveI := classical.dec_eq ι, rw [← coe_dual_basis, total_dual_basis] }
-- TODO(jmc): generalize to rings, once `module.rank` is generalized
theorem dual_dim_eq [field K] [add_comm_group V] [module K V] [fintype ι] (b : basis ι K V) :
cardinal.lift (module.rank K V) = module.rank K (dual K V) :=
begin
classical,
have := linear_equiv.lift_dim_eq b.to_dual_equiv,
simp only [cardinal.lift_umax] at this,
rw [this, ← cardinal.lift_umax],
apply cardinal.lift_id,
end
end basis
namespace module
variables {K V : Type*}
variables [field K] [add_comm_group V] [module K V]
open module module.dual submodule linear_map cardinal basis finite_dimensional
theorem eval_ker : (eval K V).ker = ⊥ :=
by { classical, exact (basis.of_vector_space K V).eval_ker }
-- TODO(jmc): generalize to rings, once `module.rank` is generalized
theorem dual_dim_eq [finite_dimensional K V] :
cardinal.lift (module.rank K V) = module.rank K (dual K V) :=
(basis.of_vector_space K V).dual_dim_eq
lemma erange_coe [finite_dimensional K V] : (eval K V).range = ⊤ :=
begin
letI : is_noetherian K V := is_noetherian.iff_fg.2 infer_instance,
exact (basis.of_vector_space K V).eval_range
end
variables (K V)
/-- A vector space is linearly equivalent to the dual of its dual space. -/
def eval_equiv [finite_dimensional K V] : V ≃ₗ[K] dual K (dual K V) :=
linear_equiv.of_bijective (eval K V)
(ker_eq_bot.mp eval_ker) (range_eq_top.mp erange_coe)
variables {K V}
@[simp] lemma eval_equiv_to_linear_map [finite_dimensional K V] :
(eval_equiv K V).to_linear_map = dual.eval K V := rfl
end module
section dual_pair
open module
variables {R M ι : Type*}
variables [comm_semiring R] [add_comm_monoid M] [module R M] [decidable_eq ι]
/-- `e` and `ε` have characteristic properties of a basis and its dual -/
@[nolint has_inhabited_instance]
structure dual_pair (e : ι → M) (ε : ι → (dual R M)) :=
(eval : ∀ i j : ι, ε i (e j) = if i = j then 1 else 0)
(total : ∀ {m : M}, (∀ i, ε i m = 0) → m = 0)
[finite : ∀ m : M, fintype {i | ε i m ≠ 0}]
end dual_pair
namespace dual_pair
open module module.dual linear_map function
variables {R M ι : Type*}
variables [comm_ring R] [add_comm_group M] [module R M]
variables {e : ι → M} {ε : ι → dual R M}
/-- The coefficients of `v` on the basis `e` -/
def coeffs [decidable_eq ι] (h : dual_pair e ε) (m : M) : ι →₀ R :=
{ to_fun := λ i, ε i m,
support := by { haveI := h.finite m, exact {i : ι | ε i m ≠ 0}.to_finset },
mem_support_to_fun := by {intro i, rw set.mem_to_finset, exact iff.rfl } }
@[simp] lemma coeffs_apply [decidable_eq ι] (h : dual_pair e ε) (m : M) (i : ι) :
h.coeffs m i = ε i m := rfl
/-- linear combinations of elements of `e`.
This is a convenient abbreviation for `finsupp.total _ M R e l` -/
def lc {ι} (e : ι → M) (l : ι →₀ R) : M := l.sum (λ (i : ι) (a : R), a • (e i))
lemma lc_def (e : ι → M) (l : ι →₀ R) : lc e l = finsupp.total _ _ _ e l := rfl
variables [decidable_eq ι] (h : dual_pair e ε)
include h
lemma dual_lc (l : ι →₀ R) (i : ι) : ε i (dual_pair.lc e l) = l i :=
begin
erw linear_map.map_sum,
simp only [h.eval, map_smul, smul_eq_mul],
rw finset.sum_eq_single i,
{ simp },
{ intros q q_in q_ne,
simp [q_ne.symm] },
{ intro p_not_in,
simp [finsupp.not_mem_support_iff.1 p_not_in] },
end
@[simp]
lemma coeffs_lc (l : ι →₀ R) : h.coeffs (dual_pair.lc e l) = l :=
by { ext i, rw [h.coeffs_apply, h.dual_lc] }
/-- For any m : M n, \sum_{p ∈ Q n} (ε p m) • e p = m -/
@[simp]
lemma lc_coeffs (m : M) : dual_pair.lc e (h.coeffs m) = m :=
begin
refine eq_of_sub_eq_zero (h.total _),
intros i,
simp [-sub_eq_add_neg, linear_map.map_sub, h.dual_lc, sub_eq_zero]
end
/-- `(h : dual_pair e ε).basis` shows the family of vectors `e` forms a basis. -/
@[simps]
def basis : basis ι R M :=
basis.of_repr
{ to_fun := coeffs h,
inv_fun := lc e,
left_inv := lc_coeffs h,
right_inv := coeffs_lc h,
map_add' := λ v w, by { ext i, exact (ε i).map_add v w },
map_smul' := λ c v, by { ext i, exact (ε i).map_smul c v } }
@[simp] lemma coe_basis : ⇑h.basis = e :=
by { ext i, rw basis.apply_eq_iff, ext j,
rw [h.basis_repr_apply, coeffs_apply, h.eval, finsupp.single_apply],
convert if_congr eq_comm rfl rfl } -- `convert` to get rid of a `decidable_eq` mismatch
lemma mem_of_mem_span {H : set ι} {x : M} (hmem : x ∈ submodule.span R (e '' H)) :
∀ i : ι, ε i x ≠ 0 → i ∈ H :=
begin
intros i hi,
rcases (finsupp.mem_span_image_iff_total _).mp hmem with ⟨l, supp_l, rfl⟩,
apply not_imp_comm.mp ((finsupp.mem_supported' _ _).mp supp_l i),
rwa [← lc_def, h.dual_lc] at hi
end
lemma coe_dual_basis [fintype ι] : ⇑h.basis.dual_basis = ε :=
funext (λ i, h.basis.ext (λ j, by rw [h.basis.dual_basis_apply_self, h.coe_basis, h.eval,
if_congr eq_comm rfl rfl]))
end dual_pair
namespace submodule
universes u v w
variables {R : Type u} {M : Type v} [comm_semiring R] [add_comm_monoid M] [module R M]
variable {W : submodule R M}
/-- The `dual_restrict` of a submodule `W` of `M` is the linear map from the
dual of `M` to the dual of `W` such that the domain of each linear map is
restricted to `W`. -/
def dual_restrict (W : submodule R M) :
module.dual R M →ₗ[R] module.dual R W :=
linear_map.dom_restrict' W
@[simp] lemma dual_restrict_apply
(W : submodule R M) (φ : module.dual R M) (x : W) :
W.dual_restrict φ x = φ (x : M) := rfl
/-- The `dual_annihilator` of a submodule `W` is the set of linear maps `φ` such
that `φ w = 0` for all `w ∈ W`. -/
def dual_annihilator {R : Type u} {M : Type v} [comm_semiring R] [add_comm_monoid M]
[module R M] (W : submodule R M) : submodule R $ module.dual R M :=
W.dual_restrict.ker
@[simp] lemma mem_dual_annihilator (φ : module.dual R M) :
φ ∈ W.dual_annihilator ↔ ∀ w ∈ W, φ w = 0 :=
begin
refine linear_map.mem_ker.trans _,
simp_rw [linear_map.ext_iff, dual_restrict_apply],
exact ⟨λ h w hw, h ⟨w, hw⟩, λ h w, h w.1 w.2⟩
end
lemma dual_restrict_ker_eq_dual_annihilator (W : submodule R M) :
W.dual_restrict.ker = W.dual_annihilator :=
rfl
lemma dual_annihilator_sup_eq_inf_dual_annihilator (U V : submodule R M) :
(U ⊔ V).dual_annihilator = U.dual_annihilator ⊓ V.dual_annihilator :=
begin
ext φ,
rw [mem_inf, mem_dual_annihilator, mem_dual_annihilator, mem_dual_annihilator],
split; intro h,
{ refine ⟨_, _⟩;
intros x hx,
exact h x (mem_sup.2 ⟨x, hx, 0, zero_mem _, add_zero _⟩),
exact h x (mem_sup.2 ⟨0, zero_mem _, x, hx, zero_add _⟩) },
{ simp_rw mem_sup,
rintro _ ⟨x, hx, y, hy, rfl⟩,
rw [linear_map.map_add, h.1 _ hx, h.2 _ hy, add_zero] }
end
/-- The pullback of a submodule in the dual space along the evaluation map. -/
def dual_annihilator_comap (Φ : submodule R (module.dual R M)) : submodule R M :=
Φ.dual_annihilator.comap (module.dual.eval R M)
lemma mem_dual_annihilator_comap_iff {Φ : submodule R (module.dual R M)} (x : M) :
x ∈ Φ.dual_annihilator_comap ↔ ∀ φ ∈ Φ, (φ x : R) = 0 :=
by simp_rw [dual_annihilator_comap, mem_comap, mem_dual_annihilator, module.dual.eval_apply]
end submodule
namespace subspace
open submodule linear_map
universes u v w
-- We work in vector spaces because `exists_is_compl` only hold for vector spaces
variables {K : Type u} {V : Type v} [field K] [add_comm_group V] [module K V]
/-- Given a subspace `W` of `V` and an element of its dual `φ`, `dual_lift W φ` is
the natural extension of `φ` to an element of the dual of `V`.
That is, `dual_lift W φ` sends `w ∈ W` to `φ x` and `x` in the complement of `W` to `0`. -/
noncomputable def dual_lift (W : subspace K V) :
module.dual K W →ₗ[K] module.dual K V :=
let h := classical.indefinite_description _ W.exists_is_compl in
(linear_map.of_is_compl_prod h.2).comp (linear_map.inl _ _ _)
variable {W : subspace K V}
@[simp] lemma dual_lift_of_subtype {φ : module.dual K W} (w : W) :
W.dual_lift φ (w : V) = φ w :=
by { erw of_is_compl_left_apply _ w, refl }
lemma dual_lift_of_mem {φ : module.dual K W} {w : V} (hw : w ∈ W) :
W.dual_lift φ w = φ ⟨w, hw⟩ :=
by convert dual_lift_of_subtype ⟨w, hw⟩
@[simp] lemma dual_restrict_comp_dual_lift (W : subspace K V) :
W.dual_restrict.comp W.dual_lift = 1 :=
by { ext φ x, simp }
lemma dual_restrict_left_inverse (W : subspace K V) :
function.left_inverse W.dual_restrict W.dual_lift :=
λ x, show W.dual_restrict.comp W.dual_lift x = x,
by { rw [dual_restrict_comp_dual_lift], refl }
lemma dual_lift_right_inverse (W : subspace K V) :
function.right_inverse W.dual_lift W.dual_restrict :=
W.dual_restrict_left_inverse
lemma dual_restrict_surjective :
function.surjective W.dual_restrict :=
W.dual_lift_right_inverse.surjective
lemma dual_lift_injective : function.injective W.dual_lift :=
W.dual_restrict_left_inverse.injective
/-- The quotient by the `dual_annihilator` of a subspace is isomorphic to the
dual of that subspace. -/
noncomputable def quot_annihilator_equiv (W : subspace K V) :
(module.dual K V ⧸ W.dual_annihilator) ≃ₗ[K] module.dual K W :=
(quot_equiv_of_eq _ _ W.dual_restrict_ker_eq_dual_annihilator).symm.trans $
W.dual_restrict.quot_ker_equiv_of_surjective dual_restrict_surjective
/-- The natural isomorphism forom the dual of a subspace `W` to `W.dual_lift.range`. -/
noncomputable def dual_equiv_dual (W : subspace K V) :
module.dual K W ≃ₗ[K] W.dual_lift.range :=
linear_equiv.of_injective _ dual_lift_injective
lemma dual_equiv_dual_def (W : subspace K V) :
W.dual_equiv_dual.to_linear_map = W.dual_lift.range_restrict := rfl
@[simp] lemma dual_equiv_dual_apply (φ : module.dual K W) :
W.dual_equiv_dual φ = ⟨W.dual_lift φ, mem_range.2 ⟨φ, rfl⟩⟩ := rfl
section
open_locale classical
open finite_dimensional
variables {V₁ : Type*} [add_comm_group V₁] [module K V₁]
instance [H : finite_dimensional K V] : finite_dimensional K (module.dual K V) :=
by apply_instance
variables [finite_dimensional K V] [finite_dimensional K V₁]
@[simp] lemma dual_finrank_eq :
finrank K (module.dual K V) = finrank K V :=
linear_equiv.finrank_eq (basis.of_vector_space K V).to_dual_equiv.symm
/-- The quotient by the dual is isomorphic to its dual annihilator. -/
noncomputable def quot_dual_equiv_annihilator (W : subspace K V) :
(module.dual K V ⧸ W.dual_lift.range) ≃ₗ[K] W.dual_annihilator :=
linear_equiv.quot_equiv_of_quot_equiv $
linear_equiv.trans W.quot_annihilator_equiv W.dual_equiv_dual
/-- The quotient by a subspace is isomorphic to its dual annihilator. -/
noncomputable def quot_equiv_annihilator (W : subspace K V) :
(V ⧸ W) ≃ₗ[K] W.dual_annihilator :=
begin
refine _ ≪≫ₗ W.quot_dual_equiv_annihilator,
refine linear_equiv.quot_equiv_of_equiv _ (basis.of_vector_space K V).to_dual_equiv,
exact (basis.of_vector_space K W).to_dual_equiv.trans W.dual_equiv_dual
end
open finite_dimensional
@[simp]
lemma finrank_dual_annihilator_comap_eq {Φ : subspace K (module.dual K V)} :
finrank K Φ.dual_annihilator_comap = finrank K Φ.dual_annihilator :=
begin
rw [submodule.dual_annihilator_comap, ← module.eval_equiv_to_linear_map],
exact linear_equiv.finrank_eq (linear_equiv.of_submodule' _ _),
end
lemma finrank_add_finrank_dual_annihilator_comap_eq
(W : subspace K (module.dual K V)) :
finrank K W + finrank K W.dual_annihilator_comap = finrank K V :=
begin
rw [finrank_dual_annihilator_comap_eq, W.quot_equiv_annihilator.finrank_eq.symm, add_comm,
submodule.finrank_quotient_add_finrank, subspace.dual_finrank_eq],
end
end
end subspace
open module
section dual_map
variables {R : Type*} [comm_semiring R] {M₁ : Type*} {M₂ : Type*}
variables [add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂]
/-- Given a linear map `f : M₁ →ₗ[R] M₂`, `f.dual_map` is the linear map between the dual of
`M₂` and `M₁` such that it maps the functional `φ` to `φ ∘ f`. -/
def linear_map.dual_map (f : M₁ →ₗ[R] M₂) : dual R M₂ →ₗ[R] dual R M₁ :=
linear_map.lcomp R R f
@[simp] lemma linear_map.dual_map_apply (f : M₁ →ₗ[R] M₂) (g : dual R M₂) (x : M₁) :
f.dual_map g x = g (f x) :=
linear_map.lcomp_apply f g x
@[simp] lemma linear_map.dual_map_id :
(linear_map.id : M₁ →ₗ[R] M₁).dual_map = linear_map.id :=
by { ext, refl }
lemma linear_map.dual_map_comp_dual_map {M₃ : Type*} [add_comm_group M₃] [module R M₃]
(f : M₁ →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) :
f.dual_map.comp g.dual_map = (g.comp f).dual_map :=
rfl
/-- The `linear_equiv` version of `linear_map.dual_map`. -/
def linear_equiv.dual_map (f : M₁ ≃ₗ[R] M₂) : dual R M₂ ≃ₗ[R] dual R M₁ :=
{ inv_fun := f.symm.to_linear_map.dual_map,
left_inv :=
begin
intro φ, ext x,
simp only [linear_map.dual_map_apply, linear_equiv.coe_to_linear_map,
linear_map.to_fun_eq_coe, linear_equiv.apply_symm_apply]
end,
right_inv :=
begin
intro φ, ext x,
simp only [linear_map.dual_map_apply, linear_equiv.coe_to_linear_map,
linear_map.to_fun_eq_coe, linear_equiv.symm_apply_apply]
end,
.. f.to_linear_map.dual_map }
@[simp] lemma linear_equiv.dual_map_apply (f : M₁ ≃ₗ[R] M₂) (g : dual R M₂) (x : M₁) :
f.dual_map g x = g (f x) :=
linear_map.lcomp_apply f g x
@[simp] lemma linear_equiv.dual_map_refl :
(linear_equiv.refl R M₁).dual_map = linear_equiv.refl R (dual R M₁) :=
by { ext, refl }
@[simp] lemma linear_equiv.dual_map_symm {f : M₁ ≃ₗ[R] M₂} :
(linear_equiv.dual_map f).symm = linear_equiv.dual_map f.symm := rfl
lemma linear_equiv.dual_map_trans {M₃ : Type*} [add_comm_group M₃] [module R M₃]
(f : M₁ ≃ₗ[R] M₂) (g : M₂ ≃ₗ[R] M₃) :
g.dual_map.trans f.dual_map = (f.trans g).dual_map :=
rfl
end dual_map
namespace linear_map
variables {R : Type*} [comm_semiring R] {M₁ : Type*} {M₂ : Type*}
variables [add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂]
variable (f : M₁ →ₗ[R] M₂)
lemma ker_dual_map_eq_dual_annihilator_range :
f.dual_map.ker = f.range.dual_annihilator :=
begin
ext φ, split; intro hφ,
{ rw mem_ker at hφ,
rw submodule.mem_dual_annihilator,
rintro y ⟨x, rfl⟩,
rw [← dual_map_apply, hφ, zero_apply] },
{ ext x,
rw dual_map_apply,
rw submodule.mem_dual_annihilator at hφ,
exact hφ (f x) ⟨x, rfl⟩ }
end
lemma range_dual_map_le_dual_annihilator_ker :
f.dual_map.range ≤ f.ker.dual_annihilator :=
begin
rintro _ ⟨ψ, rfl⟩,
simp_rw [submodule.mem_dual_annihilator, mem_ker],
rintro x hx,
rw [dual_map_apply, hx, map_zero]
end
section finite_dimensional
variables {K : Type*} [field K] {V₁ : Type*} {V₂ : Type*}
variables [add_comm_group V₁] [module K V₁] [add_comm_group V₂] [module K V₂]
open finite_dimensional
variable [finite_dimensional K V₂]
@[simp] lemma finrank_range_dual_map_eq_finrank_range (f : V₁ →ₗ[K] V₂) :
finrank K f.dual_map.range = finrank K f.range :=
begin
have := submodule.finrank_quotient_add_finrank f.range,
rw [(subspace.quot_equiv_annihilator f.range).finrank_eq,
← ker_dual_map_eq_dual_annihilator_range] at this,
conv_rhs at this { rw ← subspace.dual_finrank_eq },
refine add_left_injective (finrank K f.dual_map.ker) _,
change _ + _ = _ + _,
rw [finrank_range_add_finrank_ker f.dual_map, add_comm, this],
end
lemma range_dual_map_eq_dual_annihilator_ker [finite_dimensional K V₁] (f : V₁ →ₗ[K] V₂) :
f.dual_map.range = f.ker.dual_annihilator :=
begin
refine eq_of_le_of_finrank_eq f.range_dual_map_le_dual_annihilator_ker _,
have := submodule.finrank_quotient_add_finrank f.ker,
rw (subspace.quot_equiv_annihilator f.ker).finrank_eq at this,
refine add_left_injective (finrank K f.ker) _,
simp_rw [this, finrank_range_dual_map_eq_finrank_range],
exact finrank_range_add_finrank_ker f,
end
end finite_dimensional
section field
variables {K V : Type*}
variables [field K] [add_comm_group V] [module K V]
lemma dual_pairing_nondegenerate : (dual_pairing K V).nondegenerate :=
begin
refine ⟨separating_left_iff_ker_eq_bot.mpr ker_id, _⟩,
intros x,
contrapose,
rintros hx : x ≠ 0,
rw [not_forall],
let f : V →ₗ[K] K := classical.some (linear_pmap.mk_span_singleton x 1 hx).to_fun.exists_extend,
use [f],
refine ne_zero_of_eq_one _,
have h : f.comp (K ∙ x).subtype = (linear_pmap.mk_span_singleton x 1 hx).to_fun :=
classical.some_spec (linear_pmap.mk_span_singleton x (1 : K) hx).to_fun.exists_extend,
exact (fun_like.congr_fun h _).trans (linear_pmap.mk_span_singleton_apply _ hx _),
end
end field
end linear_map
namespace tensor_product
variables (R : Type*) (M : Type*) (N : Type*)
variables {ι κ : Type*}
variables [decidable_eq ι] [decidable_eq κ]
variables [fintype ι] [fintype κ]
open_locale big_operators
open_locale tensor_product
local attribute [ext] tensor_product.ext
open tensor_product
open linear_map
section
variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid N]
variables [module R M] [module R N]
/--
The canonical linear map from `dual M ⊗ dual N` to `dual (M ⊗ N)`,
sending `f ⊗ g` to the composition of `tensor_product.map f g` with
the natural isomorphism `R ⊗ R ≃ R`.
-/
def dual_distrib : (dual R M) ⊗[R] (dual R N) →ₗ[R] dual R (M ⊗[R] N) :=
(comp_right ↑(tensor_product.lid R R)) ∘ₗ hom_tensor_hom_map R M N R R
variables {R M N}
@[simp]
lemma dual_distrib_apply (f : dual R M) (g : dual R N) (m : M) (n : N) :
dual_distrib R M N (f ⊗ₜ g) (m ⊗ₜ n) = f m * g n :=
by simp only [dual_distrib, coe_comp, function.comp_app, hom_tensor_hom_map_apply,
comp_right_apply, linear_equiv.coe_coe, map_tmul, lid_tmul, algebra.id.smul_eq_mul]
end
variables {R M N}
variables [comm_ring R] [add_comm_group M] [add_comm_group N]
variables [module R M] [module R N]
/--
An inverse to `dual_tensor_dual_map` given bases.
-/
noncomputable
def dual_distrib_inv_of_basis (b : basis ι R M) (c : basis κ R N) :
dual R (M ⊗[R] N) →ₗ[R] (dual R M) ⊗[R] (dual R N) :=
∑ i j, (ring_lmap_equiv_self R ℕ _).symm (b.dual_basis i ⊗ₜ c.dual_basis j)
∘ₗ applyₗ (c j) ∘ₗ applyₗ (b i) ∘ₗ (lcurry R M N R)
@[simp]
lemma dual_distrib_inv_of_basis_apply (b : basis ι R M) (c : basis κ R N)
(f : dual R (M ⊗[R] N)) : dual_distrib_inv_of_basis b c f =
∑ i j, (f (b i ⊗ₜ c j)) • (b.dual_basis i ⊗ₜ c.dual_basis j) :=
by simp [dual_distrib_inv_of_basis]
/--
A linear equivalence between `dual M ⊗ dual N` and `dual (M ⊗ N)` given bases for `M` and `N`.
It sends `f ⊗ g` to the composition of `tensor_product.map f g` with the natural
isomorphism `R ⊗ R ≃ R`.
-/
@[simps]
noncomputable def dual_distrib_equiv_of_basis (b : basis ι R M) (c : basis κ R N) :
(dual R M) ⊗[R] (dual R N) ≃ₗ[R] dual R (M ⊗[R] N) :=
begin
refine linear_equiv.of_linear
(dual_distrib R M N) (dual_distrib_inv_of_basis b c) _ _,
{ ext f m n,
have h : ∀ (r s : R), r • s = s • r := is_commutative.comm,
simp only [compr₂_apply, mk_apply, comp_apply, id_apply, dual_distrib_inv_of_basis_apply,
linear_map.map_sum, map_smul, sum_apply, smul_apply, dual_distrib_apply, h (f _) _,
← f.map_smul, ←f.map_sum, ←smul_tmul_smul, ←tmul_sum, ←sum_tmul, basis.coe_dual_basis,
basis.coord_apply, basis.sum_repr] },
{ ext f g,
simp only [compr₂_apply, mk_apply, comp_apply, id_apply, dual_distrib_inv_of_basis_apply,
dual_distrib_apply, ←smul_tmul_smul, ←tmul_sum, ←sum_tmul, basis.coe_dual_basis,
basis.sum_dual_apply_smul_coord] }
end
variables (R M N)
variables [module.finite R M] [module.finite R N] [module.free R M] [module.free R N]
variables [nontrivial R]
open_locale classical
/--
A linear equivalence between `dual M ⊗ dual N` and `dual (M ⊗ N)` when `M` and `N` are finite free
modules. It sends `f ⊗ g` to the composition of `tensor_product.map f g` with the natural
isomorphism `R ⊗ R ≃ R`.
-/
@[simp]
noncomputable
def dual_distrib_equiv : (dual R M) ⊗[R] (dual R N) ≃ₗ[R] dual R (M ⊗[R] N) :=
dual_distrib_equiv_of_basis (module.free.choose_basis R M) (module.free.choose_basis R N)
end tensor_product
|