File size: 38,755 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import data.finsupp.basic
import linear_algebra.pi
import linear_algebra.span

/-!
# Properties of the module `α →₀ M`

Given an `R`-module `M`, the `R`-module structure on `α →₀ M` is defined in
`data.finsupp.basic`.

In this file we define `finsupp.supported s` to be the set `{f : α →₀ M | f.support ⊆ s}`
interpreted as a submodule of `α →₀ M`. We also define `linear_map` versions of various maps:

* `finsupp.lsingle a : M →ₗ[R] ι →₀ M`: `finsupp.single a` as a linear map;

* `finsupp.lapply a : (ι →₀ M) →ₗ[R] M`: the map `λ f, f a` as a linear map;

* `finsupp.lsubtype_domain (s : set α) : (α →₀ M) →ₗ[R] (s →₀ M)`: restriction to a subtype as a
  linear map;

* `finsupp.restrict_dom`: `finsupp.filter` as a linear map to `finsupp.supported s`;

* `finsupp.lsum`: `finsupp.sum` or `finsupp.lift_add_hom` as a `linear_map`;

* `finsupp.total α M R (v : ι → M)`: sends `l : ι → R` to the linear combination of `v i` with
  coefficients `l i`;

* `finsupp.total_on`: a restricted version of `finsupp.total` with domain `finsupp.supported R R s`
  and codomain `submodule.span R (v '' s)`;

* `finsupp.supported_equiv_finsupp`: a linear equivalence between the functions `α →₀ M` supported
  on `s` and the functions `s →₀ M`;

* `finsupp.lmap_domain`: a linear map version of `finsupp.map_domain`;

* `finsupp.dom_lcongr`: a `linear_equiv` version of `finsupp.dom_congr`;

* `finsupp.congr`: if the sets `s` and `t` are equivalent, then `supported M R s` is equivalent to
  `supported M R t`;

* `finsupp.lcongr`: a `linear_equiv`alence between `α →₀ M` and `β →₀ N` constructed using `e : α ≃
  β` and `e' : M ≃ₗ[R] N`.

## Tags

function with finite support, module, linear algebra
-/

noncomputable theory

open set linear_map submodule

open_locale classical big_operators

namespace finsupp

variables {α : Type*} {M : Type*} {N : Type*} {P : Type*} {R : Type*} {S : Type*}
variables [semiring R] [semiring S] [add_comm_monoid M] [module R M]
variables [add_comm_monoid N] [module R N]
variables [add_comm_monoid P] [module R P]

/-- Interpret `finsupp.single a` as a linear map. -/
def lsingle (a : α) : M →ₗ[R] (α →₀ M) :=
{ map_smul' := assume a b, (smul_single _ _ _).symm, ..finsupp.single_add_hom a }

/-- Two `R`-linear maps from `finsupp X M` which agree on each `single x y` agree everywhere. -/
lemma lhom_ext ⦃φ ψ : (α →₀ M) →ₗ[R] N⦄ (h : ∀ a b, φ (single a b) = ψ (single a b)) :
  φ = ψ :=
linear_map.to_add_monoid_hom_injective $ add_hom_ext h

/-- Two `R`-linear maps from `finsupp X M` which agree on each `single x y` agree everywhere.

We formulate this fact using equality of linear maps `φ.comp (lsingle a)` and `ψ.comp (lsingle a)`
so that the `ext` tactic can apply a type-specific extensionality lemma to prove equality of these
maps. E.g., if `M = R`, then it suffices to verify `φ (single a 1) = ψ (single a 1)`. -/
@[ext] lemma lhom_ext' ⦃φ ψ : (α →₀ M) →ₗ[R] N⦄ (h : ∀ a, φ.comp (lsingle a) = ψ.comp (lsingle a)) :
  φ = ψ :=
lhom_ext $ λ a, linear_map.congr_fun (h a)

/-- Interpret `λ (f : α →₀ M), f a` as a linear map. -/
def lapply (a : α) : (α →₀ M) →ₗ[R] M :=
{ map_smul' := assume a b, rfl, ..finsupp.apply_add_hom a }

section lsubtype_domain
variables (s : set α)

/-- Interpret `finsupp.subtype_domain s` as a linear map. -/
def lsubtype_domain : (α →₀ M) →ₗ[R] (s →₀ M) :=
{ to_fun := subtype_domain (λx, x ∈ s),
  map_add' := λ a b, subtype_domain_add,
  map_smul' := λ c a, ext $ λ a, rfl }

lemma lsubtype_domain_apply (f : α →₀ M) :
  (lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)) f = subtype_domain (λx, x ∈ s) f := rfl

end lsubtype_domain

@[simp] lemma lsingle_apply (a : α) (b : M) : (lsingle a : M →ₗ[R] (α →₀ M)) b = single a b  :=
rfl

@[simp] lemma lapply_apply (a : α) (f : α →₀ M) : (lapply a : (α →₀ M) →ₗ[R] M) f = f a  :=
rfl

@[simp] lemma ker_lsingle (a : α) : (lsingle a : M →ₗ[R] (α →₀ M)).ker = ⊥ :=
ker_eq_bot_of_injective (single_injective a)

lemma lsingle_range_le_ker_lapply (s t : set α) (h : disjoint s t) :
  (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) ≤ (⨅a∈t, ker (lapply a)) :=
begin
  refine supr_le (assume a₁, supr_le $ assume h₁, range_le_iff_comap.2 _),
  simp only [(ker_comp _ _).symm, eq_top_iff, set_like.le_def, mem_ker, comap_infi, mem_infi],
  assume b hb a₂ h₂,
  have : a₁ ≠ a₂ := assume eq, h ⟨h₁, eq.symm ▸ h₂⟩,
  exact single_eq_of_ne this
end

lemma infi_ker_lapply_le_bot : (⨅a, ker (lapply a : (α →₀ M) →ₗ[R] M)) ≤ ⊥ :=
begin
  simp only [set_like.le_def, mem_infi, mem_ker, mem_bot, lapply_apply],
  exact assume a h, finsupp.ext h
end

lemma supr_lsingle_range : (⨆a, (lsingle a : M →ₗ[R] (α →₀ M)).range) = ⊤ :=
begin
  refine (eq_top_iff.2 $ set_like.le_def.2 $ assume f _, _),
  rw [← sum_single f],
  exact sum_mem (assume a ha, submodule.mem_supr_of_mem a ⟨_, rfl⟩),
end

lemma disjoint_lsingle_lsingle (s t : set α) (hs : disjoint s t) :
  disjoint (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) (⨆a∈t, (lsingle a).range) :=
begin
  refine disjoint.mono
    (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right)
    (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right)
    (le_trans (le_infi $ assume i, _) infi_ker_lapply_le_bot),
  classical,
  by_cases his : i ∈ s,
  { by_cases hit : i ∈ t,
    { exact (hs ⟨his, hit⟩).elim },
    exact inf_le_of_right_le (infi_le_of_le i $ infi_le _ hit) },
  exact inf_le_of_left_le (infi_le_of_le i $ infi_le _ his)
end

lemma span_single_image (s : set M) (a : α) :
  submodule.span R (single a '' s) = (submodule.span R s).map (lsingle a) :=
by rw ← span_image; refl

variables (M R)

/-- `finsupp.supported M R s` is the `R`-submodule of all `p : α →₀ M` such that `p.support ⊆ s`. -/
def supported (s : set α) : submodule R (α →₀ M) :=
begin
  refine ⟨ {p | ↑p.support ⊆ s }, _, _, _ ⟩,
  { assume p q hp hq,
    refine subset.trans
      (subset.trans (finset.coe_subset.2 support_add) _) (union_subset hp hq),
    rw [finset.coe_union] },
  { simp only [subset_def, finset.mem_coe, set.mem_set_of_eq, mem_support_iff, zero_apply],
    assume h ha, exact (ha rfl).elim },
  { assume a p hp,
    refine subset.trans (finset.coe_subset.2 support_smul) hp }
end

variables {M}

lemma mem_supported {s : set α} (p : α →₀ M) : p ∈ (supported M R s) ↔ ↑p.support ⊆ s :=
iff.rfl

lemma mem_supported' {s : set α}  (p : α →₀ M) :
  p ∈ supported M R s ↔ ∀ x ∉ s, p x = 0 :=
by haveI := classical.dec_pred (λ (x : α), x ∈ s);
   simp [mem_supported, set.subset_def, not_imp_comm]

lemma mem_supported_support (p : α →₀ M) :
  p ∈ finsupp.supported M R (p.support : set α) :=
by rw finsupp.mem_supported

lemma single_mem_supported {s : set α} {a : α} (b : M) (h : a ∈ s) :
  single a b ∈ supported M R s :=
set.subset.trans support_single_subset (finset.singleton_subset_set_iff.2 h)

lemma supported_eq_span_single (s : set α) :
  supported R R s = span R ((λ i, single i 1) '' s) :=
begin
  refine (span_eq_of_le _ _ (set_like.le_def.2 $ λ l hl, _)).symm,
  { rintro _ ⟨_, hp, rfl ⟩ , exact single_mem_supported R 1 hp },
  { rw ← l.sum_single,
    refine sum_mem (λ i il, _),
    convert @smul_mem R (α →₀ R) _ _ _ _ (single i 1) (l i) _,
    { simp },
    apply subset_span,
    apply set.mem_image_of_mem _ (hl il) }
end

variables (M R)

/-- Interpret `finsupp.filter s` as a linear map from `α →₀ M` to `supported M R s`. -/
def restrict_dom (s : set α) : (α →₀ M) →ₗ[R] supported M R s :=
linear_map.cod_restrict _
  { to_fun := filter (∈ s),
    map_add' := λ l₁ l₂, filter_add,
    map_smul' := λ a l, filter_smul }
  (λ l, (mem_supported' _ _).2 $ λ x, filter_apply_neg (∈ s) l)

variables {M R}

section
@[simp] theorem restrict_dom_apply (s : set α) (l : α →₀ M) :
  ((restrict_dom M R s : (α →₀ M) →ₗ[R] supported M R s) l : α →₀ M) = finsupp.filter (∈ s) l := rfl
end

theorem restrict_dom_comp_subtype (s : set α) :
  (restrict_dom M R s).comp (submodule.subtype _) = linear_map.id :=
begin
  ext l a,
  by_cases a ∈ s; simp [h],
  exact ((mem_supported' R l.1).1 l.2 a h).symm
end

theorem range_restrict_dom (s : set α) :
  (restrict_dom M R s).range = ⊤ :=
range_eq_top.2 $ function.right_inverse.surjective $
  linear_map.congr_fun (restrict_dom_comp_subtype s)

theorem supported_mono {s t : set α} (st : s ⊆ t) :
  supported M R s ≤ supported M R t :=
λ l h, set.subset.trans h st

@[simp] theorem supported_empty : supported M R (∅ : set α) = ⊥ :=
eq_bot_iff.2 $ λ l h, (submodule.mem_bot R).2 $
by ext; simp [*, mem_supported'] at *

@[simp] theorem supported_univ : supported M R (set.univ : set α) = ⊤ :=
eq_top_iff.2 $ λ l _, set.subset_univ _

theorem supported_Union {δ : Type*} (s : δ → set α) :
  supported M R (⋃ i, s i) = ⨆ i, supported M R (s i) :=
begin
  refine le_antisymm _ (supr_le $ λ i, supported_mono $ set.subset_Union _ _),
  haveI := classical.dec_pred (λ x, x ∈ (⋃ i, s i)),
  suffices : ((submodule.subtype _).comp (restrict_dom M R (⋃ i, s i))).range ≤
    ⨆ i, supported M R (s i),
  { rwa [linear_map.range_comp, range_restrict_dom, map_top, range_subtype] at this },
  rw [range_le_iff_comap, eq_top_iff],
  rintro l ⟨⟩,
  apply finsupp.induction l, { exact zero_mem _ },
  refine λ x a l hl a0, add_mem _,
  by_cases (∃ i, x ∈ s i); simp [h],
  { cases h with i hi,
    exact le_supr (λ i, supported M R (s i)) i (single_mem_supported R _ hi) }
end

theorem supported_union (s t : set α) :
  supported M R (s ∪ t) = supported M R s ⊔ supported M R t :=
by erw [set.union_eq_Union, supported_Union, supr_bool_eq]; refl

theorem supported_Inter {ι : Type*} (s : ι → set α) :
  supported M R (⋂ i, s i) = ⨅ i, supported M R (s i) :=
submodule.ext $ λ x, by simp [mem_supported, subset_Inter_iff]

theorem supported_inter (s t : set α) :
  supported M R (s ∩ t) = supported M R s ⊓ supported M R t :=
by rw [set.inter_eq_Inter, supported_Inter, infi_bool_eq]; refl

theorem disjoint_supported_supported {s t : set α} (h : disjoint s t) :
  disjoint (supported M R s) (supported M R t) :=
disjoint_iff.2 $ by rw [← supported_inter, disjoint_iff_inter_eq_empty.1 h, supported_empty]

theorem disjoint_supported_supported_iff [nontrivial M] {s t : set α} :
  disjoint (supported M R s) (supported M R t) ↔ disjoint s t :=
begin
  refine ⟨λ h x hx, _, disjoint_supported_supported⟩,
  rcases exists_ne (0 : M) with ⟨y, hy⟩,
  have := h ⟨single_mem_supported R y hx.1, single_mem_supported R y hx.2⟩,
  rw [mem_bot, single_eq_zero] at this,
  exact hy this
end

/-- Interpret `finsupp.restrict_support_equiv` as a linear equivalence between
`supported M R s` and `s →₀ M`. -/
def supported_equiv_finsupp (s : set α) : (supported M R s) ≃ₗ[R] (s →₀ M) :=
begin
  let F : (supported M R s) ≃ (s →₀ M) := restrict_support_equiv s M,
  refine F.to_linear_equiv _,
  have : (F : (supported M R s) → (↥s →₀ M)) = ((lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)).comp
    (submodule.subtype (supported M R s))) := rfl,
  rw this,
  exact linear_map.is_linear _
end

section lsum

variables (S) [module S N] [smul_comm_class R S N]

/-- Lift a family of linear maps `M →ₗ[R] N` indexed by `x : α` to a linear map from `α →₀ M` to
`N` using `finsupp.sum`. This is an upgraded version of `finsupp.lift_add_hom`.

See note [bundled maps over different rings] for why separate `R` and `S` semirings are used.
-/
def lsum : (α → M →ₗ[R] N) ≃ₗ[S] ((α →₀ M) →ₗ[R] N) :=
{ to_fun := λ F,
  { to_fun := λ d, d.sum (λ i, F i),
    map_add' := (lift_add_hom (λ x, (F x).to_add_monoid_hom)).map_add,
    map_smul' := λ c f, by simp [sum_smul_index', smul_sum] },
  inv_fun := λ F x, F.comp (lsingle x),
  left_inv := λ F, by { ext x y, simp },
  right_inv := λ F, by { ext x y, simp },
  map_add' := λ F G, by { ext x y, simp },
  map_smul' := λ F G, by { ext x y, simp } }

@[simp] lemma coe_lsum (f : α → M →ₗ[R] N) : (lsum S f : (α →₀ M) → N) = λ d, d.sum (λ i, f i) :=
rfl

theorem lsum_apply (f : α → M →ₗ[R] N) (l : α →₀ M) :
  finsupp.lsum S f l = l.sum (λ b, f b) := rfl

theorem lsum_single (f : α → M →ₗ[R] N) (i : α) (m : M) :
  finsupp.lsum S f (finsupp.single i m) = f i m :=
finsupp.sum_single_index (f i).map_zero

theorem lsum_symm_apply (f : (α →₀ M) →ₗ[R] N) (x : α) :
  (lsum S).symm f x = f.comp (lsingle x) := rfl

end lsum

section
variables (M) (R) (X : Type*)

/--
A slight rearrangement from `lsum` gives us
the bijection underlying the free-forgetful adjunction for R-modules.
-/
noncomputable def lift : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) :=
(add_equiv.arrow_congr (equiv.refl X) (ring_lmap_equiv_self R ℕ M).to_add_equiv.symm).trans
  (lsum _ : _ ≃ₗ[ℕ] _).to_add_equiv

@[simp]
lemma lift_symm_apply (f) (x) : ((lift M R X).symm f) x = f (single x 1) :=
rfl
@[simp]
lemma lift_apply (f) (g) :
  ((lift M R X) f) g = g.sum (λ x r, r • f x) :=
rfl

end

section lmap_domain
variables {α' : Type*} {α'' : Type*} (M R)

/-- Interpret `finsupp.map_domain` as a linear map. -/
def lmap_domain (f : α → α') : (α →₀ M) →ₗ[R] (α' →₀ M) :=
{ to_fun := map_domain f, map_add' := λ a b, map_domain_add, map_smul' := map_domain_smul }

@[simp] theorem lmap_domain_apply (f : α → α') (l : α →₀ M) :
  (lmap_domain M R f : (α →₀ M) →ₗ[R] (α' →₀ M)) l = map_domain f l := rfl

@[simp] theorem lmap_domain_id : (lmap_domain M R id : (α →₀ M) →ₗ[R] α →₀ M) = linear_map.id :=
linear_map.ext $ λ l, map_domain_id

theorem lmap_domain_comp (f : α → α') (g : α' → α'') :
  lmap_domain M R (g ∘ f) = (lmap_domain M R g).comp (lmap_domain M R f) :=
linear_map.ext $ λ l, map_domain_comp

theorem supported_comap_lmap_domain (f : α → α') (s : set α') :
  supported M R (f ⁻¹' s) ≤ (supported M R s).comap (lmap_domain M R f) :=
λ l (hl : ↑l.support ⊆ f ⁻¹' s),
show ↑(map_domain f l).support ⊆ s, begin
  rw [← set.image_subset_iff, ← finset.coe_image] at hl,
  exact set.subset.trans map_domain_support hl
end

theorem lmap_domain_supported [nonempty α] (f : α → α') (s : set α) :
  (supported M R s).map (lmap_domain M R f) = supported M R (f '' s) :=
begin
  inhabit α,
  refine le_antisymm (map_le_iff_le_comap.2 $
    le_trans (supported_mono $ set.subset_preimage_image _ _)
       (supported_comap_lmap_domain _ _ _ _)) _,
  intros l hl,
  refine ⟨(lmap_domain M R (function.inv_fun_on f s) : (α' →₀ M) →ₗ[R] α →₀ M) l, λ x hx, _, _⟩,
  { rcases finset.mem_image.1 (map_domain_support hx) with ⟨c, hc, rfl⟩,
    exact function.inv_fun_on_mem (by simpa using hl hc) },
  { rw [← linear_map.comp_apply, ← lmap_domain_comp],
    refine (map_domain_congr $ λ c hc, _).trans map_domain_id,
    exact function.inv_fun_on_eq (by simpa using hl hc) }
end

theorem lmap_domain_disjoint_ker (f : α → α') {s : set α}
  (H : ∀ a b ∈ s, f a = f b → a = b) :
  disjoint (supported M R s) (lmap_domain M R f).ker :=
begin
  rintro l ⟨h₁, h₂⟩,
  rw [set_like.mem_coe, mem_ker, lmap_domain_apply, map_domain] at h₂,
  simp, ext x,
  haveI := classical.dec_pred (λ x, x ∈ s),
  by_cases xs : x ∈ s,
  { have : finsupp.sum l (λ a, finsupp.single (f a)) (f x) = 0, {rw h₂, refl},
    rw [finsupp.sum_apply, finsupp.sum, finset.sum_eq_single x] at this,
    { simpa [finsupp.single_apply] },
    { intros y hy xy, simp [mt (H _ (h₁ hy) _ xs) xy] },
    { simp {contextual := tt} } },
  { by_contra h, exact xs (h₁ $ finsupp.mem_support_iff.2 h) }
end

end lmap_domain

section total
variables (α) {α' : Type*} (M) {M' : Type*} (R)
          [add_comm_monoid M'] [module R M']
          (v : α → M) {v' : α' → M'}

/-- Interprets (l : α →₀ R) as linear combination of the elements in the family (v : α → M) and
    evaluates this linear combination. -/
protected def total : (α →₀ R) →ₗ[R] M := finsupp.lsum ℕ (λ i, linear_map.id.smul_right (v i))

variables {α M v}

theorem total_apply (l : α →₀ R) :
  finsupp.total α M R v l = l.sum (λ i a, a • v i) := rfl

theorem total_apply_of_mem_supported {l : α →₀ R} {s : finset α}
  (hs : l ∈ supported R R (↑s : set α)) :
  finsupp.total α M R v l = s.sum (λ i, l i • v i) :=
finset.sum_subset hs $ λ x _ hxg, show l x • v x = 0, by rw [not_mem_support_iff.1 hxg, zero_smul]

@[simp] theorem total_single (c : R) (a : α) :
  finsupp.total α M R v (single a c) = c • (v a) :=
by simp [total_apply, sum_single_index]

theorem apply_total (f : M →ₗ[R] M') (v) (l : α →₀ R) :
  f (finsupp.total α M R v l) = finsupp.total α M' R (f ∘ v) l :=
by apply finsupp.induction_linear l; simp { contextual := tt, }

theorem total_unique [unique α] (l : α →₀ R) (v) :
  finsupp.total α M R v l = l default • v default :=
by rw [← total_single, ← unique_single l]

lemma total_surjective (h : function.surjective v) : function.surjective (finsupp.total α M R v) :=
begin
  intro x,
  obtain ⟨y, hy⟩ := h x,
  exact ⟨finsupp.single y 1, by simp [hy]⟩
end

theorem total_range (h : function.surjective v) : (finsupp.total α M R v).range = ⊤ :=
range_eq_top.2 $ total_surjective R h

/-- Any module is a quotient of a free module. This is stated as surjectivity of
`finsupp.total M M R id : (M →₀ R) →ₗ[R] M`. -/
lemma total_id_surjective (M) [add_comm_monoid M] [module R M] :
  function.surjective (finsupp.total M M R id) :=
total_surjective R function.surjective_id

lemma range_total : (finsupp.total α M R v).range = span R (range v) :=
begin
  ext x,
  split,
  { intros hx,
    rw [linear_map.mem_range] at hx,
    rcases hx with ⟨l, hl⟩,
    rw ← hl,
    rw finsupp.total_apply,
    exact sum_mem (λ i hi, submodule.smul_mem _ _ (subset_span (mem_range_self i))) },
  { apply span_le.2,
    intros x hx,
    rcases hx with ⟨i, hi⟩,
    rw [set_like.mem_coe, linear_map.mem_range],
    use finsupp.single i 1,
    simp [hi] }
end

theorem lmap_domain_total (f : α → α') (g : M →ₗ[R] M') (h : ∀ i, g (v i) = v' (f i)) :
  (finsupp.total α' M' R v').comp (lmap_domain R R f) = g.comp (finsupp.total α M R v) :=
by ext l; simp [total_apply, finsupp.sum_map_domain_index, add_smul, h]

@[simp] theorem total_emb_domain (f : α ↪ α') (l : α →₀ R) :
  (finsupp.total α' M' R v') (emb_domain f l) = (finsupp.total α M' R (v' ∘ f)) l :=
by simp [total_apply, finsupp.sum, support_emb_domain, emb_domain_apply]

theorem total_map_domain (f : α → α') (hf : function.injective f) (l : α →₀ R) :
  (finsupp.total α' M' R v') (map_domain f l) = (finsupp.total α M' R (v' ∘ f)) l :=
begin
  have : map_domain f l = emb_domain ⟨f, hf⟩ l,
  { rw emb_domain_eq_map_domain ⟨f, hf⟩,
    refl },
  rw this,
  apply total_emb_domain R ⟨f, hf⟩ l
end

@[simp] theorem total_equiv_map_domain (f : α ≃ α') (l : α →₀ R) :
  (finsupp.total α' M' R v') (equiv_map_domain f l) = (finsupp.total α M' R (v' ∘ f)) l :=
by rw [equiv_map_domain_eq_map_domain, total_map_domain _ _ f.injective]

/-- A version of `finsupp.range_total` which is useful for going in the other direction -/
theorem span_eq_range_total (s : set M) :
  span R s = (finsupp.total s M R coe).range :=
by rw [range_total, subtype.range_coe_subtype, set.set_of_mem_eq]

theorem mem_span_iff_total (s : set M) (x : M) :
  x ∈ span R s ↔ ∃ l : s →₀ R, finsupp.total s M R coe l = x :=
(set_like.ext_iff.1 $ span_eq_range_total _ _) x

theorem span_image_eq_map_total (s : set α):
  span R (v '' s) = submodule.map (finsupp.total α M R v) (supported R R s) :=
begin
  apply span_eq_of_le,
  { intros x hx,
    rw set.mem_image at hx,
    apply exists.elim hx,
    intros i hi,
    exact ⟨_, finsupp.single_mem_supported R 1 hi.1, by simp [hi.2]⟩ },
  { refine map_le_iff_le_comap.2 (λ z hz, _),
    have : ∀i, z i • v i ∈ span R (v '' s),
    { intro c,
      haveI := classical.dec_pred (λ x, x ∈ s),
      by_cases c ∈ s,
      { exact smul_mem _ _ (subset_span (set.mem_image_of_mem _ h)) },
      { simp [(finsupp.mem_supported' R _).1 hz _ h] } },
    refine sum_mem _, simp [this] }
end

theorem mem_span_image_iff_total {s : set α} {x : M} :
  x ∈ span R (v '' s) ↔ ∃ l ∈ supported R R s, finsupp.total α M R v l = x :=
by { rw span_image_eq_map_total, simp, }

lemma total_option (v : option α → M) (f : option α →₀ R) :
  finsupp.total (option α) M R v f =
    f none • v none + finsupp.total α M R (v ∘ option.some) f.some :=
by rw [total_apply, sum_option_index_smul, total_apply]

lemma total_total {α β : Type*} (A : α → M) (B : β → (α →₀ R)) (f : β →₀ R) :
  finsupp.total α M R A (finsupp.total β (α →₀ R) R B f) =
    finsupp.total β M R (λ b, finsupp.total α M R A (B b)) f :=
begin
  simp only [total_apply],
  apply induction_linear f,
  { simp only [sum_zero_index], },
  { intros f₁ f₂ h₁ h₂,
    simp [sum_add_index, h₁, h₂, add_smul], },
  { simp [sum_single_index, sum_smul_index, smul_sum, mul_smul], }
end

@[simp] lemma total_fin_zero (f : fin 0 → M) :
  finsupp.total (fin 0) M R f = 0 :=
by { ext i, apply fin_zero_elim i }

variables (α) (M) (v)

/-- `finsupp.total_on M v s` interprets `p : α →₀ R` as a linear combination of a
subset of the vectors in `v`, mapping it to the span of those vectors.

The subset is indicated by a set `s : set α` of indices.
-/
protected def total_on (s : set α) : supported R R s →ₗ[R] span R (v '' s) :=
linear_map.cod_restrict _ ((finsupp.total _ _ _ v).comp (submodule.subtype (supported R R s))) $
  λ ⟨l, hl⟩, (mem_span_image_iff_total _).2 ⟨l, hl, rfl⟩

variables {α} {M} {v}

theorem total_on_range (s : set α) : (finsupp.total_on α M R v s).range = ⊤ :=
begin
  rw [finsupp.total_on, linear_map.range_eq_map, linear_map.map_cod_restrict,
    ← linear_map.range_le_iff_comap, range_subtype, map_top, linear_map.range_comp, range_subtype],
  exact (span_image_eq_map_total _ _).le
end

theorem total_comp (f : α' → α) :
  (finsupp.total α' M R (v ∘ f)) = (finsupp.total α M R v).comp (lmap_domain R R f) :=
by { ext, simp [total_apply] }

lemma total_comap_domain
 (f : α → α') (l : α' →₀ R) (hf : set.inj_on f (f ⁻¹' ↑l.support)) :
 finsupp.total α M R v (finsupp.comap_domain f l hf) =
   (l.support.preimage f hf).sum (λ i, (l (f i)) • (v i)) :=
by rw finsupp.total_apply; refl

lemma total_on_finset
  {s : finset α} {f : α → R} (g : α → M) (hf : ∀ a, f a ≠ 0 → a ∈ s):
  finsupp.total α M R g (finsupp.on_finset s f hf) =
    finset.sum s (λ (x : α), f x • g x) :=
begin
  simp only [finsupp.total_apply, finsupp.sum, finsupp.on_finset_apply, finsupp.support_on_finset],
  rw finset.sum_filter_of_ne,
  intros x hx h,
  contrapose! h,
  simp [h],
end

end total

/-- An equivalence of domains induces a linear equivalence of finitely supported functions.

This is `finsupp.dom_congr` as a `linear_equiv`.
See also `linear_map.fun_congr_left` for the case of arbitrary functions. -/
protected def dom_lcongr {α₁ α₂ : Type*} (e : α₁ ≃ α₂) :
  (α₁ →₀ M) ≃ₗ[R] (α₂ →₀ M) :=
(finsupp.dom_congr e : (α₁ →₀ M) ≃+ (α₂ →₀ M)).to_linear_equiv $
by simpa only [equiv_map_domain_eq_map_domain, dom_congr_apply]
  using (lmap_domain M R e).map_smul

@[simp]
lemma dom_lcongr_apply {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) (v : α₁ →₀ M) :
  (finsupp.dom_lcongr e : _ ≃ₗ[R] _) v = finsupp.dom_congr e v :=
rfl

@[simp]
lemma dom_lcongr_refl : finsupp.dom_lcongr (equiv.refl α) = linear_equiv.refl R (α →₀ M) :=
linear_equiv.ext $ λ _, equiv_map_domain_refl _

lemma dom_lcongr_trans {α₁ α₂ α₃ : Type*} (f : α₁ ≃ α₂) (f₂ : α₂ ≃ α₃) :
  (finsupp.dom_lcongr f).trans (finsupp.dom_lcongr f₂) =
    (finsupp.dom_lcongr (f.trans f₂) : (_ →₀ M) ≃ₗ[R] _) :=
linear_equiv.ext $ λ _, (equiv_map_domain_trans _ _ _).symm

@[simp]
lemma dom_lcongr_symm {α₁ α₂ : Type*} (f : α₁ ≃ α₂) :
  ((finsupp.dom_lcongr f).symm : (_ →₀ M) ≃ₗ[R] _) = finsupp.dom_lcongr f.symm :=
linear_equiv.ext $ λ x, rfl

@[simp] theorem dom_lcongr_single {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) (i : α₁) (m : M) :
  (finsupp.dom_lcongr e : _ ≃ₗ[R] _) (finsupp.single i m) = finsupp.single (e i) m :=
by simp [finsupp.dom_lcongr, finsupp.dom_congr, equiv_map_domain_single]

/-- An equivalence of sets induces a linear equivalence of `finsupp`s supported on those sets. -/
noncomputable def congr {α' : Type*} (s : set α) (t : set α') (e : s ≃ t) :
  supported M R s ≃ₗ[R] supported M R t :=
begin
  haveI := classical.dec_pred (λ x, x ∈ s),
  haveI := classical.dec_pred (λ x, x ∈ t),
  refine (finsupp.supported_equiv_finsupp s) ≪≫ₗ
      (_ ≪≫ₗ (finsupp.supported_equiv_finsupp t).symm),
  exact finsupp.dom_lcongr e
end

/-- `finsupp.map_range` as a `linear_map`. -/
@[simps]
def map_range.linear_map (f : M →ₗ[R] N) : (α →₀ M) →ₗ[R] (α →₀ N) :=
{ to_fun := (map_range f f.map_zero : (α →₀ M) → (α →₀ N)),
  map_smul' := λ c v, map_range_smul c v (f.map_smul c),
  ..map_range.add_monoid_hom f.to_add_monoid_hom }

@[simp]
lemma map_range.linear_map_id :
  map_range.linear_map linear_map.id = (linear_map.id : (α →₀ M) →ₗ[R] _):=
linear_map.ext map_range_id

lemma map_range.linear_map_comp (f : N →ₗ[R] P) (f₂ : M →ₗ[R] N) :
  (map_range.linear_map (f.comp f₂) : (α →₀ _) →ₗ[R] _) =
    (map_range.linear_map f).comp (map_range.linear_map f₂) :=
linear_map.ext $ map_range_comp _ _ _ _ _

@[simp]
lemma map_range.linear_map_to_add_monoid_hom (f : M →ₗ[R] N) :
  (map_range.linear_map f).to_add_monoid_hom =
    (map_range.add_monoid_hom f.to_add_monoid_hom : (α →₀ M) →+ _):=
add_monoid_hom.ext $ λ _, rfl

/-- `finsupp.map_range` as a `linear_equiv`. -/
@[simps apply]
def map_range.linear_equiv (e : M ≃ₗ[R] N) : (α →₀ M) ≃ₗ[R] (α →₀ N) :=
{ to_fun := map_range e e.map_zero,
  inv_fun := map_range e.symm e.symm.map_zero,
  ..map_range.linear_map e.to_linear_map,
  ..map_range.add_equiv e.to_add_equiv}

@[simp]
lemma map_range.linear_equiv_refl :
  map_range.linear_equiv (linear_equiv.refl R M) = linear_equiv.refl R (α →₀ M) :=
linear_equiv.ext map_range_id

lemma map_range.linear_equiv_trans (f : M ≃ₗ[R] N) (f₂ : N ≃ₗ[R] P) :
  (map_range.linear_equiv (f.trans f₂) : (α →₀ _) ≃ₗ[R] _) =
    (map_range.linear_equiv f).trans (map_range.linear_equiv f₂) :=
linear_equiv.ext $ map_range_comp _ _ _ _ _

@[simp]
lemma map_range.linear_equiv_symm (f : M ≃ₗ[R] N) :
  ((map_range.linear_equiv f).symm : (α →₀ _) ≃ₗ[R] _) = map_range.linear_equiv f.symm :=
linear_equiv.ext $ λ x, rfl

@[simp]
lemma map_range.linear_equiv_to_add_equiv (f : M ≃ₗ[R] N) :
  (map_range.linear_equiv f).to_add_equiv =
    (map_range.add_equiv f.to_add_equiv : (α →₀ M) ≃+ _):=
add_equiv.ext $ λ _, rfl

@[simp]
lemma map_range.linear_equiv_to_linear_map (f : M ≃ₗ[R] N) :
  (map_range.linear_equiv f).to_linear_map =
    (map_range.linear_map f.to_linear_map : (α →₀ M) →ₗ[R] _):=
linear_map.ext $ λ _, rfl

/-- An equivalence of domain and a linear equivalence of codomain induce a linear equivalence of the
corresponding finitely supported functions. -/
def lcongr {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) : (ι →₀ M) ≃ₗ[R] (κ →₀ N) :=
(finsupp.dom_lcongr e₁).trans (map_range.linear_equiv e₂)

@[simp] theorem lcongr_single {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (i : ι) (m : M) :
  lcongr e₁ e₂ (finsupp.single i m) = finsupp.single (e₁ i) (e₂ m) :=
by simp [lcongr]

@[simp] lemma lcongr_apply_apply {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (f : ι →₀ M) (k : κ) :
  lcongr e₁ e₂ f k = e₂ (f (e₁.symm k)) :=
rfl

theorem lcongr_symm_single {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (k : κ) (n : N) :
  (lcongr e₁ e₂).symm (finsupp.single k n) = finsupp.single (e₁.symm k) (e₂.symm n) :=
begin
  apply_fun lcongr e₁ e₂ using (lcongr e₁ e₂).injective,
  simp,
end

@[simp] lemma lcongr_symm {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) :
  (lcongr e₁ e₂).symm = lcongr e₁.symm e₂.symm :=
begin
  ext f i,
  simp only [equiv.symm_symm, finsupp.lcongr_apply_apply],
  apply finsupp.induction_linear f,
  { simp, },
  { intros f g hf hg, simp [map_add, hf, hg], },
  { intros k m,
    simp only [finsupp.lcongr_symm_single],
    simp only [finsupp.single, equiv.symm_apply_eq, finsupp.coe_mk],
    split_ifs; simp, },
end

section sum

variables (R)

/-- The linear equivalence between `(α ⊕ β) →₀ M` and `(α →₀ M) × (β →₀ M)`.

This is the `linear_equiv` version of `finsupp.sum_finsupp_equiv_prod_finsupp`. -/
@[simps apply symm_apply] def sum_finsupp_lequiv_prod_finsupp {α β : Type*} :
  ((α ⊕ β) →₀ M) ≃ₗ[R] (α →₀ M) × (β →₀ M) :=
{ map_smul' :=
    by { intros, ext;
          simp only [add_equiv.to_fun_eq_coe, prod.smul_fst, prod.smul_snd, smul_apply,
              snd_sum_finsupp_add_equiv_prod_finsupp, fst_sum_finsupp_add_equiv_prod_finsupp,
              ring_hom.id_apply] },
  .. sum_finsupp_add_equiv_prod_finsupp }

lemma fst_sum_finsupp_lequiv_prod_finsupp {α β : Type*}
  (f : (α ⊕ β) →₀ M) (x : α) :
  (sum_finsupp_lequiv_prod_finsupp R f).1 x = f (sum.inl x) :=
rfl

lemma snd_sum_finsupp_lequiv_prod_finsupp {α β : Type*}
  (f : (α ⊕ β) →₀ M) (y : β) :
  (sum_finsupp_lequiv_prod_finsupp R f).2 y = f (sum.inr y) :=
rfl

lemma sum_finsupp_lequiv_prod_finsupp_symm_inl {α β : Type*}
  (fg : (α →₀ M) × (β →₀ M)) (x : α) :
  ((sum_finsupp_lequiv_prod_finsupp R).symm fg) (sum.inl x) = fg.1 x :=
rfl

lemma sum_finsupp_lequiv_prod_finsupp_symm_inr {α β : Type*}
  (fg : (α →₀ M) × (β →₀ M)) (y : β) :
  ((sum_finsupp_lequiv_prod_finsupp R).symm fg) (sum.inr y) = fg.2 y :=
rfl

end sum

section sigma

variables {η : Type*} [fintype η] {ιs : η → Type*} [has_zero α]
variables (R)

/-- On a `fintype η`, `finsupp.split` is a linear equivalence between
`(Σ (j : η), ιs j) →₀ M` and `Π j, (ιs j →₀ M)`.

This is the `linear_equiv` version of `finsupp.sigma_finsupp_add_equiv_pi_finsupp`. -/
noncomputable def sigma_finsupp_lequiv_pi_finsupp
  {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M] :
  ((Σ j, ιs j) →₀ M) ≃ₗ[R] Π j, (ιs j →₀ M) :=
{ map_smul' := λ c f, by { ext, simp },
  .. sigma_finsupp_add_equiv_pi_finsupp }

@[simp] lemma sigma_finsupp_lequiv_pi_finsupp_apply
  {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M]
  (f : (Σ j, ιs j) →₀ M) (j i) :
  sigma_finsupp_lequiv_pi_finsupp R f j i = f ⟨j, i⟩ := rfl

@[simp] lemma sigma_finsupp_lequiv_pi_finsupp_symm_apply
  {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M]
  (f : Π j, (ιs j →₀ M)) (ji) :
  (finsupp.sigma_finsupp_lequiv_pi_finsupp R).symm f ji = f ji.1 ji.2 := rfl

end sigma

section prod

/-- The linear equivalence between `α × β →₀ M` and `α →₀ β →₀ M`.

This is the `linear_equiv` version of `finsupp.finsupp_prod_equiv`. -/
noncomputable def finsupp_prod_lequiv {α β : Type*} (R : Type*) {M : Type*}
  [semiring R] [add_comm_monoid M] [module R M] :
  (α × β →₀ M) ≃ₗ[R] (α →₀ β →₀ M) :=
{ map_add' := λ f g, by { ext, simp [finsupp_prod_equiv, curry_apply] },
  map_smul' := λ c f, by { ext, simp [finsupp_prod_equiv, curry_apply] },
  .. finsupp_prod_equiv }

@[simp] lemma finsupp_prod_lequiv_apply {α β R M : Type*}
  [semiring R] [add_comm_monoid M] [module R M] (f : α × β →₀ M) (x y) :
  finsupp_prod_lequiv R f x y = f (x, y) :=
by rw [finsupp_prod_lequiv, linear_equiv.coe_mk, finsupp_prod_equiv, finsupp.curry_apply]

@[simp] lemma finsupp_prod_lequiv_symm_apply {α β R M : Type*}
  [semiring R] [add_comm_monoid M] [module R M] (f : α →₀ β →₀ M) (xy) :
  (finsupp_prod_lequiv R).symm f xy = f xy.1 xy.2 :=
by conv_rhs
  { rw [← (finsupp_prod_lequiv R).apply_symm_apply f, finsupp_prod_lequiv_apply, prod.mk.eta] }

end prod

end finsupp

variables {R : Type*} {M : Type*} {N : Type*}
variables [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid N] [module R N]

section
variables (R)
/--
Pick some representation of `x : span R w` as a linear combination in `w`,
using the axiom of choice.
-/
def span.repr (w : set M) (x : span R w) : w →₀ R :=
((finsupp.mem_span_iff_total _ _ _).mp x.2).some

@[simp] lemma span.finsupp_total_repr {w : set M} (x : span R w) :
  finsupp.total w M R coe (span.repr R w x) = x :=
((finsupp.mem_span_iff_total _ _ _).mp x.2).some_spec

attribute [irreducible] span.repr

end

protected lemma submodule.finsupp_sum_mem {ι β : Type*} [has_zero β] (S : submodule R M)
  (f : ι →₀ β) (g : ι → β → M) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) : f.sum g ∈ S :=
add_submonoid_class.finsupp_sum_mem S f g h

lemma linear_map.map_finsupp_total
  (f : M →ₗ[R] N) {ι : Type*} {g : ι → M} (l : ι →₀ R) :
  f (finsupp.total ι M R g l) = finsupp.total ι N R (f ∘ g) l :=
by simp only [finsupp.total_apply, finsupp.total_apply, finsupp.sum, f.map_sum, f.map_smul]

lemma submodule.exists_finset_of_mem_supr
  {ι : Sort*} (p : ι → submodule R M) {m : M} (hm : m ∈ ⨆ i, p i) :
  ∃ s : finset ι, m ∈ ⨆ i ∈ s, p i :=
begin
  have := complete_lattice.is_compact_element.exists_finset_of_le_supr (submodule R M)
    (submodule.singleton_span_is_compact_element m) p,
  simp only [submodule.span_singleton_le_iff_mem] at this,
  exact this hm,
end

/-- `submodule.exists_finset_of_mem_supr` as an `iff` -/
lemma submodule.mem_supr_iff_exists_finset
  {ι : Sort*} {p : ι → submodule R M} {m : M} :
  (m ∈ ⨆ i, p i) ↔ ∃ s : finset ι, m ∈ ⨆ i ∈ s, p i :=
⟨submodule.exists_finset_of_mem_supr p,
 λ ⟨_, hs⟩, supr_mono (λ i, (supr_const_le : _ ≤ p i)) hs⟩

lemma mem_span_finset {s : finset M} {x : M} :
  x ∈ span R (↑s : set M) ↔ ∃ f : M → R, ∑ i in s, f i • i = x :=
⟨λ hx, let ⟨v, hvs, hvx⟩ := (finsupp.mem_span_image_iff_total _).1
    (show x ∈ span R (id '' (↑s : set M)), by rwa set.image_id) in
  ⟨v, hvx ▸ (finsupp.total_apply_of_mem_supported _ hvs).symm⟩,
λ ⟨f, hf⟩, hf ▸ sum_mem (λ i hi, smul_mem _ _ $ subset_span hi)⟩

/-- An element `m ∈ M` is contained in the `R`-submodule spanned by a set `s ⊆ M`, if and only if
`m` can be written as a finite `R`-linear combination of elements of `s`.
The implementation uses `finsupp.sum`. -/
lemma mem_span_set {m : M} {s : set M} :
  m ∈ submodule.span R s ↔ ∃ c : M →₀ R, (c.support : set M) ⊆ s ∧ c.sum (λ mi r, r • mi) = m :=
begin
  conv_lhs { rw ←set.image_id s },
  simp_rw ←exists_prop,
  exact finsupp.mem_span_image_iff_total R,
end

/-- If `subsingleton R`, then `M ≃ₗ[R] ι →₀ R` for any type `ι`. -/
@[simps]
def module.subsingleton_equiv (R M ι: Type*) [semiring R] [subsingleton R] [add_comm_monoid M]
  [module R M] : M ≃ₗ[R] ι →₀ R :=
{ to_fun := λ m, 0,
  inv_fun := λ f, 0,
  left_inv := λ m, by { letI := module.subsingleton R M, simp only [eq_iff_true_of_subsingleton] },
  right_inv := λ f, by simp only [eq_iff_true_of_subsingleton],
  map_add' := λ m n, (add_zero 0).symm,
  map_smul' := λ r m, (smul_zero r).symm }

namespace linear_map

variables {R M} {α : Type*}
open finsupp function

/-- A surjective linear map to finitely supported functions has a splitting. -/
-- See also `linear_map.splitting_of_fun_on_fintype_surjective`
def splitting_of_finsupp_surjective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : (α →₀ R) →ₗ[R] M :=
finsupp.lift _ _ _ (λ x : α, (s (finsupp.single x 1)).some)

lemma splitting_of_finsupp_surjective_splits (f : M →ₗ[R] (α →₀ R)) (s : surjective f) :
  f.comp (splitting_of_finsupp_surjective f s) = linear_map.id :=
begin
  ext x y,
  dsimp [splitting_of_finsupp_surjective],
  congr,
  rw [sum_single_index, one_smul],
  { exact (s (finsupp.single x 1)).some_spec, },
  { rw zero_smul, },
end

lemma left_inverse_splitting_of_finsupp_surjective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) :
  left_inverse f (splitting_of_finsupp_surjective f s) :=
λ g, linear_map.congr_fun (splitting_of_finsupp_surjective_splits f s) g

lemma splitting_of_finsupp_surjective_injective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) :
  injective (splitting_of_finsupp_surjective f s) :=
(left_inverse_splitting_of_finsupp_surjective f s).injective

/-- A surjective linear map to functions on a finite type has a splitting. -/
-- See also `linear_map.splitting_of_finsupp_surjective`
def splitting_of_fun_on_fintype_surjective [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) :
  (α → R) →ₗ[R] M :=
(finsupp.lift _ _ _ (λ x : α, (s (finsupp.single x 1)).some)).comp
  (linear_equiv_fun_on_fintype R R α).symm.to_linear_map

lemma splitting_of_fun_on_fintype_surjective_splits
  [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) :
  f.comp (splitting_of_fun_on_fintype_surjective f s) = linear_map.id :=
begin
  ext x y,
  dsimp [splitting_of_fun_on_fintype_surjective],
  rw [linear_equiv_fun_on_fintype_symm_single, finsupp.sum_single_index, one_smul,
    (s (finsupp.single x 1)).some_spec, finsupp.single_eq_pi_single],
  rw [zero_smul],
end

lemma left_inverse_splitting_of_fun_on_fintype_surjective
  [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) :
  left_inverse f (splitting_of_fun_on_fintype_surjective f s) :=
λ g, linear_map.congr_fun (splitting_of_fun_on_fintype_surjective_splits f s) g

lemma splitting_of_fun_on_fintype_surjective_injective
  [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) :
  injective (splitting_of_fun_on_fintype_surjective f s) :=
(left_inverse_splitting_of_fun_on_fintype_surjective f s).injective

end linear_map